1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that expands pseudo instructions into target 10 // instructions to allow proper scheduling, if-conversion, other late 11 // optimizations, or simply the encoding of the instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86FrameLowering.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86Subtarget.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved. 25 #include "llvm/IR/EHPersonalities.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/Target/TargetMachine.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "x86-pseudo" 31 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass" 32 33 namespace { 34 class X86ExpandPseudo : public MachineFunctionPass { 35 public: 36 static char ID; 37 X86ExpandPseudo() : MachineFunctionPass(ID) {} 38 39 void getAnalysisUsage(AnalysisUsage &AU) const override { 40 AU.setPreservesCFG(); 41 AU.addPreservedID(MachineLoopInfoID); 42 AU.addPreservedID(MachineDominatorsID); 43 MachineFunctionPass::getAnalysisUsage(AU); 44 } 45 46 const X86Subtarget *STI = nullptr; 47 const X86InstrInfo *TII = nullptr; 48 const X86RegisterInfo *TRI = nullptr; 49 const X86MachineFunctionInfo *X86FI = nullptr; 50 const X86FrameLowering *X86FL = nullptr; 51 52 bool runOnMachineFunction(MachineFunction &MF) override; 53 54 MachineFunctionProperties getRequiredProperties() const override { 55 return MachineFunctionProperties().set( 56 MachineFunctionProperties::Property::NoVRegs); 57 } 58 59 StringRef getPassName() const override { 60 return "X86 pseudo instruction expansion pass"; 61 } 62 63 private: 64 void ExpandICallBranchFunnel(MachineBasicBlock *MBB, 65 MachineBasicBlock::iterator MBBI); 66 void expandCALL_RVMARKER(MachineBasicBlock &MBB, 67 MachineBasicBlock::iterator MBBI); 68 bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); 69 bool ExpandMBB(MachineBasicBlock &MBB); 70 71 /// This function expands pseudos which affects control flow. 72 /// It is done in separate pass to simplify blocks navigation in main 73 /// pass(calling ExpandMBB). 74 bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF); 75 76 /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions, 77 /// placed into separate block guarded by check for al register(for SystemV 78 /// abi). 79 void ExpandVastartSaveXmmRegs( 80 MachineBasicBlock *EntryBlk, 81 MachineBasicBlock::iterator VAStartPseudoInstr) const; 82 }; 83 char X86ExpandPseudo::ID = 0; 84 85 } // End anonymous namespace. 86 87 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false, 88 false) 89 90 void X86ExpandPseudo::ExpandICallBranchFunnel( 91 MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) { 92 MachineBasicBlock *JTMBB = MBB; 93 MachineInstr *JTInst = &*MBBI; 94 MachineFunction *MF = MBB->getParent(); 95 const BasicBlock *BB = MBB->getBasicBlock(); 96 auto InsPt = MachineFunction::iterator(MBB); 97 ++InsPt; 98 99 std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs; 100 const DebugLoc &DL = JTInst->getDebugLoc(); 101 MachineOperand Selector = JTInst->getOperand(0); 102 const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal(); 103 104 auto CmpTarget = [&](unsigned Target) { 105 if (Selector.isReg()) 106 MBB->addLiveIn(Selector.getReg()); 107 BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11) 108 .addReg(X86::RIP) 109 .addImm(1) 110 .addReg(0) 111 .addGlobalAddress(CombinedGlobal, 112 JTInst->getOperand(2 + 2 * Target).getImm()) 113 .addReg(0); 114 BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr)) 115 .add(Selector) 116 .addReg(X86::R11); 117 }; 118 119 auto CreateMBB = [&]() { 120 auto *NewMBB = MF->CreateMachineBasicBlock(BB); 121 MBB->addSuccessor(NewMBB); 122 if (!MBB->isLiveIn(X86::EFLAGS)) 123 MBB->addLiveIn(X86::EFLAGS); 124 return NewMBB; 125 }; 126 127 auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) { 128 BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC); 129 130 auto *ElseMBB = CreateMBB(); 131 MF->insert(InsPt, ElseMBB); 132 MBB = ElseMBB; 133 MBBI = MBB->end(); 134 }; 135 136 auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) { 137 auto *ThenMBB = CreateMBB(); 138 TargetMBBs.push_back({ThenMBB, Target}); 139 EmitCondJump(CC, ThenMBB); 140 }; 141 142 auto EmitTailCall = [&](unsigned Target) { 143 BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64)) 144 .add(JTInst->getOperand(3 + 2 * Target)); 145 }; 146 147 std::function<void(unsigned, unsigned)> EmitBranchFunnel = 148 [&](unsigned FirstTarget, unsigned NumTargets) { 149 if (NumTargets == 1) { 150 EmitTailCall(FirstTarget); 151 return; 152 } 153 154 if (NumTargets == 2) { 155 CmpTarget(FirstTarget + 1); 156 EmitCondJumpTarget(X86::COND_B, FirstTarget); 157 EmitTailCall(FirstTarget + 1); 158 return; 159 } 160 161 if (NumTargets < 6) { 162 CmpTarget(FirstTarget + 1); 163 EmitCondJumpTarget(X86::COND_B, FirstTarget); 164 EmitCondJumpTarget(X86::COND_E, FirstTarget + 1); 165 EmitBranchFunnel(FirstTarget + 2, NumTargets - 2); 166 return; 167 } 168 169 auto *ThenMBB = CreateMBB(); 170 CmpTarget(FirstTarget + (NumTargets / 2)); 171 EmitCondJump(X86::COND_B, ThenMBB); 172 EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2)); 173 EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1, 174 NumTargets - (NumTargets / 2) - 1); 175 176 MF->insert(InsPt, ThenMBB); 177 MBB = ThenMBB; 178 MBBI = MBB->end(); 179 EmitBranchFunnel(FirstTarget, NumTargets / 2); 180 }; 181 182 EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2); 183 for (auto P : TargetMBBs) { 184 MF->insert(InsPt, P.first); 185 BuildMI(P.first, DL, TII->get(X86::TAILJMPd64)) 186 .add(JTInst->getOperand(3 + 2 * P.second)); 187 } 188 JTMBB->erase(JTInst); 189 } 190 191 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB, 192 MachineBasicBlock::iterator MBBI) { 193 // Expand CALL_RVMARKER pseudo to call instruction, followed by the special 194 //"movq %rax, %rdi" marker. 195 MachineInstr &MI = *MBBI; 196 197 MachineInstr *OriginalCall; 198 assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) && 199 "invalid operand for regular call"); 200 unsigned Opc = -1; 201 if (MI.getOpcode() == X86::CALL64m_RVMARKER) 202 Opc = X86::CALL64m; 203 else if (MI.getOpcode() == X86::CALL64r_RVMARKER) 204 Opc = X86::CALL64r; 205 else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER) 206 Opc = X86::CALL64pcrel32; 207 else 208 llvm_unreachable("unexpected opcode"); 209 210 OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr(); 211 bool RAXImplicitDead = false; 212 for (MachineOperand &Op : llvm::drop_begin(MI.operands())) { 213 // RAX may be 'implicit dead', if there are no other users of the return 214 // value. We introduce a new use, so change it to 'implicit def'. 215 if (Op.isReg() && Op.isImplicit() && Op.isDead() && 216 TRI->regsOverlap(Op.getReg(), X86::RAX)) { 217 Op.setIsDead(false); 218 Op.setIsDef(true); 219 RAXImplicitDead = true; 220 } 221 OriginalCall->addOperand(Op); 222 } 223 224 // Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be 225 // live across the earlier call. The call to the ObjC runtime function returns 226 // the first argument, so the value of %rax is unchanged after the ObjC 227 // runtime call. On Windows targets, the runtime call follows the regular 228 // x64 calling convention and expects the first argument in %rcx. 229 auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI; 230 auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr)) 231 .addReg(TargetReg, RegState::Define) 232 .addReg(X86::RAX) 233 .getInstr(); 234 if (MI.shouldUpdateCallSiteInfo()) 235 MBB.getParent()->moveCallSiteInfo(&MI, Marker); 236 237 // Emit call to ObjC runtime. 238 const uint32_t *RegMask = 239 TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C); 240 MachineInstr *RtCall = 241 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32)) 242 .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0) 243 .addRegMask(RegMask) 244 .addReg(X86::RAX, 245 RegState::Implicit | 246 (RAXImplicitDead ? (RegState::Dead | RegState::Define) 247 : RegState::Define)) 248 .getInstr(); 249 MI.eraseFromParent(); 250 251 auto &TM = MBB.getParent()->getTarget(); 252 // On Darwin platforms, wrap the expanded sequence in a bundle to prevent 253 // later optimizations from breaking up the sequence. 254 if (TM.getTargetTriple().isOSDarwin()) 255 finalizeBundle(MBB, OriginalCall->getIterator(), 256 std::next(RtCall->getIterator())); 257 } 258 259 /// If \p MBBI is a pseudo instruction, this method expands 260 /// it to the corresponding (sequence of) actual instruction(s). 261 /// \returns true if \p MBBI has been expanded. 262 bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB, 263 MachineBasicBlock::iterator MBBI) { 264 MachineInstr &MI = *MBBI; 265 unsigned Opcode = MI.getOpcode(); 266 const DebugLoc &DL = MBBI->getDebugLoc(); 267 switch (Opcode) { 268 default: 269 return false; 270 case X86::TCRETURNdi: 271 case X86::TCRETURNdicc: 272 case X86::TCRETURNri: 273 case X86::TCRETURNmi: 274 case X86::TCRETURNdi64: 275 case X86::TCRETURNdi64cc: 276 case X86::TCRETURNri64: 277 case X86::TCRETURNmi64: { 278 bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64; 279 MachineOperand &JumpTarget = MBBI->getOperand(0); 280 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands 281 : 1); 282 assert(StackAdjust.isImm() && "Expecting immediate value."); 283 284 // Adjust stack pointer. 285 int StackAdj = StackAdjust.getImm(); 286 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 287 int Offset = 0; 288 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 289 290 // Incoporate the retaddr area. 291 Offset = StackAdj - MaxTCDelta; 292 assert(Offset >= 0 && "Offset should never be negative"); 293 294 if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) { 295 assert(Offset == 0 && "Conditional tail call cannot adjust the stack."); 296 } 297 298 if (Offset) { 299 // Check for possible merge with preceding ADD instruction. 300 Offset += X86FL->mergeSPUpdates(MBB, MBBI, true); 301 X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true); 302 } 303 304 // Jump to label or value in register. 305 bool IsWin64 = STI->isTargetWin64(); 306 if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc || 307 Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) { 308 unsigned Op; 309 switch (Opcode) { 310 case X86::TCRETURNdi: 311 Op = X86::TAILJMPd; 312 break; 313 case X86::TCRETURNdicc: 314 Op = X86::TAILJMPd_CC; 315 break; 316 case X86::TCRETURNdi64cc: 317 assert(!MBB.getParent()->hasWinCFI() && 318 "Conditional tail calls confuse " 319 "the Win64 unwinder."); 320 Op = X86::TAILJMPd64_CC; 321 break; 322 default: 323 // Note: Win64 uses REX prefixes indirect jumps out of functions, but 324 // not direct ones. 325 Op = X86::TAILJMPd64; 326 break; 327 } 328 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 329 if (JumpTarget.isGlobal()) { 330 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 331 JumpTarget.getTargetFlags()); 332 } else { 333 assert(JumpTarget.isSymbol()); 334 MIB.addExternalSymbol(JumpTarget.getSymbolName(), 335 JumpTarget.getTargetFlags()); 336 } 337 if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) { 338 MIB.addImm(MBBI->getOperand(2).getImm()); 339 } 340 341 } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) { 342 unsigned Op = (Opcode == X86::TCRETURNmi) 343 ? X86::TAILJMPm 344 : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64); 345 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 346 for (unsigned i = 0; i != X86::AddrNumOperands; ++i) 347 MIB.add(MBBI->getOperand(i)); 348 } else if (Opcode == X86::TCRETURNri64) { 349 JumpTarget.setIsKill(); 350 BuildMI(MBB, MBBI, DL, 351 TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64)) 352 .add(JumpTarget); 353 } else { 354 JumpTarget.setIsKill(); 355 BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr)) 356 .add(JumpTarget); 357 } 358 359 MachineInstr &NewMI = *std::prev(MBBI); 360 NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI); 361 NewMI.setCFIType(*MBB.getParent(), MI.getCFIType()); 362 363 // Update the call site info. 364 if (MBBI->isCandidateForCallSiteEntry()) 365 MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI); 366 367 // Delete the pseudo instruction TCRETURN. 368 MBB.erase(MBBI); 369 370 return true; 371 } 372 case X86::EH_RETURN: 373 case X86::EH_RETURN64: { 374 MachineOperand &DestAddr = MBBI->getOperand(0); 375 assert(DestAddr.isReg() && "Offset should be in register!"); 376 const bool Uses64BitFramePtr = 377 STI->isTarget64BitLP64() || STI->isTargetNaCl64(); 378 Register StackPtr = TRI->getStackRegister(); 379 BuildMI(MBB, MBBI, DL, 380 TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr) 381 .addReg(DestAddr.getReg()); 382 // The EH_RETURN pseudo is really removed during the MC Lowering. 383 return true; 384 } 385 case X86::IRET: { 386 // Adjust stack to erase error code 387 int64_t StackAdj = MBBI->getOperand(0).getImm(); 388 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true); 389 // Replace pseudo with machine iret 390 unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32; 391 // Use UIRET if UINTR is present (except for building kernel) 392 if (STI->is64Bit() && STI->hasUINTR() && 393 MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel) 394 RetOp = X86::UIRET; 395 BuildMI(MBB, MBBI, DL, TII->get(RetOp)); 396 MBB.erase(MBBI); 397 return true; 398 } 399 case X86::RET: { 400 // Adjust stack to erase error code 401 int64_t StackAdj = MBBI->getOperand(0).getImm(); 402 MachineInstrBuilder MIB; 403 if (StackAdj == 0) { 404 MIB = BuildMI(MBB, MBBI, DL, 405 TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32)); 406 } else if (isUInt<16>(StackAdj)) { 407 MIB = BuildMI(MBB, MBBI, DL, 408 TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32)) 409 .addImm(StackAdj); 410 } else { 411 assert(!STI->is64Bit() && 412 "shouldn't need to do this for x86_64 targets!"); 413 // A ret can only handle immediates as big as 2**16-1. If we need to pop 414 // off bytes before the return address, we must do it manually. 415 BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define); 416 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true); 417 BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX); 418 MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32)); 419 } 420 for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I) 421 MIB.add(MBBI->getOperand(I)); 422 MBB.erase(MBBI); 423 return true; 424 } 425 case X86::LCMPXCHG16B_SAVE_RBX: { 426 // Perform the following transformation. 427 // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx 428 // => 429 // RBX = InArg 430 // actualcmpxchg Addr 431 // RBX = SaveRbx 432 const MachineOperand &InArg = MBBI->getOperand(6); 433 Register SaveRbx = MBBI->getOperand(7).getReg(); 434 435 // Copy the input argument of the pseudo into the argument of the 436 // actual instruction. 437 // NOTE: We don't copy the kill flag since the input might be the same reg 438 // as one of the other operands of LCMPXCHG16B. 439 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false); 440 // Create the actual instruction. 441 MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B)); 442 // Copy the operands related to the address. 443 for (unsigned Idx = 1; Idx < 6; ++Idx) 444 NewInstr->addOperand(MBBI->getOperand(Idx)); 445 // Finally, restore the value of RBX. 446 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, 447 /*SrcIsKill*/ true); 448 449 // Delete the pseudo. 450 MBBI->eraseFromParent(); 451 return true; 452 } 453 // Loading/storing mask pairs requires two kmov operations. The second one of 454 // these needs a 2 byte displacement relative to the specified address (with 455 // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the 456 // same spill size, they all are stored using MASKPAIR16STORE, loaded using 457 // MASKPAIR16LOAD. 458 // 459 // The displacement value might wrap around in theory, thus the asserts in 460 // both cases. 461 case X86::MASKPAIR16LOAD: { 462 int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm(); 463 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 464 Register Reg = MBBI->getOperand(0).getReg(); 465 bool DstIsDead = MBBI->getOperand(0).isDead(); 466 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 467 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 468 469 auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm)) 470 .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead)); 471 auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm)) 472 .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead)); 473 474 for (int i = 0; i < X86::AddrNumOperands; ++i) { 475 MIBLo.add(MBBI->getOperand(1 + i)); 476 if (i == X86::AddrDisp) 477 MIBHi.addImm(Disp + 2); 478 else 479 MIBHi.add(MBBI->getOperand(1 + i)); 480 } 481 482 // Split the memory operand, adjusting the offset and size for the halves. 483 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 484 MachineFunction *MF = MBB.getParent(); 485 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 486 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 487 488 MIBLo.setMemRefs(MMOLo); 489 MIBHi.setMemRefs(MMOHi); 490 491 // Delete the pseudo. 492 MBB.erase(MBBI); 493 return true; 494 } 495 case X86::MASKPAIR16STORE: { 496 int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm(); 497 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 498 Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg(); 499 bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill(); 500 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 501 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 502 503 auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk)); 504 auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk)); 505 506 for (int i = 0; i < X86::AddrNumOperands; ++i) { 507 MIBLo.add(MBBI->getOperand(i)); 508 if (i == X86::AddrDisp) 509 MIBHi.addImm(Disp + 2); 510 else 511 MIBHi.add(MBBI->getOperand(i)); 512 } 513 MIBLo.addReg(Reg0, getKillRegState(SrcIsKill)); 514 MIBHi.addReg(Reg1, getKillRegState(SrcIsKill)); 515 516 // Split the memory operand, adjusting the offset and size for the halves. 517 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 518 MachineFunction *MF = MBB.getParent(); 519 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 520 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 521 522 MIBLo.setMemRefs(MMOLo); 523 MIBHi.setMemRefs(MMOHi); 524 525 // Delete the pseudo. 526 MBB.erase(MBBI); 527 return true; 528 } 529 case X86::MWAITX_SAVE_RBX: { 530 // Perform the following transformation. 531 // SaveRbx = pseudomwaitx InArg, SaveRbx 532 // => 533 // [E|R]BX = InArg 534 // actualmwaitx 535 // [E|R]BX = SaveRbx 536 const MachineOperand &InArg = MBBI->getOperand(1); 537 // Copy the input argument of the pseudo into the argument of the 538 // actual instruction. 539 TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill()); 540 // Create the actual instruction. 541 BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr)); 542 // Finally, restore the value of RBX. 543 Register SaveRbx = MBBI->getOperand(2).getReg(); 544 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true); 545 // Delete the pseudo. 546 MBBI->eraseFromParent(); 547 return true; 548 } 549 case TargetOpcode::ICALL_BRANCH_FUNNEL: 550 ExpandICallBranchFunnel(&MBB, MBBI); 551 return true; 552 case X86::PLDTILECFGV: { 553 MI.setDesc(TII->get(X86::LDTILECFG)); 554 return true; 555 } 556 case X86::PTILELOADDV: 557 case X86::PTILELOADDT1V: { 558 for (unsigned i = 2; i > 0; --i) 559 MI.removeOperand(i); 560 unsigned Opc = 561 Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1; 562 MI.setDesc(TII->get(Opc)); 563 return true; 564 } 565 case X86::PTCMMIMFP16PSV: 566 case X86::PTCMMRLFP16PSV: 567 case X86::PTDPBSSDV: 568 case X86::PTDPBSUDV: 569 case X86::PTDPBUSDV: 570 case X86::PTDPBUUDV: 571 case X86::PTDPBF16PSV: 572 case X86::PTDPFP16PSV: { 573 MI.untieRegOperand(4); 574 for (unsigned i = 3; i > 0; --i) 575 MI.removeOperand(i); 576 unsigned Opc; 577 switch (Opcode) { 578 case X86::PTCMMIMFP16PSV: Opc = X86::TCMMIMFP16PS; break; 579 case X86::PTCMMRLFP16PSV: Opc = X86::TCMMRLFP16PS; break; 580 case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break; 581 case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break; 582 case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break; 583 case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break; 584 case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break; 585 case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break; 586 default: llvm_unreachable("Impossible Opcode!"); 587 } 588 MI.setDesc(TII->get(Opc)); 589 MI.tieOperands(0, 1); 590 return true; 591 } 592 case X86::PTILESTOREDV: { 593 for (int i = 1; i >= 0; --i) 594 MI.removeOperand(i); 595 MI.setDesc(TII->get(X86::TILESTORED)); 596 return true; 597 } 598 case X86::PTILEZEROV: { 599 for (int i = 2; i > 0; --i) // Remove row, col 600 MI.removeOperand(i); 601 MI.setDesc(TII->get(X86::TILEZERO)); 602 return true; 603 } 604 case X86::CALL64pcrel32_RVMARKER: 605 case X86::CALL64r_RVMARKER: 606 case X86::CALL64m_RVMARKER: 607 expandCALL_RVMARKER(MBB, MBBI); 608 return true; 609 } 610 llvm_unreachable("Previous switch has a fallthrough?"); 611 } 612 613 // This function creates additional block for storing varargs guarded 614 // registers. It adds check for %al into entry block, to skip 615 // GuardedRegsBlk if xmm registers should not be stored. 616 // 617 // EntryBlk[VAStartPseudoInstr] EntryBlk 618 // | | . 619 // | | . 620 // | | GuardedRegsBlk 621 // | => | . 622 // | | . 623 // | TailBlk 624 // | | 625 // | | 626 // 627 void X86ExpandPseudo::ExpandVastartSaveXmmRegs( 628 MachineBasicBlock *EntryBlk, 629 MachineBasicBlock::iterator VAStartPseudoInstr) const { 630 assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS); 631 632 MachineFunction *Func = EntryBlk->getParent(); 633 const TargetInstrInfo *TII = STI->getInstrInfo(); 634 const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc(); 635 Register CountReg = VAStartPseudoInstr->getOperand(0).getReg(); 636 637 // Calculate liveins for newly created blocks. 638 LivePhysRegs LiveRegs(*STI->getRegisterInfo()); 639 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 640 641 LiveRegs.addLiveIns(*EntryBlk); 642 for (MachineInstr &MI : EntryBlk->instrs()) { 643 if (MI.getOpcode() == VAStartPseudoInstr->getOpcode()) 644 break; 645 646 LiveRegs.stepForward(MI, Clobbers); 647 } 648 649 // Create the new basic blocks. One block contains all the XMM stores, 650 // and another block is the final destination regardless of whether any 651 // stores were performed. 652 const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock(); 653 MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator(); 654 MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk); 655 MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk); 656 Func->insert(EntryBlkIter, GuardedRegsBlk); 657 Func->insert(EntryBlkIter, TailBlk); 658 659 // Transfer the remainder of EntryBlk and its successor edges to TailBlk. 660 TailBlk->splice(TailBlk->begin(), EntryBlk, 661 std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)), 662 EntryBlk->end()); 663 TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk); 664 665 uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm(); 666 uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm(); 667 668 // TODO: add support for YMM and ZMM here. 669 unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; 670 671 // In the XMM save block, save all the XMM argument registers. 672 for (int64_t OpndIdx = 7, RegIdx = 0; 673 OpndIdx < VAStartPseudoInstr->getNumOperands() - 1; 674 OpndIdx++, RegIdx++) { 675 auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc)); 676 for (int i = 0; i < X86::AddrNumOperands; ++i) { 677 if (i == X86::AddrDisp) 678 NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16); 679 else 680 NewMI.add(VAStartPseudoInstr->getOperand(i + 1)); 681 } 682 NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg()); 683 assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical()); 684 } 685 686 // The original block will now fall through to the GuardedRegsBlk. 687 EntryBlk->addSuccessor(GuardedRegsBlk); 688 // The GuardedRegsBlk will fall through to the TailBlk. 689 GuardedRegsBlk->addSuccessor(TailBlk); 690 691 if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) { 692 // If %al is 0, branch around the XMM save block. 693 BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr)) 694 .addReg(CountReg) 695 .addReg(CountReg); 696 BuildMI(EntryBlk, DL, TII->get(X86::JCC_1)) 697 .addMBB(TailBlk) 698 .addImm(X86::COND_E); 699 EntryBlk->addSuccessor(TailBlk); 700 } 701 702 // Add liveins to the created block. 703 addLiveIns(*GuardedRegsBlk, LiveRegs); 704 addLiveIns(*TailBlk, LiveRegs); 705 706 // Delete the pseudo. 707 VAStartPseudoInstr->eraseFromParent(); 708 } 709 710 /// Expand all pseudo instructions contained in \p MBB. 711 /// \returns true if any expansion occurred for \p MBB. 712 bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) { 713 bool Modified = false; 714 715 // MBBI may be invalidated by the expansion. 716 MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 717 while (MBBI != E) { 718 MachineBasicBlock::iterator NMBBI = std::next(MBBI); 719 Modified |= ExpandMI(MBB, MBBI); 720 MBBI = NMBBI; 721 } 722 723 return Modified; 724 } 725 726 bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) { 727 // Currently pseudo which affects control flow is only 728 // X86::VASTART_SAVE_XMM_REGS which is located in Entry block. 729 // So we do not need to evaluate other blocks. 730 for (MachineInstr &Instr : MF.front().instrs()) { 731 if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) { 732 ExpandVastartSaveXmmRegs(&(MF.front()), Instr); 733 return true; 734 } 735 } 736 737 return false; 738 } 739 740 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) { 741 STI = &MF.getSubtarget<X86Subtarget>(); 742 TII = STI->getInstrInfo(); 743 TRI = STI->getRegisterInfo(); 744 X86FI = MF.getInfo<X86MachineFunctionInfo>(); 745 X86FL = STI->getFrameLowering(); 746 747 bool Modified = ExpandPseudosWhichAffectControlFlow(MF); 748 749 for (MachineBasicBlock &MBB : MF) 750 Modified |= ExpandMBB(MBB); 751 return Modified; 752 } 753 754 /// Returns an instance of the pseudo instruction expansion pass. 755 FunctionPass *llvm::createX86ExpandPseudoPass() { 756 return new X86ExpandPseudo(); 757 } 758