xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ExpandPseudo.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that expands pseudo instructions into target
10 // instructions to allow proper scheduling, if-conversion, other late
11 // optimizations, or simply the encoding of the instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86FrameLowering.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/Target/TargetMachine.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "x86-pseudo"
31 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
32 
33 namespace {
34 class X86ExpandPseudo : public MachineFunctionPass {
35 public:
36   static char ID;
37   X86ExpandPseudo() : MachineFunctionPass(ID) {}
38 
39   void getAnalysisUsage(AnalysisUsage &AU) const override {
40     AU.setPreservesCFG();
41     AU.addPreservedID(MachineLoopInfoID);
42     AU.addPreservedID(MachineDominatorsID);
43     MachineFunctionPass::getAnalysisUsage(AU);
44   }
45 
46   const X86Subtarget *STI = nullptr;
47   const X86InstrInfo *TII = nullptr;
48   const X86RegisterInfo *TRI = nullptr;
49   const X86MachineFunctionInfo *X86FI = nullptr;
50   const X86FrameLowering *X86FL = nullptr;
51 
52   bool runOnMachineFunction(MachineFunction &Fn) override;
53 
54   MachineFunctionProperties getRequiredProperties() const override {
55     return MachineFunctionProperties().set(
56         MachineFunctionProperties::Property::NoVRegs);
57   }
58 
59   StringRef getPassName() const override {
60     return "X86 pseudo instruction expansion pass";
61   }
62 
63 private:
64   void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
65                                MachineBasicBlock::iterator MBBI);
66   void expandCALL_RVMARKER(MachineBasicBlock &MBB,
67                            MachineBasicBlock::iterator MBBI);
68   bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
69   bool ExpandMBB(MachineBasicBlock &MBB);
70 
71   /// This function expands pseudos which affects control flow.
72   /// It is done in separate pass to simplify blocks navigation in main
73   /// pass(calling ExpandMBB).
74   bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF);
75 
76   /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
77   /// placed into separate block guarded by check for al register(for SystemV
78   /// abi).
79   void ExpandVastartSaveXmmRegs(
80       MachineBasicBlock *MBB,
81       MachineBasicBlock::iterator VAStartPseudoInstr) const;
82 };
83 char X86ExpandPseudo::ID = 0;
84 
85 } // End anonymous namespace.
86 
87 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
88                 false)
89 
90 void X86ExpandPseudo::ExpandICallBranchFunnel(
91     MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
92   MachineBasicBlock *JTMBB = MBB;
93   MachineInstr *JTInst = &*MBBI;
94   MachineFunction *MF = MBB->getParent();
95   const BasicBlock *BB = MBB->getBasicBlock();
96   auto InsPt = MachineFunction::iterator(MBB);
97   ++InsPt;
98 
99   std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
100   const DebugLoc &DL = JTInst->getDebugLoc();
101   MachineOperand Selector = JTInst->getOperand(0);
102   const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
103 
104   auto CmpTarget = [&](unsigned Target) {
105     if (Selector.isReg())
106       MBB->addLiveIn(Selector.getReg());
107     BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
108         .addReg(X86::RIP)
109         .addImm(1)
110         .addReg(0)
111         .addGlobalAddress(CombinedGlobal,
112                           JTInst->getOperand(2 + 2 * Target).getImm())
113         .addReg(0);
114     BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
115         .add(Selector)
116         .addReg(X86::R11);
117   };
118 
119   auto CreateMBB = [&]() {
120     auto *NewMBB = MF->CreateMachineBasicBlock(BB);
121     MBB->addSuccessor(NewMBB);
122     if (!MBB->isLiveIn(X86::EFLAGS))
123       MBB->addLiveIn(X86::EFLAGS);
124     return NewMBB;
125   };
126 
127   auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
128     BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
129 
130     auto *ElseMBB = CreateMBB();
131     MF->insert(InsPt, ElseMBB);
132     MBB = ElseMBB;
133     MBBI = MBB->end();
134   };
135 
136   auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
137     auto *ThenMBB = CreateMBB();
138     TargetMBBs.push_back({ThenMBB, Target});
139     EmitCondJump(CC, ThenMBB);
140   };
141 
142   auto EmitTailCall = [&](unsigned Target) {
143     BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
144         .add(JTInst->getOperand(3 + 2 * Target));
145   };
146 
147   std::function<void(unsigned, unsigned)> EmitBranchFunnel =
148       [&](unsigned FirstTarget, unsigned NumTargets) {
149     if (NumTargets == 1) {
150       EmitTailCall(FirstTarget);
151       return;
152     }
153 
154     if (NumTargets == 2) {
155       CmpTarget(FirstTarget + 1);
156       EmitCondJumpTarget(X86::COND_B, FirstTarget);
157       EmitTailCall(FirstTarget + 1);
158       return;
159     }
160 
161     if (NumTargets < 6) {
162       CmpTarget(FirstTarget + 1);
163       EmitCondJumpTarget(X86::COND_B, FirstTarget);
164       EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
165       EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
166       return;
167     }
168 
169     auto *ThenMBB = CreateMBB();
170     CmpTarget(FirstTarget + (NumTargets / 2));
171     EmitCondJump(X86::COND_B, ThenMBB);
172     EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
173     EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
174                   NumTargets - (NumTargets / 2) - 1);
175 
176     MF->insert(InsPt, ThenMBB);
177     MBB = ThenMBB;
178     MBBI = MBB->end();
179     EmitBranchFunnel(FirstTarget, NumTargets / 2);
180   };
181 
182   EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
183   for (auto P : TargetMBBs) {
184     MF->insert(InsPt, P.first);
185     BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
186         .add(JTInst->getOperand(3 + 2 * P.second));
187   }
188   JTMBB->erase(JTInst);
189 }
190 
191 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
192                                           MachineBasicBlock::iterator MBBI) {
193   // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
194   //"movq %rax, %rdi" marker.
195   MachineInstr &MI = *MBBI;
196 
197   MachineInstr *OriginalCall;
198   assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
199          "invalid operand for regular call");
200   unsigned Opc = -1;
201   if (MI.getOpcode() == X86::CALL64m_RVMARKER)
202     Opc = X86::CALL64m;
203   else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
204     Opc = X86::CALL64r;
205   else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
206     Opc = X86::CALL64pcrel32;
207   else
208     llvm_unreachable("unexpected opcode");
209 
210   OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
211   bool RAXImplicitDead = false;
212   for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
213     // RAX may be 'implicit dead', if there are no other users of the return
214     // value. We introduce a new use, so change it to 'implicit def'.
215     if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
216         TRI->regsOverlap(Op.getReg(), X86::RAX)) {
217       Op.setIsDead(false);
218       Op.setIsDef(true);
219       RAXImplicitDead = true;
220     }
221     OriginalCall->addOperand(Op);
222   }
223 
224   // Emit marker "movq %rax, %rdi".  %rdi is not callee-saved, so it cannot be
225   // live across the earlier call. The call to the ObjC runtime function returns
226   // the first argument, so the value of %rax is unchanged after the ObjC
227   // runtime call. On Windows targets, the runtime call follows the regular
228   // x64 calling convention and expects the first argument in %rcx.
229   auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI;
230   auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
231                      .addReg(TargetReg, RegState::Define)
232                      .addReg(X86::RAX)
233                      .getInstr();
234   if (MI.shouldUpdateCallSiteInfo())
235     MBB.getParent()->moveCallSiteInfo(&MI, Marker);
236 
237   // Emit call to ObjC runtime.
238   const uint32_t *RegMask =
239       TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
240   MachineInstr *RtCall =
241       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
242           .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
243           .addRegMask(RegMask)
244           .addReg(X86::RAX,
245                   RegState::Implicit |
246                       (RAXImplicitDead ? (RegState::Dead | RegState::Define)
247                                        : RegState::Define))
248           .getInstr();
249   MI.eraseFromParent();
250 
251   auto &TM = MBB.getParent()->getTarget();
252   // On Darwin platforms, wrap the expanded sequence in a bundle to prevent
253   // later optimizations from breaking up the sequence.
254   if (TM.getTargetTriple().isOSDarwin())
255     finalizeBundle(MBB, OriginalCall->getIterator(),
256                    std::next(RtCall->getIterator()));
257 }
258 
259 /// If \p MBBI is a pseudo instruction, this method expands
260 /// it to the corresponding (sequence of) actual instruction(s).
261 /// \returns true if \p MBBI has been expanded.
262 bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
263                                MachineBasicBlock::iterator MBBI) {
264   MachineInstr &MI = *MBBI;
265   unsigned Opcode = MI.getOpcode();
266   const DebugLoc &DL = MBBI->getDebugLoc();
267   switch (Opcode) {
268   default:
269     return false;
270   case X86::TCRETURNdi:
271   case X86::TCRETURNdicc:
272   case X86::TCRETURNri:
273   case X86::TCRETURNmi:
274   case X86::TCRETURNdi64:
275   case X86::TCRETURNdi64cc:
276   case X86::TCRETURNri64:
277   case X86::TCRETURNmi64: {
278     bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
279     MachineOperand &JumpTarget = MBBI->getOperand(0);
280     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
281                                                          : 1);
282     assert(StackAdjust.isImm() && "Expecting immediate value.");
283 
284     // Adjust stack pointer.
285     int StackAdj = StackAdjust.getImm();
286     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
287     int Offset = 0;
288     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
289 
290     // Incoporate the retaddr area.
291     Offset = StackAdj - MaxTCDelta;
292     assert(Offset >= 0 && "Offset should never be negative");
293 
294     if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
295       assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
296     }
297 
298     if (Offset) {
299       // Check for possible merge with preceding ADD instruction.
300       Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
301       X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
302     }
303 
304     // Jump to label or value in register.
305     bool IsWin64 = STI->isTargetWin64();
306     if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
307         Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
308       unsigned Op;
309       switch (Opcode) {
310       case X86::TCRETURNdi:
311         Op = X86::TAILJMPd;
312         break;
313       case X86::TCRETURNdicc:
314         Op = X86::TAILJMPd_CC;
315         break;
316       case X86::TCRETURNdi64cc:
317         assert(!MBB.getParent()->hasWinCFI() &&
318                "Conditional tail calls confuse "
319                "the Win64 unwinder.");
320         Op = X86::TAILJMPd64_CC;
321         break;
322       default:
323         // Note: Win64 uses REX prefixes indirect jumps out of functions, but
324         // not direct ones.
325         Op = X86::TAILJMPd64;
326         break;
327       }
328       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
329       if (JumpTarget.isGlobal()) {
330         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
331                              JumpTarget.getTargetFlags());
332       } else {
333         assert(JumpTarget.isSymbol());
334         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
335                               JumpTarget.getTargetFlags());
336       }
337       if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
338         MIB.addImm(MBBI->getOperand(2).getImm());
339       }
340 
341     } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
342       unsigned Op = (Opcode == X86::TCRETURNmi)
343                         ? X86::TAILJMPm
344                         : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
345       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
346       for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
347         MIB.add(MBBI->getOperand(i));
348     } else if (Opcode == X86::TCRETURNri64) {
349       JumpTarget.setIsKill();
350       BuildMI(MBB, MBBI, DL,
351               TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
352           .add(JumpTarget);
353     } else {
354       JumpTarget.setIsKill();
355       BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
356           .add(JumpTarget);
357     }
358 
359     MachineInstr &NewMI = *std::prev(MBBI);
360     NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
361     NewMI.setCFIType(*MBB.getParent(), MI.getCFIType());
362 
363     // Update the call site info.
364     if (MBBI->isCandidateForCallSiteEntry())
365       MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
366 
367     // Delete the pseudo instruction TCRETURN.
368     MBB.erase(MBBI);
369 
370     return true;
371   }
372   case X86::EH_RETURN:
373   case X86::EH_RETURN64: {
374     MachineOperand &DestAddr = MBBI->getOperand(0);
375     assert(DestAddr.isReg() && "Offset should be in register!");
376     const bool Uses64BitFramePtr =
377         STI->isTarget64BitLP64() || STI->isTargetNaCl64();
378     Register StackPtr = TRI->getStackRegister();
379     BuildMI(MBB, MBBI, DL,
380             TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
381         .addReg(DestAddr.getReg());
382     // The EH_RETURN pseudo is really removed during the MC Lowering.
383     return true;
384   }
385   case X86::IRET: {
386     // Adjust stack to erase error code
387     int64_t StackAdj = MBBI->getOperand(0).getImm();
388     X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
389     // Replace pseudo with machine iret
390     unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
391     // Use UIRET if UINTR is present (except for building kernel)
392     if (STI->is64Bit() && STI->hasUINTR() &&
393         MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
394       RetOp = X86::UIRET;
395     BuildMI(MBB, MBBI, DL, TII->get(RetOp));
396     MBB.erase(MBBI);
397     return true;
398   }
399   case X86::RET: {
400     // Adjust stack to erase error code
401     int64_t StackAdj = MBBI->getOperand(0).getImm();
402     MachineInstrBuilder MIB;
403     if (StackAdj == 0) {
404       MIB = BuildMI(MBB, MBBI, DL,
405                     TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
406     } else if (isUInt<16>(StackAdj)) {
407       MIB = BuildMI(MBB, MBBI, DL,
408                     TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
409                 .addImm(StackAdj);
410     } else {
411       assert(!STI->is64Bit() &&
412              "shouldn't need to do this for x86_64 targets!");
413       // A ret can only handle immediates as big as 2**16-1.  If we need to pop
414       // off bytes before the return address, we must do it manually.
415       BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
416       X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
417       BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
418       MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
419     }
420     for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
421       MIB.add(MBBI->getOperand(I));
422     MBB.erase(MBBI);
423     return true;
424   }
425   case X86::LCMPXCHG16B_SAVE_RBX: {
426     // Perform the following transformation.
427     // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
428     // =>
429     // RBX = InArg
430     // actualcmpxchg Addr
431     // RBX = SaveRbx
432     const MachineOperand &InArg = MBBI->getOperand(6);
433     Register SaveRbx = MBBI->getOperand(7).getReg();
434 
435     // Copy the input argument of the pseudo into the argument of the
436     // actual instruction.
437     // NOTE: We don't copy the kill flag since the input might be the same reg
438     // as one of the other operands of LCMPXCHG16B.
439     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
440     // Create the actual instruction.
441     MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
442     // Copy the operands related to the address.
443     for (unsigned Idx = 1; Idx < 6; ++Idx)
444       NewInstr->addOperand(MBBI->getOperand(Idx));
445     // Finally, restore the value of RBX.
446     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
447                      /*SrcIsKill*/ true);
448 
449     // Delete the pseudo.
450     MBBI->eraseFromParent();
451     return true;
452   }
453   // Loading/storing mask pairs requires two kmov operations. The second one of
454   // these needs a 2 byte displacement relative to the specified address (with
455   // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
456   // same spill size, they all are stored using MASKPAIR16STORE, loaded using
457   // MASKPAIR16LOAD.
458   //
459   // The displacement value might wrap around in theory, thus the asserts in
460   // both cases.
461   case X86::MASKPAIR16LOAD: {
462     int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
463     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
464     Register Reg = MBBI->getOperand(0).getReg();
465     bool DstIsDead = MBBI->getOperand(0).isDead();
466     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
467     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
468 
469     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
470       .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
471     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
472       .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
473 
474     for (int i = 0; i < X86::AddrNumOperands; ++i) {
475       MIBLo.add(MBBI->getOperand(1 + i));
476       if (i == X86::AddrDisp)
477         MIBHi.addImm(Disp + 2);
478       else
479         MIBHi.add(MBBI->getOperand(1 + i));
480     }
481 
482     // Split the memory operand, adjusting the offset and size for the halves.
483     MachineMemOperand *OldMMO = MBBI->memoperands().front();
484     MachineFunction *MF = MBB.getParent();
485     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
486     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
487 
488     MIBLo.setMemRefs(MMOLo);
489     MIBHi.setMemRefs(MMOHi);
490 
491     // Delete the pseudo.
492     MBB.erase(MBBI);
493     return true;
494   }
495   case X86::MASKPAIR16STORE: {
496     int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
497     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
498     Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
499     bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
500     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
501     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
502 
503     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
504     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
505 
506     for (int i = 0; i < X86::AddrNumOperands; ++i) {
507       MIBLo.add(MBBI->getOperand(i));
508       if (i == X86::AddrDisp)
509         MIBHi.addImm(Disp + 2);
510       else
511         MIBHi.add(MBBI->getOperand(i));
512     }
513     MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
514     MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
515 
516     // Split the memory operand, adjusting the offset and size for the halves.
517     MachineMemOperand *OldMMO = MBBI->memoperands().front();
518     MachineFunction *MF = MBB.getParent();
519     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
520     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
521 
522     MIBLo.setMemRefs(MMOLo);
523     MIBHi.setMemRefs(MMOHi);
524 
525     // Delete the pseudo.
526     MBB.erase(MBBI);
527     return true;
528   }
529   case X86::MWAITX_SAVE_RBX: {
530     // Perform the following transformation.
531     // SaveRbx = pseudomwaitx InArg, SaveRbx
532     // =>
533     // [E|R]BX = InArg
534     // actualmwaitx
535     // [E|R]BX = SaveRbx
536     const MachineOperand &InArg = MBBI->getOperand(1);
537     // Copy the input argument of the pseudo into the argument of the
538     // actual instruction.
539     TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
540     // Create the actual instruction.
541     BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
542     // Finally, restore the value of RBX.
543     Register SaveRbx = MBBI->getOperand(2).getReg();
544     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
545     // Delete the pseudo.
546     MBBI->eraseFromParent();
547     return true;
548   }
549   case TargetOpcode::ICALL_BRANCH_FUNNEL:
550     ExpandICallBranchFunnel(&MBB, MBBI);
551     return true;
552   case X86::PLDTILECFGV: {
553     MI.setDesc(TII->get(X86::LDTILECFG));
554     return true;
555   }
556   case X86::PTILELOADDV:
557   case X86::PTILELOADDT1V: {
558     for (unsigned i = 2; i > 0; --i)
559       MI.removeOperand(i);
560     unsigned Opc =
561         Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1;
562     MI.setDesc(TII->get(Opc));
563     return true;
564   }
565   case X86::PTDPBSSDV:
566   case X86::PTDPBSUDV:
567   case X86::PTDPBUSDV:
568   case X86::PTDPBUUDV:
569   case X86::PTDPBF16PSV:
570   case X86::PTDPFP16PSV: {
571     MI.untieRegOperand(4);
572     for (unsigned i = 3; i > 0; --i)
573       MI.removeOperand(i);
574     unsigned Opc;
575     switch (Opcode) {
576     case X86::PTDPBSSDV:   Opc = X86::TDPBSSD; break;
577     case X86::PTDPBSUDV:   Opc = X86::TDPBSUD; break;
578     case X86::PTDPBUSDV:   Opc = X86::TDPBUSD; break;
579     case X86::PTDPBUUDV:   Opc = X86::TDPBUUD; break;
580     case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
581     case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break;
582     default: llvm_unreachable("Impossible Opcode!");
583     }
584     MI.setDesc(TII->get(Opc));
585     MI.tieOperands(0, 1);
586     return true;
587   }
588   case X86::PTILESTOREDV: {
589     for (int i = 1; i >= 0; --i)
590       MI.removeOperand(i);
591     MI.setDesc(TII->get(X86::TILESTORED));
592     return true;
593   }
594   case X86::PTILEZEROV: {
595     for (int i = 2; i > 0; --i) // Remove row, col
596       MI.removeOperand(i);
597     MI.setDesc(TII->get(X86::TILEZERO));
598     return true;
599   }
600   case X86::CALL64pcrel32_RVMARKER:
601   case X86::CALL64r_RVMARKER:
602   case X86::CALL64m_RVMARKER:
603     expandCALL_RVMARKER(MBB, MBBI);
604     return true;
605   }
606   llvm_unreachable("Previous switch has a fallthrough?");
607 }
608 
609 // This function creates additional block for storing varargs guarded
610 // registers. It adds check for %al into entry block, to skip
611 // GuardedRegsBlk if xmm registers should not be stored.
612 //
613 //     EntryBlk[VAStartPseudoInstr]     EntryBlk
614 //        |                              |     .
615 //        |                              |        .
616 //        |                              |   GuardedRegsBlk
617 //        |                      =>      |        .
618 //        |                              |     .
619 //        |                             TailBlk
620 //        |                              |
621 //        |                              |
622 //
623 void X86ExpandPseudo::ExpandVastartSaveXmmRegs(
624     MachineBasicBlock *EntryBlk,
625     MachineBasicBlock::iterator VAStartPseudoInstr) const {
626   assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
627 
628   MachineFunction *Func = EntryBlk->getParent();
629   const TargetInstrInfo *TII = STI->getInstrInfo();
630   const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
631   Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
632 
633   // Calculate liveins for newly created blocks.
634   LivePhysRegs LiveRegs(*STI->getRegisterInfo());
635   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
636 
637   LiveRegs.addLiveIns(*EntryBlk);
638   for (MachineInstr &MI : EntryBlk->instrs()) {
639     if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
640       break;
641 
642     LiveRegs.stepForward(MI, Clobbers);
643   }
644 
645   // Create the new basic blocks. One block contains all the XMM stores,
646   // and another block is the final destination regardless of whether any
647   // stores were performed.
648   const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
649   MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
650   MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
651   MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
652   Func->insert(EntryBlkIter, GuardedRegsBlk);
653   Func->insert(EntryBlkIter, TailBlk);
654 
655   // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
656   TailBlk->splice(TailBlk->begin(), EntryBlk,
657                   std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
658                   EntryBlk->end());
659   TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
660 
661   uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
662   uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
663 
664   // TODO: add support for YMM and ZMM here.
665   unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
666 
667   // In the XMM save block, save all the XMM argument registers.
668   for (int64_t OpndIdx = 7, RegIdx = 0;
669        OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
670        OpndIdx++, RegIdx++) {
671     auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
672     for (int i = 0; i < X86::AddrNumOperands; ++i) {
673       if (i == X86::AddrDisp)
674         NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
675       else
676         NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
677     }
678     NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
679     assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical());
680   }
681 
682   // The original block will now fall through to the GuardedRegsBlk.
683   EntryBlk->addSuccessor(GuardedRegsBlk);
684   // The GuardedRegsBlk will fall through to the TailBlk.
685   GuardedRegsBlk->addSuccessor(TailBlk);
686 
687   if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
688     // If %al is 0, branch around the XMM save block.
689     BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
690         .addReg(CountReg)
691         .addReg(CountReg);
692     BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
693         .addMBB(TailBlk)
694         .addImm(X86::COND_E);
695     EntryBlk->addSuccessor(TailBlk);
696   }
697 
698   // Add liveins to the created block.
699   addLiveIns(*GuardedRegsBlk, LiveRegs);
700   addLiveIns(*TailBlk, LiveRegs);
701 
702   // Delete the pseudo.
703   VAStartPseudoInstr->eraseFromParent();
704 }
705 
706 /// Expand all pseudo instructions contained in \p MBB.
707 /// \returns true if any expansion occurred for \p MBB.
708 bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
709   bool Modified = false;
710 
711   // MBBI may be invalidated by the expansion.
712   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
713   while (MBBI != E) {
714     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
715     Modified |= ExpandMI(MBB, MBBI);
716     MBBI = NMBBI;
717   }
718 
719   return Modified;
720 }
721 
722 bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) {
723   // Currently pseudo which affects control flow is only
724   // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
725   // So we do not need to evaluate other blocks.
726   for (MachineInstr &Instr : MF.front().instrs()) {
727     if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
728       ExpandVastartSaveXmmRegs(&(MF.front()), Instr);
729       return true;
730     }
731   }
732 
733   return false;
734 }
735 
736 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
737   STI = &MF.getSubtarget<X86Subtarget>();
738   TII = STI->getInstrInfo();
739   TRI = STI->getRegisterInfo();
740   X86FI = MF.getInfo<X86MachineFunctionInfo>();
741   X86FL = STI->getFrameLowering();
742 
743   bool Modified = ExpandPseudosWhichAffectControlFlow(MF);
744 
745   for (MachineBasicBlock &MBB : MF)
746     Modified |= ExpandMBB(MBB);
747   return Modified;
748 }
749 
750 /// Returns an instance of the pseudo instruction expansion pass.
751 FunctionPass *llvm::createX86ExpandPseudoPass() {
752   return new X86ExpandPseudo();
753 }
754