1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that expands pseudo instructions into target 10 // instructions to allow proper scheduling, if-conversion, other late 11 // optimizations, or simply the encoding of the instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86FrameLowering.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86Subtarget.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved. 25 #include "llvm/IR/EHPersonalities.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/Target/TargetMachine.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "x86-pseudo" 31 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass" 32 33 namespace { 34 class X86ExpandPseudo : public MachineFunctionPass { 35 public: 36 static char ID; 37 X86ExpandPseudo() : MachineFunctionPass(ID) {} 38 39 void getAnalysisUsage(AnalysisUsage &AU) const override { 40 AU.setPreservesCFG(); 41 AU.addPreservedID(MachineLoopInfoID); 42 AU.addPreservedID(MachineDominatorsID); 43 MachineFunctionPass::getAnalysisUsage(AU); 44 } 45 46 const X86Subtarget *STI = nullptr; 47 const X86InstrInfo *TII = nullptr; 48 const X86RegisterInfo *TRI = nullptr; 49 const X86MachineFunctionInfo *X86FI = nullptr; 50 const X86FrameLowering *X86FL = nullptr; 51 52 bool runOnMachineFunction(MachineFunction &MF) override; 53 54 MachineFunctionProperties getRequiredProperties() const override { 55 return MachineFunctionProperties().set( 56 MachineFunctionProperties::Property::NoVRegs); 57 } 58 59 StringRef getPassName() const override { 60 return "X86 pseudo instruction expansion pass"; 61 } 62 63 private: 64 void ExpandICallBranchFunnel(MachineBasicBlock *MBB, 65 MachineBasicBlock::iterator MBBI); 66 void expandCALL_RVMARKER(MachineBasicBlock &MBB, 67 MachineBasicBlock::iterator MBBI); 68 bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); 69 bool ExpandMBB(MachineBasicBlock &MBB); 70 71 /// This function expands pseudos which affects control flow. 72 /// It is done in separate pass to simplify blocks navigation in main 73 /// pass(calling ExpandMBB). 74 bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF); 75 76 /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions, 77 /// placed into separate block guarded by check for al register(for SystemV 78 /// abi). 79 void ExpandVastartSaveXmmRegs( 80 MachineBasicBlock *EntryBlk, 81 MachineBasicBlock::iterator VAStartPseudoInstr) const; 82 }; 83 char X86ExpandPseudo::ID = 0; 84 85 } // End anonymous namespace. 86 87 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false, 88 false) 89 90 void X86ExpandPseudo::ExpandICallBranchFunnel( 91 MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) { 92 MachineBasicBlock *JTMBB = MBB; 93 MachineInstr *JTInst = &*MBBI; 94 MachineFunction *MF = MBB->getParent(); 95 const BasicBlock *BB = MBB->getBasicBlock(); 96 auto InsPt = MachineFunction::iterator(MBB); 97 ++InsPt; 98 99 std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs; 100 const DebugLoc &DL = JTInst->getDebugLoc(); 101 MachineOperand Selector = JTInst->getOperand(0); 102 const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal(); 103 104 auto CmpTarget = [&](unsigned Target) { 105 if (Selector.isReg()) 106 MBB->addLiveIn(Selector.getReg()); 107 BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11) 108 .addReg(X86::RIP) 109 .addImm(1) 110 .addReg(0) 111 .addGlobalAddress(CombinedGlobal, 112 JTInst->getOperand(2 + 2 * Target).getImm()) 113 .addReg(0); 114 BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr)) 115 .add(Selector) 116 .addReg(X86::R11); 117 }; 118 119 auto CreateMBB = [&]() { 120 auto *NewMBB = MF->CreateMachineBasicBlock(BB); 121 MBB->addSuccessor(NewMBB); 122 if (!MBB->isLiveIn(X86::EFLAGS)) 123 MBB->addLiveIn(X86::EFLAGS); 124 return NewMBB; 125 }; 126 127 auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) { 128 BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC); 129 130 auto *ElseMBB = CreateMBB(); 131 MF->insert(InsPt, ElseMBB); 132 MBB = ElseMBB; 133 MBBI = MBB->end(); 134 }; 135 136 auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) { 137 auto *ThenMBB = CreateMBB(); 138 TargetMBBs.push_back({ThenMBB, Target}); 139 EmitCondJump(CC, ThenMBB); 140 }; 141 142 auto EmitTailCall = [&](unsigned Target) { 143 BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64)) 144 .add(JTInst->getOperand(3 + 2 * Target)); 145 }; 146 147 std::function<void(unsigned, unsigned)> EmitBranchFunnel = 148 [&](unsigned FirstTarget, unsigned NumTargets) { 149 if (NumTargets == 1) { 150 EmitTailCall(FirstTarget); 151 return; 152 } 153 154 if (NumTargets == 2) { 155 CmpTarget(FirstTarget + 1); 156 EmitCondJumpTarget(X86::COND_B, FirstTarget); 157 EmitTailCall(FirstTarget + 1); 158 return; 159 } 160 161 if (NumTargets < 6) { 162 CmpTarget(FirstTarget + 1); 163 EmitCondJumpTarget(X86::COND_B, FirstTarget); 164 EmitCondJumpTarget(X86::COND_E, FirstTarget + 1); 165 EmitBranchFunnel(FirstTarget + 2, NumTargets - 2); 166 return; 167 } 168 169 auto *ThenMBB = CreateMBB(); 170 CmpTarget(FirstTarget + (NumTargets / 2)); 171 EmitCondJump(X86::COND_B, ThenMBB); 172 EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2)); 173 EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1, 174 NumTargets - (NumTargets / 2) - 1); 175 176 MF->insert(InsPt, ThenMBB); 177 MBB = ThenMBB; 178 MBBI = MBB->end(); 179 EmitBranchFunnel(FirstTarget, NumTargets / 2); 180 }; 181 182 EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2); 183 for (auto P : TargetMBBs) { 184 MF->insert(InsPt, P.first); 185 BuildMI(P.first, DL, TII->get(X86::TAILJMPd64)) 186 .add(JTInst->getOperand(3 + 2 * P.second)); 187 } 188 JTMBB->erase(JTInst); 189 } 190 191 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB, 192 MachineBasicBlock::iterator MBBI) { 193 // Expand CALL_RVMARKER pseudo to call instruction, followed by the special 194 //"movq %rax, %rdi" marker. 195 MachineInstr &MI = *MBBI; 196 197 MachineInstr *OriginalCall; 198 assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) && 199 "invalid operand for regular call"); 200 unsigned Opc = -1; 201 if (MI.getOpcode() == X86::CALL64m_RVMARKER) 202 Opc = X86::CALL64m; 203 else if (MI.getOpcode() == X86::CALL64r_RVMARKER) 204 Opc = X86::CALL64r; 205 else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER) 206 Opc = X86::CALL64pcrel32; 207 else 208 llvm_unreachable("unexpected opcode"); 209 210 OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr(); 211 bool RAXImplicitDead = false; 212 for (MachineOperand &Op : llvm::drop_begin(MI.operands())) { 213 // RAX may be 'implicit dead', if there are no other users of the return 214 // value. We introduce a new use, so change it to 'implicit def'. 215 if (Op.isReg() && Op.isImplicit() && Op.isDead() && 216 TRI->regsOverlap(Op.getReg(), X86::RAX)) { 217 Op.setIsDead(false); 218 Op.setIsDef(true); 219 RAXImplicitDead = true; 220 } 221 OriginalCall->addOperand(Op); 222 } 223 224 // Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be 225 // live across the earlier call. The call to the ObjC runtime function returns 226 // the first argument, so the value of %rax is unchanged after the ObjC 227 // runtime call. On Windows targets, the runtime call follows the regular 228 // x64 calling convention and expects the first argument in %rcx. 229 auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI; 230 auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr)) 231 .addReg(TargetReg, RegState::Define) 232 .addReg(X86::RAX) 233 .getInstr(); 234 if (MI.shouldUpdateCallSiteInfo()) 235 MBB.getParent()->moveCallSiteInfo(&MI, Marker); 236 237 // Emit call to ObjC runtime. 238 const uint32_t *RegMask = 239 TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C); 240 MachineInstr *RtCall = 241 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32)) 242 .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0) 243 .addRegMask(RegMask) 244 .addReg(X86::RAX, 245 RegState::Implicit | 246 (RAXImplicitDead ? (RegState::Dead | RegState::Define) 247 : RegState::Define)) 248 .getInstr(); 249 MI.eraseFromParent(); 250 251 auto &TM = MBB.getParent()->getTarget(); 252 // On Darwin platforms, wrap the expanded sequence in a bundle to prevent 253 // later optimizations from breaking up the sequence. 254 if (TM.getTargetTriple().isOSDarwin()) 255 finalizeBundle(MBB, OriginalCall->getIterator(), 256 std::next(RtCall->getIterator())); 257 } 258 259 /// If \p MBBI is a pseudo instruction, this method expands 260 /// it to the corresponding (sequence of) actual instruction(s). 261 /// \returns true if \p MBBI has been expanded. 262 bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB, 263 MachineBasicBlock::iterator MBBI) { 264 MachineInstr &MI = *MBBI; 265 unsigned Opcode = MI.getOpcode(); 266 const DebugLoc &DL = MBBI->getDebugLoc(); 267 bool HasEGPR = STI->hasEGPR(); 268 switch (Opcode) { 269 default: 270 return false; 271 case X86::TCRETURNdi: 272 case X86::TCRETURNdicc: 273 case X86::TCRETURNri: 274 case X86::TCRETURNmi: 275 case X86::TCRETURNdi64: 276 case X86::TCRETURNdi64cc: 277 case X86::TCRETURNri64: 278 case X86::TCRETURNmi64: { 279 bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64; 280 MachineOperand &JumpTarget = MBBI->getOperand(0); 281 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands 282 : 1); 283 assert(StackAdjust.isImm() && "Expecting immediate value."); 284 285 // Adjust stack pointer. 286 int StackAdj = StackAdjust.getImm(); 287 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 288 int Offset = 0; 289 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 290 291 // Incoporate the retaddr area. 292 Offset = StackAdj - MaxTCDelta; 293 assert(Offset >= 0 && "Offset should never be negative"); 294 295 if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) { 296 assert(Offset == 0 && "Conditional tail call cannot adjust the stack."); 297 } 298 299 if (Offset) { 300 // Check for possible merge with preceding ADD instruction. 301 Offset += X86FL->mergeSPUpdates(MBB, MBBI, true); 302 X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true); 303 } 304 305 // Jump to label or value in register. 306 bool IsWin64 = STI->isTargetWin64(); 307 if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc || 308 Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) { 309 unsigned Op; 310 switch (Opcode) { 311 case X86::TCRETURNdi: 312 Op = X86::TAILJMPd; 313 break; 314 case X86::TCRETURNdicc: 315 Op = X86::TAILJMPd_CC; 316 break; 317 case X86::TCRETURNdi64cc: 318 assert(!MBB.getParent()->hasWinCFI() && 319 "Conditional tail calls confuse " 320 "the Win64 unwinder."); 321 Op = X86::TAILJMPd64_CC; 322 break; 323 default: 324 // Note: Win64 uses REX prefixes indirect jumps out of functions, but 325 // not direct ones. 326 Op = X86::TAILJMPd64; 327 break; 328 } 329 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 330 if (JumpTarget.isGlobal()) { 331 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 332 JumpTarget.getTargetFlags()); 333 } else { 334 assert(JumpTarget.isSymbol()); 335 MIB.addExternalSymbol(JumpTarget.getSymbolName(), 336 JumpTarget.getTargetFlags()); 337 } 338 if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) { 339 MIB.addImm(MBBI->getOperand(2).getImm()); 340 } 341 342 } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) { 343 unsigned Op = (Opcode == X86::TCRETURNmi) 344 ? X86::TAILJMPm 345 : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64); 346 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 347 for (unsigned i = 0; i != X86::AddrNumOperands; ++i) 348 MIB.add(MBBI->getOperand(i)); 349 } else if (Opcode == X86::TCRETURNri64) { 350 JumpTarget.setIsKill(); 351 BuildMI(MBB, MBBI, DL, 352 TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64)) 353 .add(JumpTarget); 354 } else { 355 JumpTarget.setIsKill(); 356 BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr)) 357 .add(JumpTarget); 358 } 359 360 MachineInstr &NewMI = *std::prev(MBBI); 361 NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI); 362 NewMI.setCFIType(*MBB.getParent(), MI.getCFIType()); 363 364 // Update the call site info. 365 if (MBBI->isCandidateForCallSiteEntry()) 366 MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI); 367 368 // Delete the pseudo instruction TCRETURN. 369 MBB.erase(MBBI); 370 371 return true; 372 } 373 case X86::EH_RETURN: 374 case X86::EH_RETURN64: { 375 MachineOperand &DestAddr = MBBI->getOperand(0); 376 assert(DestAddr.isReg() && "Offset should be in register!"); 377 const bool Uses64BitFramePtr = 378 STI->isTarget64BitLP64() || STI->isTargetNaCl64(); 379 Register StackPtr = TRI->getStackRegister(); 380 BuildMI(MBB, MBBI, DL, 381 TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr) 382 .addReg(DestAddr.getReg()); 383 // The EH_RETURN pseudo is really removed during the MC Lowering. 384 return true; 385 } 386 case X86::IRET: { 387 // Adjust stack to erase error code 388 int64_t StackAdj = MBBI->getOperand(0).getImm(); 389 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true); 390 // Replace pseudo with machine iret 391 unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32; 392 // Use UIRET if UINTR is present (except for building kernel) 393 if (STI->is64Bit() && STI->hasUINTR() && 394 MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel) 395 RetOp = X86::UIRET; 396 BuildMI(MBB, MBBI, DL, TII->get(RetOp)); 397 MBB.erase(MBBI); 398 return true; 399 } 400 case X86::RET: { 401 // Adjust stack to erase error code 402 int64_t StackAdj = MBBI->getOperand(0).getImm(); 403 MachineInstrBuilder MIB; 404 if (StackAdj == 0) { 405 MIB = BuildMI(MBB, MBBI, DL, 406 TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32)); 407 } else if (isUInt<16>(StackAdj)) { 408 MIB = BuildMI(MBB, MBBI, DL, 409 TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32)) 410 .addImm(StackAdj); 411 } else { 412 assert(!STI->is64Bit() && 413 "shouldn't need to do this for x86_64 targets!"); 414 // A ret can only handle immediates as big as 2**16-1. If we need to pop 415 // off bytes before the return address, we must do it manually. 416 BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define); 417 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true); 418 BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX); 419 MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32)); 420 } 421 for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I) 422 MIB.add(MBBI->getOperand(I)); 423 MBB.erase(MBBI); 424 return true; 425 } 426 case X86::LCMPXCHG16B_SAVE_RBX: { 427 // Perform the following transformation. 428 // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx 429 // => 430 // RBX = InArg 431 // actualcmpxchg Addr 432 // RBX = SaveRbx 433 const MachineOperand &InArg = MBBI->getOperand(6); 434 Register SaveRbx = MBBI->getOperand(7).getReg(); 435 436 // Copy the input argument of the pseudo into the argument of the 437 // actual instruction. 438 // NOTE: We don't copy the kill flag since the input might be the same reg 439 // as one of the other operands of LCMPXCHG16B. 440 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false); 441 // Create the actual instruction. 442 MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B)); 443 // Copy the operands related to the address. 444 for (unsigned Idx = 1; Idx < 6; ++Idx) 445 NewInstr->addOperand(MBBI->getOperand(Idx)); 446 // Finally, restore the value of RBX. 447 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, 448 /*SrcIsKill*/ true); 449 450 // Delete the pseudo. 451 MBBI->eraseFromParent(); 452 return true; 453 } 454 // Loading/storing mask pairs requires two kmov operations. The second one of 455 // these needs a 2 byte displacement relative to the specified address (with 456 // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the 457 // same spill size, they all are stored using MASKPAIR16STORE, loaded using 458 // MASKPAIR16LOAD. 459 // 460 // The displacement value might wrap around in theory, thus the asserts in 461 // both cases. 462 case X86::MASKPAIR16LOAD: { 463 int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm(); 464 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 465 Register Reg = MBBI->getOperand(0).getReg(); 466 bool DstIsDead = MBBI->getOperand(0).isDead(); 467 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 468 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 469 470 auto MIBLo = 471 BuildMI(MBB, MBBI, DL, 472 TII->get(HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)) 473 .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead)); 474 auto MIBHi = 475 BuildMI(MBB, MBBI, DL, 476 TII->get(HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)) 477 .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead)); 478 479 for (int i = 0; i < X86::AddrNumOperands; ++i) { 480 MIBLo.add(MBBI->getOperand(1 + i)); 481 if (i == X86::AddrDisp) 482 MIBHi.addImm(Disp + 2); 483 else 484 MIBHi.add(MBBI->getOperand(1 + i)); 485 } 486 487 // Split the memory operand, adjusting the offset and size for the halves. 488 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 489 MachineFunction *MF = MBB.getParent(); 490 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 491 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 492 493 MIBLo.setMemRefs(MMOLo); 494 MIBHi.setMemRefs(MMOHi); 495 496 // Delete the pseudo. 497 MBB.erase(MBBI); 498 return true; 499 } 500 case X86::MASKPAIR16STORE: { 501 int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm(); 502 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 503 Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg(); 504 bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill(); 505 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 506 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 507 508 auto MIBLo = BuildMI(MBB, MBBI, DL, 509 TII->get(HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk)); 510 auto MIBHi = BuildMI(MBB, MBBI, DL, 511 TII->get(HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk)); 512 513 for (int i = 0; i < X86::AddrNumOperands; ++i) { 514 MIBLo.add(MBBI->getOperand(i)); 515 if (i == X86::AddrDisp) 516 MIBHi.addImm(Disp + 2); 517 else 518 MIBHi.add(MBBI->getOperand(i)); 519 } 520 MIBLo.addReg(Reg0, getKillRegState(SrcIsKill)); 521 MIBHi.addReg(Reg1, getKillRegState(SrcIsKill)); 522 523 // Split the memory operand, adjusting the offset and size for the halves. 524 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 525 MachineFunction *MF = MBB.getParent(); 526 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 527 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 528 529 MIBLo.setMemRefs(MMOLo); 530 MIBHi.setMemRefs(MMOHi); 531 532 // Delete the pseudo. 533 MBB.erase(MBBI); 534 return true; 535 } 536 case X86::MWAITX_SAVE_RBX: { 537 // Perform the following transformation. 538 // SaveRbx = pseudomwaitx InArg, SaveRbx 539 // => 540 // [E|R]BX = InArg 541 // actualmwaitx 542 // [E|R]BX = SaveRbx 543 const MachineOperand &InArg = MBBI->getOperand(1); 544 // Copy the input argument of the pseudo into the argument of the 545 // actual instruction. 546 TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill()); 547 // Create the actual instruction. 548 BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr)); 549 // Finally, restore the value of RBX. 550 Register SaveRbx = MBBI->getOperand(2).getReg(); 551 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true); 552 // Delete the pseudo. 553 MBBI->eraseFromParent(); 554 return true; 555 } 556 case TargetOpcode::ICALL_BRANCH_FUNNEL: 557 ExpandICallBranchFunnel(&MBB, MBBI); 558 return true; 559 #define GET_EGPR_IF_ENABLED(OPC) (STI->hasEGPR() ? OPC##_EVEX : OPC) 560 case X86::PLDTILECFGV: { 561 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::LDTILECFG))); 562 return true; 563 } 564 case X86::PTILELOADDV: 565 case X86::PTILELOADDT1V: { 566 for (unsigned i = 2; i > 0; --i) 567 MI.removeOperand(i); 568 unsigned Opc = Opcode == X86::PTILELOADDV 569 ? GET_EGPR_IF_ENABLED(X86::TILELOADD) 570 : GET_EGPR_IF_ENABLED(X86::TILELOADDT1); 571 MI.setDesc(TII->get(Opc)); 572 return true; 573 } 574 case X86::PTCMMIMFP16PSV: 575 case X86::PTCMMRLFP16PSV: 576 case X86::PTDPBSSDV: 577 case X86::PTDPBSUDV: 578 case X86::PTDPBUSDV: 579 case X86::PTDPBUUDV: 580 case X86::PTDPBF16PSV: 581 case X86::PTDPFP16PSV: { 582 MI.untieRegOperand(4); 583 for (unsigned i = 3; i > 0; --i) 584 MI.removeOperand(i); 585 unsigned Opc; 586 switch (Opcode) { 587 case X86::PTCMMIMFP16PSV: Opc = X86::TCMMIMFP16PS; break; 588 case X86::PTCMMRLFP16PSV: Opc = X86::TCMMRLFP16PS; break; 589 case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break; 590 case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break; 591 case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break; 592 case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break; 593 case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break; 594 case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break; 595 default: llvm_unreachable("Impossible Opcode!"); 596 } 597 MI.setDesc(TII->get(Opc)); 598 MI.tieOperands(0, 1); 599 return true; 600 } 601 case X86::PTILESTOREDV: { 602 for (int i = 1; i >= 0; --i) 603 MI.removeOperand(i); 604 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::TILESTORED))); 605 return true; 606 } 607 #undef GET_EGPR_IF_ENABLED 608 case X86::PTILEZEROV: { 609 for (int i = 2; i > 0; --i) // Remove row, col 610 MI.removeOperand(i); 611 MI.setDesc(TII->get(X86::TILEZERO)); 612 return true; 613 } 614 case X86::CALL64pcrel32_RVMARKER: 615 case X86::CALL64r_RVMARKER: 616 case X86::CALL64m_RVMARKER: 617 expandCALL_RVMARKER(MBB, MBBI); 618 return true; 619 } 620 llvm_unreachable("Previous switch has a fallthrough?"); 621 } 622 623 // This function creates additional block for storing varargs guarded 624 // registers. It adds check for %al into entry block, to skip 625 // GuardedRegsBlk if xmm registers should not be stored. 626 // 627 // EntryBlk[VAStartPseudoInstr] EntryBlk 628 // | | . 629 // | | . 630 // | | GuardedRegsBlk 631 // | => | . 632 // | | . 633 // | TailBlk 634 // | | 635 // | | 636 // 637 void X86ExpandPseudo::ExpandVastartSaveXmmRegs( 638 MachineBasicBlock *EntryBlk, 639 MachineBasicBlock::iterator VAStartPseudoInstr) const { 640 assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS); 641 642 MachineFunction *Func = EntryBlk->getParent(); 643 const TargetInstrInfo *TII = STI->getInstrInfo(); 644 const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc(); 645 Register CountReg = VAStartPseudoInstr->getOperand(0).getReg(); 646 647 // Calculate liveins for newly created blocks. 648 LivePhysRegs LiveRegs(*STI->getRegisterInfo()); 649 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 650 651 LiveRegs.addLiveIns(*EntryBlk); 652 for (MachineInstr &MI : EntryBlk->instrs()) { 653 if (MI.getOpcode() == VAStartPseudoInstr->getOpcode()) 654 break; 655 656 LiveRegs.stepForward(MI, Clobbers); 657 } 658 659 // Create the new basic blocks. One block contains all the XMM stores, 660 // and another block is the final destination regardless of whether any 661 // stores were performed. 662 const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock(); 663 MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator(); 664 MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk); 665 MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk); 666 Func->insert(EntryBlkIter, GuardedRegsBlk); 667 Func->insert(EntryBlkIter, TailBlk); 668 669 // Transfer the remainder of EntryBlk and its successor edges to TailBlk. 670 TailBlk->splice(TailBlk->begin(), EntryBlk, 671 std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)), 672 EntryBlk->end()); 673 TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk); 674 675 uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm(); 676 uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm(); 677 678 // TODO: add support for YMM and ZMM here. 679 unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; 680 681 // In the XMM save block, save all the XMM argument registers. 682 for (int64_t OpndIdx = 7, RegIdx = 0; 683 OpndIdx < VAStartPseudoInstr->getNumOperands() - 1; 684 OpndIdx++, RegIdx++) { 685 auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc)); 686 for (int i = 0; i < X86::AddrNumOperands; ++i) { 687 if (i == X86::AddrDisp) 688 NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16); 689 else 690 NewMI.add(VAStartPseudoInstr->getOperand(i + 1)); 691 } 692 NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg()); 693 assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical()); 694 } 695 696 // The original block will now fall through to the GuardedRegsBlk. 697 EntryBlk->addSuccessor(GuardedRegsBlk); 698 // The GuardedRegsBlk will fall through to the TailBlk. 699 GuardedRegsBlk->addSuccessor(TailBlk); 700 701 if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) { 702 // If %al is 0, branch around the XMM save block. 703 BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr)) 704 .addReg(CountReg) 705 .addReg(CountReg); 706 BuildMI(EntryBlk, DL, TII->get(X86::JCC_1)) 707 .addMBB(TailBlk) 708 .addImm(X86::COND_E); 709 EntryBlk->addSuccessor(TailBlk); 710 } 711 712 // Add liveins to the created block. 713 addLiveIns(*GuardedRegsBlk, LiveRegs); 714 addLiveIns(*TailBlk, LiveRegs); 715 716 // Delete the pseudo. 717 VAStartPseudoInstr->eraseFromParent(); 718 } 719 720 /// Expand all pseudo instructions contained in \p MBB. 721 /// \returns true if any expansion occurred for \p MBB. 722 bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) { 723 bool Modified = false; 724 725 // MBBI may be invalidated by the expansion. 726 MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 727 while (MBBI != E) { 728 MachineBasicBlock::iterator NMBBI = std::next(MBBI); 729 Modified |= ExpandMI(MBB, MBBI); 730 MBBI = NMBBI; 731 } 732 733 return Modified; 734 } 735 736 bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) { 737 // Currently pseudo which affects control flow is only 738 // X86::VASTART_SAVE_XMM_REGS which is located in Entry block. 739 // So we do not need to evaluate other blocks. 740 for (MachineInstr &Instr : MF.front().instrs()) { 741 if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) { 742 ExpandVastartSaveXmmRegs(&(MF.front()), Instr); 743 return true; 744 } 745 } 746 747 return false; 748 } 749 750 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) { 751 STI = &MF.getSubtarget<X86Subtarget>(); 752 TII = STI->getInstrInfo(); 753 TRI = STI->getRegisterInfo(); 754 X86FI = MF.getInfo<X86MachineFunctionInfo>(); 755 X86FL = STI->getFrameLowering(); 756 757 bool Modified = ExpandPseudosWhichAffectControlFlow(MF); 758 759 for (MachineBasicBlock &MBB : MF) 760 Modified |= ExpandMBB(MBB); 761 return Modified; 762 } 763 764 /// Returns an instance of the pseudo instruction expansion pass. 765 FunctionPass *llvm::createX86ExpandPseudoPass() { 766 return new X86ExpandPseudo(); 767 } 768