xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ExpandPseudo.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that expands pseudo instructions into target
10 // instructions to allow proper scheduling, if-conversion, other late
11 // optimizations, or simply the encoding of the instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86FrameLowering.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/Target/TargetMachine.h"
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "x86-pseudo"
30 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
31 
32 namespace {
33 class X86ExpandPseudo : public MachineFunctionPass {
34 public:
35   static char ID;
36   X86ExpandPseudo() : MachineFunctionPass(ID) {}
37 
38   void getAnalysisUsage(AnalysisUsage &AU) const override {
39     AU.setPreservesCFG();
40     AU.addPreservedID(MachineLoopInfoID);
41     AU.addPreservedID(MachineDominatorsID);
42     MachineFunctionPass::getAnalysisUsage(AU);
43   }
44 
45   const X86Subtarget *STI = nullptr;
46   const X86InstrInfo *TII = nullptr;
47   const X86RegisterInfo *TRI = nullptr;
48   const X86MachineFunctionInfo *X86FI = nullptr;
49   const X86FrameLowering *X86FL = nullptr;
50 
51   bool runOnMachineFunction(MachineFunction &Fn) override;
52 
53   MachineFunctionProperties getRequiredProperties() const override {
54     return MachineFunctionProperties().set(
55         MachineFunctionProperties::Property::NoVRegs);
56   }
57 
58   StringRef getPassName() const override {
59     return "X86 pseudo instruction expansion pass";
60   }
61 
62 private:
63   void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
64                                MachineBasicBlock::iterator MBBI);
65   void expandCALL_RVMARKER(MachineBasicBlock &MBB,
66                            MachineBasicBlock::iterator MBBI);
67   bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
68   bool ExpandMBB(MachineBasicBlock &MBB);
69 
70   /// This function expands pseudos which affects control flow.
71   /// It is done in separate pass to simplify blocks navigation in main
72   /// pass(calling ExpandMBB).
73   bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF);
74 
75   /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
76   /// placed into separate block guarded by check for al register(for SystemV
77   /// abi).
78   void ExpandVastartSaveXmmRegs(
79       MachineBasicBlock *MBB,
80       MachineBasicBlock::iterator VAStartPseudoInstr) const;
81 };
82 char X86ExpandPseudo::ID = 0;
83 
84 } // End anonymous namespace.
85 
86 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
87                 false)
88 
89 void X86ExpandPseudo::ExpandICallBranchFunnel(
90     MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
91   MachineBasicBlock *JTMBB = MBB;
92   MachineInstr *JTInst = &*MBBI;
93   MachineFunction *MF = MBB->getParent();
94   const BasicBlock *BB = MBB->getBasicBlock();
95   auto InsPt = MachineFunction::iterator(MBB);
96   ++InsPt;
97 
98   std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
99   const DebugLoc &DL = JTInst->getDebugLoc();
100   MachineOperand Selector = JTInst->getOperand(0);
101   const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
102 
103   auto CmpTarget = [&](unsigned Target) {
104     if (Selector.isReg())
105       MBB->addLiveIn(Selector.getReg());
106     BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
107         .addReg(X86::RIP)
108         .addImm(1)
109         .addReg(0)
110         .addGlobalAddress(CombinedGlobal,
111                           JTInst->getOperand(2 + 2 * Target).getImm())
112         .addReg(0);
113     BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
114         .add(Selector)
115         .addReg(X86::R11);
116   };
117 
118   auto CreateMBB = [&]() {
119     auto *NewMBB = MF->CreateMachineBasicBlock(BB);
120     MBB->addSuccessor(NewMBB);
121     if (!MBB->isLiveIn(X86::EFLAGS))
122       MBB->addLiveIn(X86::EFLAGS);
123     return NewMBB;
124   };
125 
126   auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
127     BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
128 
129     auto *ElseMBB = CreateMBB();
130     MF->insert(InsPt, ElseMBB);
131     MBB = ElseMBB;
132     MBBI = MBB->end();
133   };
134 
135   auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
136     auto *ThenMBB = CreateMBB();
137     TargetMBBs.push_back({ThenMBB, Target});
138     EmitCondJump(CC, ThenMBB);
139   };
140 
141   auto EmitTailCall = [&](unsigned Target) {
142     BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
143         .add(JTInst->getOperand(3 + 2 * Target));
144   };
145 
146   std::function<void(unsigned, unsigned)> EmitBranchFunnel =
147       [&](unsigned FirstTarget, unsigned NumTargets) {
148     if (NumTargets == 1) {
149       EmitTailCall(FirstTarget);
150       return;
151     }
152 
153     if (NumTargets == 2) {
154       CmpTarget(FirstTarget + 1);
155       EmitCondJumpTarget(X86::COND_B, FirstTarget);
156       EmitTailCall(FirstTarget + 1);
157       return;
158     }
159 
160     if (NumTargets < 6) {
161       CmpTarget(FirstTarget + 1);
162       EmitCondJumpTarget(X86::COND_B, FirstTarget);
163       EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
164       EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
165       return;
166     }
167 
168     auto *ThenMBB = CreateMBB();
169     CmpTarget(FirstTarget + (NumTargets / 2));
170     EmitCondJump(X86::COND_B, ThenMBB);
171     EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
172     EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
173                   NumTargets - (NumTargets / 2) - 1);
174 
175     MF->insert(InsPt, ThenMBB);
176     MBB = ThenMBB;
177     MBBI = MBB->end();
178     EmitBranchFunnel(FirstTarget, NumTargets / 2);
179   };
180 
181   EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
182   for (auto P : TargetMBBs) {
183     MF->insert(InsPt, P.first);
184     BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
185         .add(JTInst->getOperand(3 + 2 * P.second));
186   }
187   JTMBB->erase(JTInst);
188 }
189 
190 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
191                                           MachineBasicBlock::iterator MBBI) {
192   // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
193   //"movq %rax, %rdi" marker.
194   // TODO: Mark the sequence as bundle, to avoid passes moving other code
195   // in between.
196   MachineInstr &MI = *MBBI;
197 
198   MachineInstr *OriginalCall;
199   assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
200          "invalid operand for regular call");
201   unsigned Opc = -1;
202   if (MI.getOpcode() == X86::CALL64m_RVMARKER)
203     Opc = X86::CALL64m;
204   else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
205     Opc = X86::CALL64r;
206   else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
207     Opc = X86::CALL64pcrel32;
208   else
209     llvm_unreachable("unexpected opcode");
210 
211   OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
212   unsigned OpStart = 1;
213   bool RAXImplicitDead = false;
214   for (; OpStart < MI.getNumOperands(); ++OpStart) {
215     MachineOperand &Op = MI.getOperand(OpStart);
216     // RAX may be 'implicit dead', if there are no other users of the return
217     // value. We introduce a new use, so change it to 'implicit def'.
218     if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
219         TRI->regsOverlap(Op.getReg(), X86::RAX)) {
220       Op.setIsDead(false);
221       Op.setIsDef(true);
222       RAXImplicitDead = true;
223     }
224     OriginalCall->addOperand(Op);
225   }
226 
227   // Emit marker "movq %rax, %rdi".  %rdi is not callee-saved, so it cannot be
228   // live across the earlier call. The call to the ObjC runtime function returns
229   // the first argument, so the value of %rax is unchanged after the ObjC
230   // runtime call.
231   auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
232                      .addReg(X86::RDI, RegState::Define)
233                      .addReg(X86::RAX)
234                      .getInstr();
235   if (MI.shouldUpdateCallSiteInfo())
236     MBB.getParent()->moveCallSiteInfo(&MI, Marker);
237 
238   // Emit call to ObjC runtime.
239   unsigned RuntimeCallType = MI.getOperand(0).getImm();
240   assert(RuntimeCallType <= 1 && "objc runtime call type must be 0 or 1");
241   Module *M = MBB.getParent()->getFunction().getParent();
242   auto &Context = M->getContext();
243   auto *I8PtrTy = PointerType::get(IntegerType::get(Context, 8), 0);
244   FunctionCallee Fn = M->getOrInsertFunction(
245       RuntimeCallType == 0 ? "objc_retainAutoreleasedReturnValue"
246                            : "objc_unsafeClaimAutoreleasedReturnValue",
247       FunctionType::get(I8PtrTy, {I8PtrTy}, false));
248   const uint32_t *RegMask =
249       TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
250   BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
251       .addGlobalAddress(cast<GlobalValue>(Fn.getCallee()), 0, 0)
252       .addRegMask(RegMask)
253       .addReg(X86::RAX,
254               RegState::Implicit |
255                   (RAXImplicitDead ? (RegState::Dead | RegState::Define)
256                                    : RegState::Define))
257       .getInstr();
258   MI.eraseFromParent();
259 }
260 
261 /// If \p MBBI is a pseudo instruction, this method expands
262 /// it to the corresponding (sequence of) actual instruction(s).
263 /// \returns true if \p MBBI has been expanded.
264 bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
265                                MachineBasicBlock::iterator MBBI) {
266   MachineInstr &MI = *MBBI;
267   unsigned Opcode = MI.getOpcode();
268   const DebugLoc &DL = MBBI->getDebugLoc();
269   switch (Opcode) {
270   default:
271     return false;
272   case X86::TCRETURNdi:
273   case X86::TCRETURNdicc:
274   case X86::TCRETURNri:
275   case X86::TCRETURNmi:
276   case X86::TCRETURNdi64:
277   case X86::TCRETURNdi64cc:
278   case X86::TCRETURNri64:
279   case X86::TCRETURNmi64: {
280     bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
281     MachineOperand &JumpTarget = MBBI->getOperand(0);
282     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
283                                                          : 1);
284     assert(StackAdjust.isImm() && "Expecting immediate value.");
285 
286     // Adjust stack pointer.
287     int StackAdj = StackAdjust.getImm();
288     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
289     int Offset = 0;
290     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
291 
292     // Incoporate the retaddr area.
293     Offset = StackAdj - MaxTCDelta;
294     assert(Offset >= 0 && "Offset should never be negative");
295 
296     if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
297       assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
298     }
299 
300     if (Offset) {
301       // Check for possible merge with preceding ADD instruction.
302       Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
303       X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
304     }
305 
306     // Jump to label or value in register.
307     bool IsWin64 = STI->isTargetWin64();
308     if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
309         Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
310       unsigned Op;
311       switch (Opcode) {
312       case X86::TCRETURNdi:
313         Op = X86::TAILJMPd;
314         break;
315       case X86::TCRETURNdicc:
316         Op = X86::TAILJMPd_CC;
317         break;
318       case X86::TCRETURNdi64cc:
319         assert(!MBB.getParent()->hasWinCFI() &&
320                "Conditional tail calls confuse "
321                "the Win64 unwinder.");
322         Op = X86::TAILJMPd64_CC;
323         break;
324       default:
325         // Note: Win64 uses REX prefixes indirect jumps out of functions, but
326         // not direct ones.
327         Op = X86::TAILJMPd64;
328         break;
329       }
330       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
331       if (JumpTarget.isGlobal()) {
332         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
333                              JumpTarget.getTargetFlags());
334       } else {
335         assert(JumpTarget.isSymbol());
336         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
337                               JumpTarget.getTargetFlags());
338       }
339       if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
340         MIB.addImm(MBBI->getOperand(2).getImm());
341       }
342 
343     } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
344       unsigned Op = (Opcode == X86::TCRETURNmi)
345                         ? X86::TAILJMPm
346                         : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
347       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
348       for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
349         MIB.add(MBBI->getOperand(i));
350     } else if (Opcode == X86::TCRETURNri64) {
351       JumpTarget.setIsKill();
352       BuildMI(MBB, MBBI, DL,
353               TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
354           .add(JumpTarget);
355     } else {
356       JumpTarget.setIsKill();
357       BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
358           .add(JumpTarget);
359     }
360 
361     MachineInstr &NewMI = *std::prev(MBBI);
362     NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
363 
364     // Update the call site info.
365     if (MBBI->isCandidateForCallSiteEntry())
366       MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
367 
368     // Delete the pseudo instruction TCRETURN.
369     MBB.erase(MBBI);
370 
371     return true;
372   }
373   case X86::EH_RETURN:
374   case X86::EH_RETURN64: {
375     MachineOperand &DestAddr = MBBI->getOperand(0);
376     assert(DestAddr.isReg() && "Offset should be in register!");
377     const bool Uses64BitFramePtr =
378         STI->isTarget64BitLP64() || STI->isTargetNaCl64();
379     Register StackPtr = TRI->getStackRegister();
380     BuildMI(MBB, MBBI, DL,
381             TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
382         .addReg(DestAddr.getReg());
383     // The EH_RETURN pseudo is really removed during the MC Lowering.
384     return true;
385   }
386   case X86::IRET: {
387     // Adjust stack to erase error code
388     int64_t StackAdj = MBBI->getOperand(0).getImm();
389     X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
390     // Replace pseudo with machine iret
391     unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
392     // Use UIRET if UINTR is present (except for building kernel)
393     if (STI->is64Bit() && STI->hasUINTR() &&
394         MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
395       RetOp = X86::UIRET;
396     BuildMI(MBB, MBBI, DL, TII->get(RetOp));
397     MBB.erase(MBBI);
398     return true;
399   }
400   case X86::RET: {
401     // Adjust stack to erase error code
402     int64_t StackAdj = MBBI->getOperand(0).getImm();
403     MachineInstrBuilder MIB;
404     if (StackAdj == 0) {
405       MIB = BuildMI(MBB, MBBI, DL,
406                     TII->get(STI->is64Bit() ? X86::RETQ : X86::RETL));
407     } else if (isUInt<16>(StackAdj)) {
408       MIB = BuildMI(MBB, MBBI, DL,
409                     TII->get(STI->is64Bit() ? X86::RETIQ : X86::RETIL))
410                 .addImm(StackAdj);
411     } else {
412       assert(!STI->is64Bit() &&
413              "shouldn't need to do this for x86_64 targets!");
414       // A ret can only handle immediates as big as 2**16-1.  If we need to pop
415       // off bytes before the return address, we must do it manually.
416       BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
417       X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
418       BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
419       MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RETL));
420     }
421     for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
422       MIB.add(MBBI->getOperand(I));
423     MBB.erase(MBBI);
424     return true;
425   }
426   case X86::LCMPXCHG16B_SAVE_RBX: {
427     // Perform the following transformation.
428     // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
429     // =>
430     // RBX = InArg
431     // actualcmpxchg Addr
432     // RBX = SaveRbx
433     const MachineOperand &InArg = MBBI->getOperand(6);
434     Register SaveRbx = MBBI->getOperand(7).getReg();
435 
436     // Copy the input argument of the pseudo into the argument of the
437     // actual instruction.
438     // NOTE: We don't copy the kill flag since the input might be the same reg
439     // as one of the other operands of LCMPXCHG16B.
440     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
441     // Create the actual instruction.
442     MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
443     // Copy the operands related to the address.
444     for (unsigned Idx = 1; Idx < 6; ++Idx)
445       NewInstr->addOperand(MBBI->getOperand(Idx));
446     // Finally, restore the value of RBX.
447     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
448                      /*SrcIsKill*/ true);
449 
450     // Delete the pseudo.
451     MBBI->eraseFromParent();
452     return true;
453   }
454   // Loading/storing mask pairs requires two kmov operations. The second one of
455   // these needs a 2 byte displacement relative to the specified address (with
456   // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
457   // same spill size, they all are stored using MASKPAIR16STORE, loaded using
458   // MASKPAIR16LOAD.
459   //
460   // The displacement value might wrap around in theory, thus the asserts in
461   // both cases.
462   case X86::MASKPAIR16LOAD: {
463     int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
464     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
465     Register Reg = MBBI->getOperand(0).getReg();
466     bool DstIsDead = MBBI->getOperand(0).isDead();
467     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
468     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
469 
470     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
471       .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
472     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
473       .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
474 
475     for (int i = 0; i < X86::AddrNumOperands; ++i) {
476       MIBLo.add(MBBI->getOperand(1 + i));
477       if (i == X86::AddrDisp)
478         MIBHi.addImm(Disp + 2);
479       else
480         MIBHi.add(MBBI->getOperand(1 + i));
481     }
482 
483     // Split the memory operand, adjusting the offset and size for the halves.
484     MachineMemOperand *OldMMO = MBBI->memoperands().front();
485     MachineFunction *MF = MBB.getParent();
486     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
487     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
488 
489     MIBLo.setMemRefs(MMOLo);
490     MIBHi.setMemRefs(MMOHi);
491 
492     // Delete the pseudo.
493     MBB.erase(MBBI);
494     return true;
495   }
496   case X86::MASKPAIR16STORE: {
497     int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
498     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
499     Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
500     bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
501     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
502     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
503 
504     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
505     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
506 
507     for (int i = 0; i < X86::AddrNumOperands; ++i) {
508       MIBLo.add(MBBI->getOperand(i));
509       if (i == X86::AddrDisp)
510         MIBHi.addImm(Disp + 2);
511       else
512         MIBHi.add(MBBI->getOperand(i));
513     }
514     MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
515     MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
516 
517     // Split the memory operand, adjusting the offset and size for the halves.
518     MachineMemOperand *OldMMO = MBBI->memoperands().front();
519     MachineFunction *MF = MBB.getParent();
520     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
521     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
522 
523     MIBLo.setMemRefs(MMOLo);
524     MIBHi.setMemRefs(MMOHi);
525 
526     // Delete the pseudo.
527     MBB.erase(MBBI);
528     return true;
529   }
530   case X86::MWAITX_SAVE_RBX: {
531     // Perform the following transformation.
532     // SaveRbx = pseudomwaitx InArg, SaveRbx
533     // =>
534     // [E|R]BX = InArg
535     // actualmwaitx
536     // [E|R]BX = SaveRbx
537     const MachineOperand &InArg = MBBI->getOperand(1);
538     // Copy the input argument of the pseudo into the argument of the
539     // actual instruction.
540     TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
541     // Create the actual instruction.
542     BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
543     // Finally, restore the value of RBX.
544     Register SaveRbx = MBBI->getOperand(2).getReg();
545     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
546     // Delete the pseudo.
547     MBBI->eraseFromParent();
548     return true;
549   }
550   case TargetOpcode::ICALL_BRANCH_FUNNEL:
551     ExpandICallBranchFunnel(&MBB, MBBI);
552     return true;
553   case X86::PLDTILECFGV: {
554     MI.setDesc(TII->get(X86::LDTILECFG));
555     return true;
556   }
557   case X86::PTILELOADDV:
558   case X86::PTILELOADDT1V: {
559     for (unsigned i = 2; i > 0; --i)
560       MI.RemoveOperand(i);
561     unsigned Opc =
562         Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1;
563     MI.setDesc(TII->get(Opc));
564     return true;
565   }
566   case X86::PTDPBSSDV:
567   case X86::PTDPBSUDV:
568   case X86::PTDPBUSDV:
569   case X86::PTDPBUUDV:
570   case X86::PTDPBF16PSV: {
571     MI.untieRegOperand(4);
572     for (unsigned i = 3; i > 0; --i)
573       MI.RemoveOperand(i);
574     unsigned Opc;
575     switch (Opcode) {
576     case X86::PTDPBSSDV:   Opc = X86::TDPBSSD; break;
577     case X86::PTDPBSUDV:   Opc = X86::TDPBSUD; break;
578     case X86::PTDPBUSDV:   Opc = X86::TDPBUSD; break;
579     case X86::PTDPBUUDV:   Opc = X86::TDPBUUD; break;
580     case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
581     default: llvm_unreachable("Impossible Opcode!");
582     }
583     MI.setDesc(TII->get(Opc));
584     MI.tieOperands(0, 1);
585     return true;
586   }
587   case X86::PTILESTOREDV: {
588     for (int i = 1; i >= 0; --i)
589       MI.RemoveOperand(i);
590     MI.setDesc(TII->get(X86::TILESTORED));
591     return true;
592   }
593   case X86::PTILEZEROV: {
594     for (int i = 2; i > 0; --i) // Remove row, col
595       MI.RemoveOperand(i);
596     MI.setDesc(TII->get(X86::TILEZERO));
597     return true;
598   }
599   case X86::CALL64pcrel32_RVMARKER:
600   case X86::CALL64r_RVMARKER:
601   case X86::CALL64m_RVMARKER:
602     expandCALL_RVMARKER(MBB, MBBI);
603     return true;
604   }
605   llvm_unreachable("Previous switch has a fallthrough?");
606 }
607 
608 // This function creates additional block for storing varargs guarded
609 // registers. It adds check for %al into entry block, to skip
610 // GuardedRegsBlk if xmm registers should not be stored.
611 //
612 //     EntryBlk[VAStartPseudoInstr]     EntryBlk
613 //        |                              |     .
614 //        |                              |        .
615 //        |                              |   GuardedRegsBlk
616 //        |                      =>      |        .
617 //        |                              |     .
618 //        |                             TailBlk
619 //        |                              |
620 //        |                              |
621 //
622 void X86ExpandPseudo::ExpandVastartSaveXmmRegs(
623     MachineBasicBlock *EntryBlk,
624     MachineBasicBlock::iterator VAStartPseudoInstr) const {
625   assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
626 
627   MachineFunction *Func = EntryBlk->getParent();
628   const TargetInstrInfo *TII = STI->getInstrInfo();
629   const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
630   Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
631 
632   // Calculate liveins for newly created blocks.
633   LivePhysRegs LiveRegs(*STI->getRegisterInfo());
634   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
635 
636   LiveRegs.addLiveIns(*EntryBlk);
637   for (MachineInstr &MI : EntryBlk->instrs()) {
638     if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
639       break;
640 
641     LiveRegs.stepForward(MI, Clobbers);
642   }
643 
644   // Create the new basic blocks. One block contains all the XMM stores,
645   // and another block is the final destination regardless of whether any
646   // stores were performed.
647   const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
648   MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
649   MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
650   MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
651   Func->insert(EntryBlkIter, GuardedRegsBlk);
652   Func->insert(EntryBlkIter, TailBlk);
653 
654   // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
655   TailBlk->splice(TailBlk->begin(), EntryBlk,
656                   std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
657                   EntryBlk->end());
658   TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
659 
660   int64_t FrameIndex = VAStartPseudoInstr->getOperand(1).getImm();
661   Register BaseReg;
662   uint64_t FrameOffset =
663       X86FL->getFrameIndexReference(*Func, FrameIndex, BaseReg).getFixed();
664   uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(2).getImm();
665 
666   // TODO: add support for YMM and ZMM here.
667   unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
668 
669   // In the XMM save block, save all the XMM argument registers.
670   for (int64_t OpndIdx = 3, RegIdx = 0;
671        OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
672        OpndIdx++, RegIdx++) {
673 
674     int64_t Offset = FrameOffset + VarArgsRegsOffset + RegIdx * 16;
675 
676     MachineMemOperand *MMO = Func->getMachineMemOperand(
677         MachinePointerInfo::getFixedStack(*Func, FrameIndex, Offset),
678         MachineMemOperand::MOStore,
679         /*Size=*/16, Align(16));
680 
681     BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc))
682         .addReg(BaseReg)
683         .addImm(/*Scale=*/1)
684         .addReg(/*IndexReg=*/0)
685         .addImm(/*Disp=*/Offset)
686         .addReg(/*Segment=*/0)
687         .addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg())
688         .addMemOperand(MMO);
689     assert(Register::isPhysicalRegister(
690         VAStartPseudoInstr->getOperand(OpndIdx).getReg()));
691   }
692 
693   // The original block will now fall through to the GuardedRegsBlk.
694   EntryBlk->addSuccessor(GuardedRegsBlk);
695   // The GuardedRegsBlk will fall through to the TailBlk.
696   GuardedRegsBlk->addSuccessor(TailBlk);
697 
698   if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
699     // If %al is 0, branch around the XMM save block.
700     BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
701         .addReg(CountReg)
702         .addReg(CountReg);
703     BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
704         .addMBB(TailBlk)
705         .addImm(X86::COND_E);
706     EntryBlk->addSuccessor(TailBlk);
707   }
708 
709   // Add liveins to the created block.
710   addLiveIns(*GuardedRegsBlk, LiveRegs);
711   addLiveIns(*TailBlk, LiveRegs);
712 
713   // Delete the pseudo.
714   VAStartPseudoInstr->eraseFromParent();
715 }
716 
717 /// Expand all pseudo instructions contained in \p MBB.
718 /// \returns true if any expansion occurred for \p MBB.
719 bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
720   bool Modified = false;
721 
722   // MBBI may be invalidated by the expansion.
723   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
724   while (MBBI != E) {
725     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
726     Modified |= ExpandMI(MBB, MBBI);
727     MBBI = NMBBI;
728   }
729 
730   return Modified;
731 }
732 
733 bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) {
734   // Currently pseudo which affects control flow is only
735   // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
736   // So we do not need to evaluate other blocks.
737   for (MachineInstr &Instr : MF.front().instrs()) {
738     if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
739       ExpandVastartSaveXmmRegs(&(MF.front()), Instr);
740       return true;
741     }
742   }
743 
744   return false;
745 }
746 
747 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
748   STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
749   TII = STI->getInstrInfo();
750   TRI = STI->getRegisterInfo();
751   X86FI = MF.getInfo<X86MachineFunctionInfo>();
752   X86FL = STI->getFrameLowering();
753 
754   bool Modified = ExpandPseudosWhichAffectControlFlow(MF);
755 
756   for (MachineBasicBlock &MBB : MF)
757     Modified |= ExpandMBB(MBB);
758   return Modified;
759 }
760 
761 /// Returns an instance of the pseudo instruction expansion pass.
762 FunctionPass *llvm::createX86ExpandPseudoPass() {
763   return new X86ExpandPseudo();
764 }
765