xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86DomainReassignment.cpp (revision 18054d0220cfc8df9c9568c437bd6fbb59d53c3c)
1 //===--- X86DomainReassignment.cpp - Selectively switch register classes---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass attempts to find instruction chains (closures) in one domain,
10 // and convert them to equivalent instructions in a different domain,
11 // if profitable.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseMapInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Printable.h"
29 #include <bitset>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "x86-domain-reassignment"
34 
35 STATISTIC(NumClosuresConverted, "Number of closures converted by the pass");
36 
37 static cl::opt<bool> DisableX86DomainReassignment(
38     "disable-x86-domain-reassignment", cl::Hidden,
39     cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false));
40 
41 namespace {
42 enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains };
43 
44 static bool isGPR(const TargetRegisterClass *RC) {
45   return X86::GR64RegClass.hasSubClassEq(RC) ||
46          X86::GR32RegClass.hasSubClassEq(RC) ||
47          X86::GR16RegClass.hasSubClassEq(RC) ||
48          X86::GR8RegClass.hasSubClassEq(RC);
49 }
50 
51 static bool isMask(const TargetRegisterClass *RC,
52                    const TargetRegisterInfo *TRI) {
53   return X86::VK16RegClass.hasSubClassEq(RC);
54 }
55 
56 static RegDomain getDomain(const TargetRegisterClass *RC,
57                            const TargetRegisterInfo *TRI) {
58   if (isGPR(RC))
59     return GPRDomain;
60   if (isMask(RC, TRI))
61     return MaskDomain;
62   return OtherDomain;
63 }
64 
65 /// Return a register class equivalent to \p SrcRC, in \p Domain.
66 static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC,
67                                            RegDomain Domain) {
68   assert(Domain == MaskDomain && "add domain");
69   if (X86::GR8RegClass.hasSubClassEq(SrcRC))
70     return &X86::VK8RegClass;
71   if (X86::GR16RegClass.hasSubClassEq(SrcRC))
72     return &X86::VK16RegClass;
73   if (X86::GR32RegClass.hasSubClassEq(SrcRC))
74     return &X86::VK32RegClass;
75   if (X86::GR64RegClass.hasSubClassEq(SrcRC))
76     return &X86::VK64RegClass;
77   llvm_unreachable("add register class");
78   return nullptr;
79 }
80 
81 /// Abstract Instruction Converter class.
82 class InstrConverterBase {
83 protected:
84   unsigned SrcOpcode;
85 
86 public:
87   InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {}
88 
89   virtual ~InstrConverterBase() {}
90 
91   /// \returns true if \p MI is legal to convert.
92   virtual bool isLegal(const MachineInstr *MI,
93                        const TargetInstrInfo *TII) const {
94     assert(MI->getOpcode() == SrcOpcode &&
95            "Wrong instruction passed to converter");
96     return true;
97   }
98 
99   /// Applies conversion to \p MI.
100   ///
101   /// \returns true if \p MI is no longer need, and can be deleted.
102   virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
103                             MachineRegisterInfo *MRI) const = 0;
104 
105   /// \returns the cost increment incurred by converting \p MI.
106   virtual double getExtraCost(const MachineInstr *MI,
107                               MachineRegisterInfo *MRI) const = 0;
108 };
109 
110 /// An Instruction Converter which ignores the given instruction.
111 /// For example, PHI instructions can be safely ignored since only the registers
112 /// need to change.
113 class InstrIgnore : public InstrConverterBase {
114 public:
115   InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {}
116 
117   bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
118                     MachineRegisterInfo *MRI) const override {
119     assert(isLegal(MI, TII) && "Cannot convert instruction");
120     return false;
121   }
122 
123   double getExtraCost(const MachineInstr *MI,
124                       MachineRegisterInfo *MRI) const override {
125     return 0;
126   }
127 };
128 
129 /// An Instruction Converter which replaces an instruction with another.
130 class InstrReplacer : public InstrConverterBase {
131 public:
132   /// Opcode of the destination instruction.
133   unsigned DstOpcode;
134 
135   InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode)
136       : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
137 
138   bool isLegal(const MachineInstr *MI,
139                const TargetInstrInfo *TII) const override {
140     if (!InstrConverterBase::isLegal(MI, TII))
141       return false;
142     // It's illegal to replace an instruction that implicitly defines a register
143     // with an instruction that doesn't, unless that register dead.
144     for (const auto &MO : MI->implicit_operands())
145       if (MO.isReg() && MO.isDef() && !MO.isDead() &&
146           !TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg()))
147         return false;
148     return true;
149   }
150 
151   bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
152                     MachineRegisterInfo *MRI) const override {
153     assert(isLegal(MI, TII) && "Cannot convert instruction");
154     MachineInstrBuilder Bld =
155         BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode));
156     // Transfer explicit operands from original instruction. Implicit operands
157     // are handled by BuildMI.
158     for (auto &Op : MI->explicit_operands())
159       Bld.add(Op);
160     return true;
161   }
162 
163   double getExtraCost(const MachineInstr *MI,
164                       MachineRegisterInfo *MRI) const override {
165     // Assuming instructions have the same cost.
166     return 0;
167   }
168 };
169 
170 /// An Instruction Converter which replaces an instruction with another, and
171 /// adds a COPY from the new instruction's destination to the old one's.
172 class InstrReplacerDstCOPY : public InstrConverterBase {
173 public:
174   unsigned DstOpcode;
175 
176   InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode)
177       : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
178 
179   bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
180                     MachineRegisterInfo *MRI) const override {
181     assert(isLegal(MI, TII) && "Cannot convert instruction");
182     MachineBasicBlock *MBB = MI->getParent();
183     const DebugLoc &DL = MI->getDebugLoc();
184 
185     Register Reg = MRI->createVirtualRegister(
186         TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(),
187                          *MBB->getParent()));
188     MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg);
189     for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
190       Bld.add(MO);
191 
192     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY))
193         .add(MI->getOperand(0))
194         .addReg(Reg);
195 
196     return true;
197   }
198 
199   double getExtraCost(const MachineInstr *MI,
200                       MachineRegisterInfo *MRI) const override {
201     // Assuming instructions have the same cost, and that COPY is in the same
202     // domain so it will be eliminated.
203     return 0;
204   }
205 };
206 
207 /// An Instruction Converter for replacing COPY instructions.
208 class InstrCOPYReplacer : public InstrReplacer {
209 public:
210   RegDomain DstDomain;
211 
212   InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode)
213       : InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {}
214 
215   bool isLegal(const MachineInstr *MI,
216                const TargetInstrInfo *TII) const override {
217     if (!InstrConverterBase::isLegal(MI, TII))
218       return false;
219 
220     // Don't allow copies to/flow GR8/GR16 physical registers.
221     // FIXME: Is there some better way to support this?
222     Register DstReg = MI->getOperand(0).getReg();
223     if (DstReg.isPhysical() && (X86::GR8RegClass.contains(DstReg) ||
224                                 X86::GR16RegClass.contains(DstReg)))
225       return false;
226     Register SrcReg = MI->getOperand(1).getReg();
227     if (SrcReg.isPhysical() && (X86::GR8RegClass.contains(SrcReg) ||
228                                 X86::GR16RegClass.contains(SrcReg)))
229       return false;
230 
231     return true;
232   }
233 
234   double getExtraCost(const MachineInstr *MI,
235                       MachineRegisterInfo *MRI) const override {
236     assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY");
237 
238     for (const auto &MO : MI->operands()) {
239       // Physical registers will not be converted. Assume that converting the
240       // COPY to the destination domain will eventually result in a actual
241       // instruction.
242       if (Register::isPhysicalRegister(MO.getReg()))
243         return 1;
244 
245       RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()),
246                                      MRI->getTargetRegisterInfo());
247       // Converting a cross domain COPY to a same domain COPY should eliminate
248       // an insturction
249       if (OpDomain == DstDomain)
250         return -1;
251     }
252     return 0;
253   }
254 };
255 
256 /// An Instruction Converter which replaces an instruction with a COPY.
257 class InstrReplaceWithCopy : public InstrConverterBase {
258 public:
259   // Source instruction operand Index, to be used as the COPY source.
260   unsigned SrcOpIdx;
261 
262   InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx)
263       : InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {}
264 
265   bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
266                     MachineRegisterInfo *MRI) const override {
267     assert(isLegal(MI, TII) && "Cannot convert instruction");
268     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
269             TII->get(TargetOpcode::COPY))
270         .add({MI->getOperand(0), MI->getOperand(SrcOpIdx)});
271     return true;
272   }
273 
274   double getExtraCost(const MachineInstr *MI,
275                       MachineRegisterInfo *MRI) const override {
276     return 0;
277   }
278 };
279 
280 // Key type to be used by the Instruction Converters map.
281 // A converter is identified by <destination domain, source opcode>
282 typedef std::pair<int, unsigned> InstrConverterBaseKeyTy;
283 
284 typedef DenseMap<InstrConverterBaseKeyTy, std::unique_ptr<InstrConverterBase>>
285     InstrConverterBaseMap;
286 
287 /// A closure is a set of virtual register representing all of the edges in
288 /// the closure, as well as all of the instructions connected by those edges.
289 ///
290 /// A closure may encompass virtual registers in the same register bank that
291 /// have different widths. For example, it may contain 32-bit GPRs as well as
292 /// 64-bit GPRs.
293 ///
294 /// A closure that computes an address (i.e. defines a virtual register that is
295 /// used in a memory operand) excludes the instructions that contain memory
296 /// operands using the address. Such an instruction will be included in a
297 /// different closure that manipulates the loaded or stored value.
298 class Closure {
299 private:
300   /// Virtual registers in the closure.
301   DenseSet<Register> Edges;
302 
303   /// Instructions in the closure.
304   SmallVector<MachineInstr *, 8> Instrs;
305 
306   /// Domains which this closure can legally be reassigned to.
307   std::bitset<NumDomains> LegalDstDomains;
308 
309   /// An ID to uniquely identify this closure, even when it gets
310   /// moved around
311   unsigned ID;
312 
313 public:
314   Closure(unsigned ID, std::initializer_list<RegDomain> LegalDstDomainList) : ID(ID) {
315     for (RegDomain D : LegalDstDomainList)
316       LegalDstDomains.set(D);
317   }
318 
319   /// Mark this closure as illegal for reassignment to all domains.
320   void setAllIllegal() { LegalDstDomains.reset(); }
321 
322   /// \returns true if this closure has domains which are legal to reassign to.
323   bool hasLegalDstDomain() const { return LegalDstDomains.any(); }
324 
325   /// \returns true if is legal to reassign this closure to domain \p RD.
326   bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; }
327 
328   /// Mark this closure as illegal for reassignment to domain \p RD.
329   void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; }
330 
331   bool empty() const { return Edges.empty(); }
332 
333   bool insertEdge(Register Reg) { return Edges.insert(Reg).second; }
334 
335   using const_edge_iterator = DenseSet<Register>::const_iterator;
336   iterator_range<const_edge_iterator> edges() const {
337     return iterator_range<const_edge_iterator>(Edges.begin(), Edges.end());
338   }
339 
340   void addInstruction(MachineInstr *I) {
341     Instrs.push_back(I);
342   }
343 
344   ArrayRef<MachineInstr *> instructions() const {
345     return Instrs;
346   }
347 
348   LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const {
349     dbgs() << "Registers: ";
350     bool First = true;
351     for (Register Reg : Edges) {
352       if (!First)
353         dbgs() << ", ";
354       First = false;
355       dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI);
356     }
357     dbgs() << "\n" << "Instructions:";
358     for (MachineInstr *MI : Instrs) {
359       dbgs() << "\n  ";
360       MI->print(dbgs());
361     }
362     dbgs() << "\n";
363   }
364 
365   unsigned getID() const {
366     return ID;
367   }
368 
369 };
370 
371 class X86DomainReassignment : public MachineFunctionPass {
372   const X86Subtarget *STI = nullptr;
373   MachineRegisterInfo *MRI = nullptr;
374   const X86InstrInfo *TII = nullptr;
375 
376   /// All edges that are included in some closure
377   DenseSet<unsigned> EnclosedEdges;
378 
379   /// All instructions that are included in some closure.
380   DenseMap<MachineInstr *, unsigned> EnclosedInstrs;
381 
382 public:
383   static char ID;
384 
385   X86DomainReassignment() : MachineFunctionPass(ID) { }
386 
387   bool runOnMachineFunction(MachineFunction &MF) override;
388 
389   void getAnalysisUsage(AnalysisUsage &AU) const override {
390     AU.setPreservesCFG();
391     MachineFunctionPass::getAnalysisUsage(AU);
392   }
393 
394   StringRef getPassName() const override {
395     return "X86 Domain Reassignment Pass";
396   }
397 
398 private:
399   /// A map of available Instruction Converters.
400   InstrConverterBaseMap Converters;
401 
402   /// Initialize Converters map.
403   void initConverters();
404 
405   /// Starting from \Reg, expand the closure as much as possible.
406   void buildClosure(Closure &, Register Reg);
407 
408   /// Enqueue \p Reg to be considered for addition to the closure.
409   void visitRegister(Closure &, Register Reg, RegDomain &Domain,
410                      SmallVectorImpl<unsigned> &Worklist);
411 
412   /// Reassign the closure to \p Domain.
413   void reassign(const Closure &C, RegDomain Domain) const;
414 
415   /// Add \p MI to the closure.
416   void encloseInstr(Closure &C, MachineInstr *MI);
417 
418   /// /returns true if it is profitable to reassign the closure to \p Domain.
419   bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const;
420 
421   /// Calculate the total cost of reassigning the closure to \p Domain.
422   double calculateCost(const Closure &C, RegDomain Domain) const;
423 };
424 
425 char X86DomainReassignment::ID = 0;
426 
427 } // End anonymous namespace.
428 
429 void X86DomainReassignment::visitRegister(Closure &C, Register Reg,
430                                           RegDomain &Domain,
431                                           SmallVectorImpl<unsigned> &Worklist) {
432   if (EnclosedEdges.count(Reg))
433     return;
434 
435   if (!Reg.isVirtual())
436     return;
437 
438   if (!MRI->hasOneDef(Reg))
439     return;
440 
441   RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo());
442   // First edge in closure sets the domain.
443   if (Domain == NoDomain)
444     Domain = RD;
445 
446   if (Domain != RD)
447     return;
448 
449   Worklist.push_back(Reg);
450 }
451 
452 void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) {
453   auto I = EnclosedInstrs.find(MI);
454   if (I != EnclosedInstrs.end()) {
455     if (I->second != C.getID())
456       // Instruction already belongs to another closure, avoid conflicts between
457       // closure and mark this closure as illegal.
458       C.setAllIllegal();
459     return;
460   }
461 
462   EnclosedInstrs[MI] = C.getID();
463   C.addInstruction(MI);
464 
465   // Mark closure as illegal for reassignment to domains, if there is no
466   // converter for the instruction or if the converter cannot convert the
467   // instruction.
468   for (int i = 0; i != NumDomains; ++i) {
469     if (C.isLegal((RegDomain)i)) {
470       auto I = Converters.find({i, MI->getOpcode()});
471       if (I == Converters.end() || !I->second->isLegal(MI, TII))
472         C.setIllegal((RegDomain)i);
473     }
474   }
475 }
476 
477 double X86DomainReassignment::calculateCost(const Closure &C,
478                                             RegDomain DstDomain) const {
479   assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure");
480 
481   double Cost = 0.0;
482   for (auto *MI : C.instructions())
483     Cost += Converters.find({DstDomain, MI->getOpcode()})
484                 ->second->getExtraCost(MI, MRI);
485   return Cost;
486 }
487 
488 bool X86DomainReassignment::isReassignmentProfitable(const Closure &C,
489                                                      RegDomain Domain) const {
490   return calculateCost(C, Domain) < 0.0;
491 }
492 
493 void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const {
494   assert(C.isLegal(Domain) && "Cannot convert illegal closure");
495 
496   // Iterate all instructions in the closure, convert each one using the
497   // appropriate converter.
498   SmallVector<MachineInstr *, 8> ToErase;
499   for (auto *MI : C.instructions())
500     if (Converters.find({Domain, MI->getOpcode()})
501             ->second->convertInstr(MI, TII, MRI))
502       ToErase.push_back(MI);
503 
504   // Iterate all registers in the closure, replace them with registers in the
505   // destination domain.
506   for (Register Reg : C.edges()) {
507     MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain));
508     for (auto &MO : MRI->use_operands(Reg)) {
509       if (MO.isReg())
510         // Remove all subregister references as they are not valid in the
511         // destination domain.
512         MO.setSubReg(0);
513     }
514   }
515 
516   for (auto *MI : ToErase)
517     MI->eraseFromParent();
518 }
519 
520 /// \returns true when \p Reg is used as part of an address calculation in \p
521 /// MI.
522 static bool usedAsAddr(const MachineInstr &MI, Register Reg,
523                        const TargetInstrInfo *TII) {
524   if (!MI.mayLoadOrStore())
525     return false;
526 
527   const MCInstrDesc &Desc = TII->get(MI.getOpcode());
528   int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags);
529   if (MemOpStart == -1)
530     return false;
531 
532   MemOpStart += X86II::getOperandBias(Desc);
533   for (unsigned MemOpIdx = MemOpStart,
534                 MemOpEnd = MemOpStart + X86::AddrNumOperands;
535        MemOpIdx < MemOpEnd; ++MemOpIdx) {
536     const MachineOperand &Op = MI.getOperand(MemOpIdx);
537     if (Op.isReg() && Op.getReg() == Reg)
538       return true;
539   }
540   return false;
541 }
542 
543 void X86DomainReassignment::buildClosure(Closure &C, Register Reg) {
544   SmallVector<unsigned, 4> Worklist;
545   RegDomain Domain = NoDomain;
546   visitRegister(C, Reg, Domain, Worklist);
547   while (!Worklist.empty()) {
548     unsigned CurReg = Worklist.pop_back_val();
549 
550     // Register already in this closure.
551     if (!C.insertEdge(CurReg))
552       continue;
553     EnclosedEdges.insert(Reg);
554 
555     MachineInstr *DefMI = MRI->getVRegDef(CurReg);
556     encloseInstr(C, DefMI);
557 
558     // Add register used by the defining MI to the worklist.
559     // Do not add registers which are used in address calculation, they will be
560     // added to a different closure.
561     int OpEnd = DefMI->getNumOperands();
562     const MCInstrDesc &Desc = DefMI->getDesc();
563     int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags);
564     if (MemOp != -1)
565       MemOp += X86II::getOperandBias(Desc);
566     for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) {
567       if (OpIdx == MemOp) {
568         // skip address calculation.
569         OpIdx += (X86::AddrNumOperands - 1);
570         continue;
571       }
572       auto &Op = DefMI->getOperand(OpIdx);
573       if (!Op.isReg() || !Op.isUse())
574         continue;
575       visitRegister(C, Op.getReg(), Domain, Worklist);
576     }
577 
578     // Expand closure through register uses.
579     for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) {
580       // We would like to avoid converting closures which calculare addresses,
581       // as this should remain in GPRs.
582       if (usedAsAddr(UseMI, CurReg, TII)) {
583         C.setAllIllegal();
584         continue;
585       }
586       encloseInstr(C, &UseMI);
587 
588       for (auto &DefOp : UseMI.defs()) {
589         if (!DefOp.isReg())
590           continue;
591 
592         Register DefReg = DefOp.getReg();
593         if (!DefReg.isVirtual()) {
594           C.setAllIllegal();
595           continue;
596         }
597         visitRegister(C, DefReg, Domain, Worklist);
598       }
599     }
600   }
601 }
602 
603 void X86DomainReassignment::initConverters() {
604   Converters[{MaskDomain, TargetOpcode::PHI}] =
605       std::make_unique<InstrIgnore>(TargetOpcode::PHI);
606 
607   Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] =
608       std::make_unique<InstrIgnore>(TargetOpcode::IMPLICIT_DEF);
609 
610   Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] =
611       std::make_unique<InstrReplaceWithCopy>(TargetOpcode::INSERT_SUBREG, 2);
612 
613   Converters[{MaskDomain, TargetOpcode::COPY}] =
614       std::make_unique<InstrCOPYReplacer>(TargetOpcode::COPY, MaskDomain,
615                                           TargetOpcode::COPY);
616 
617   auto createReplacerDstCOPY = [&](unsigned From, unsigned To) {
618     Converters[{MaskDomain, From}] =
619         std::make_unique<InstrReplacerDstCOPY>(From, To);
620   };
621 
622   createReplacerDstCOPY(X86::MOVZX32rm16, X86::KMOVWkm);
623   createReplacerDstCOPY(X86::MOVZX64rm16, X86::KMOVWkm);
624 
625   createReplacerDstCOPY(X86::MOVZX32rr16, X86::KMOVWkk);
626   createReplacerDstCOPY(X86::MOVZX64rr16, X86::KMOVWkk);
627 
628   if (STI->hasDQI()) {
629     createReplacerDstCOPY(X86::MOVZX16rm8, X86::KMOVBkm);
630     createReplacerDstCOPY(X86::MOVZX32rm8, X86::KMOVBkm);
631     createReplacerDstCOPY(X86::MOVZX64rm8, X86::KMOVBkm);
632 
633     createReplacerDstCOPY(X86::MOVZX16rr8, X86::KMOVBkk);
634     createReplacerDstCOPY(X86::MOVZX32rr8, X86::KMOVBkk);
635     createReplacerDstCOPY(X86::MOVZX64rr8, X86::KMOVBkk);
636   }
637 
638   auto createReplacer = [&](unsigned From, unsigned To) {
639     Converters[{MaskDomain, From}] = std::make_unique<InstrReplacer>(From, To);
640   };
641 
642   createReplacer(X86::MOV16rm, X86::KMOVWkm);
643   createReplacer(X86::MOV16mr, X86::KMOVWmk);
644   createReplacer(X86::MOV16rr, X86::KMOVWkk);
645   createReplacer(X86::SHR16ri, X86::KSHIFTRWri);
646   createReplacer(X86::SHL16ri, X86::KSHIFTLWri);
647   createReplacer(X86::NOT16r, X86::KNOTWrr);
648   createReplacer(X86::OR16rr, X86::KORWrr);
649   createReplacer(X86::AND16rr, X86::KANDWrr);
650   createReplacer(X86::XOR16rr, X86::KXORWrr);
651 
652   if (STI->hasBWI()) {
653     createReplacer(X86::MOV32rm, X86::KMOVDkm);
654     createReplacer(X86::MOV64rm, X86::KMOVQkm);
655 
656     createReplacer(X86::MOV32mr, X86::KMOVDmk);
657     createReplacer(X86::MOV64mr, X86::KMOVQmk);
658 
659     createReplacer(X86::MOV32rr, X86::KMOVDkk);
660     createReplacer(X86::MOV64rr, X86::KMOVQkk);
661 
662     createReplacer(X86::SHR32ri, X86::KSHIFTRDri);
663     createReplacer(X86::SHR64ri, X86::KSHIFTRQri);
664 
665     createReplacer(X86::SHL32ri, X86::KSHIFTLDri);
666     createReplacer(X86::SHL64ri, X86::KSHIFTLQri);
667 
668     createReplacer(X86::ADD32rr, X86::KADDDrr);
669     createReplacer(X86::ADD64rr, X86::KADDQrr);
670 
671     createReplacer(X86::NOT32r, X86::KNOTDrr);
672     createReplacer(X86::NOT64r, X86::KNOTQrr);
673 
674     createReplacer(X86::OR32rr, X86::KORDrr);
675     createReplacer(X86::OR64rr, X86::KORQrr);
676 
677     createReplacer(X86::AND32rr, X86::KANDDrr);
678     createReplacer(X86::AND64rr, X86::KANDQrr);
679 
680     createReplacer(X86::ANDN32rr, X86::KANDNDrr);
681     createReplacer(X86::ANDN64rr, X86::KANDNQrr);
682 
683     createReplacer(X86::XOR32rr, X86::KXORDrr);
684     createReplacer(X86::XOR64rr, X86::KXORQrr);
685 
686     // TODO: KTEST is not a replacement for TEST due to flag differences. Need
687     // to prove only Z flag is used.
688     //createReplacer(X86::TEST32rr, X86::KTESTDrr);
689     //createReplacer(X86::TEST64rr, X86::KTESTQrr);
690   }
691 
692   if (STI->hasDQI()) {
693     createReplacer(X86::ADD8rr, X86::KADDBrr);
694     createReplacer(X86::ADD16rr, X86::KADDWrr);
695 
696     createReplacer(X86::AND8rr, X86::KANDBrr);
697 
698     createReplacer(X86::MOV8rm, X86::KMOVBkm);
699     createReplacer(X86::MOV8mr, X86::KMOVBmk);
700     createReplacer(X86::MOV8rr, X86::KMOVBkk);
701 
702     createReplacer(X86::NOT8r, X86::KNOTBrr);
703 
704     createReplacer(X86::OR8rr, X86::KORBrr);
705 
706     createReplacer(X86::SHR8ri, X86::KSHIFTRBri);
707     createReplacer(X86::SHL8ri, X86::KSHIFTLBri);
708 
709     // TODO: KTEST is not a replacement for TEST due to flag differences. Need
710     // to prove only Z flag is used.
711     //createReplacer(X86::TEST8rr, X86::KTESTBrr);
712     //createReplacer(X86::TEST16rr, X86::KTESTWrr);
713 
714     createReplacer(X86::XOR8rr, X86::KXORBrr);
715   }
716 }
717 
718 bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) {
719   if (skipFunction(MF.getFunction()))
720     return false;
721   if (DisableX86DomainReassignment)
722     return false;
723 
724   LLVM_DEBUG(
725       dbgs() << "***** Machine Function before Domain Reassignment *****\n");
726   LLVM_DEBUG(MF.print(dbgs()));
727 
728   STI = &MF.getSubtarget<X86Subtarget>();
729   // GPR->K is the only transformation currently supported, bail out early if no
730   // AVX512.
731   // TODO: We're also bailing of AVX512BW isn't supported since we use VK32 and
732   // VK64 for GR32/GR64, but those aren't legal classes on KNL. If the register
733   // coalescer doesn't clean it up and we generate a spill we will crash.
734   if (!STI->hasAVX512() || !STI->hasBWI())
735     return false;
736 
737   MRI = &MF.getRegInfo();
738   assert(MRI->isSSA() && "Expected MIR to be in SSA form");
739 
740   TII = STI->getInstrInfo();
741   initConverters();
742   bool Changed = false;
743 
744   EnclosedEdges.clear();
745   EnclosedInstrs.clear();
746 
747   std::vector<Closure> Closures;
748 
749   // Go over all virtual registers and calculate a closure.
750   unsigned ClosureID = 0;
751   for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) {
752     Register Reg = Register::index2VirtReg(Idx);
753 
754     // GPR only current source domain supported.
755     if (!isGPR(MRI->getRegClass(Reg)))
756       continue;
757 
758     // Register already in closure.
759     if (EnclosedEdges.count(Reg))
760       continue;
761 
762     // Calculate closure starting with Reg.
763     Closure C(ClosureID++, {MaskDomain});
764     buildClosure(C, Reg);
765 
766     // Collect all closures that can potentially be converted.
767     if (!C.empty() && C.isLegal(MaskDomain))
768       Closures.push_back(std::move(C));
769   }
770 
771   for (Closure &C : Closures) {
772     LLVM_DEBUG(C.dump(MRI));
773     if (isReassignmentProfitable(C, MaskDomain)) {
774       reassign(C, MaskDomain);
775       ++NumClosuresConverted;
776       Changed = true;
777     }
778   }
779 
780   LLVM_DEBUG(
781       dbgs() << "***** Machine Function after Domain Reassignment *****\n");
782   LLVM_DEBUG(MF.print(dbgs()));
783 
784   return Changed;
785 }
786 
787 INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment",
788                 "X86 Domain Reassignment Pass", false, false)
789 
790 /// Returns an instance of the Domain Reassignment pass.
791 FunctionPass *llvm::createX86DomainReassignmentPass() {
792   return new X86DomainReassignment();
793 }
794