1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements a pass that converts X86 cmov instructions into 11 /// branches when profitable. This pass is conservative. It transforms if and 12 /// only if it can guarantee a gain with high confidence. 13 /// 14 /// Thus, the optimization applies under the following conditions: 15 /// 1. Consider as candidates only CMOVs in innermost loops (assume that 16 /// most hotspots are represented by these loops). 17 /// 2. Given a group of CMOV instructions that are using the same EFLAGS def 18 /// instruction: 19 /// a. Consider them as candidates only if all have the same code condition 20 /// or the opposite one to prevent generating more than one conditional 21 /// jump per EFLAGS def instruction. 22 /// b. Consider them as candidates only if all are profitable to be 23 /// converted (assume that one bad conversion may cause a degradation). 24 /// 3. Apply conversion only for loops that are found profitable and only for 25 /// CMOV candidates that were found profitable. 26 /// a. A loop is considered profitable only if conversion will reduce its 27 /// depth cost by some threshold. 28 /// b. CMOV is considered profitable if the cost of its condition is higher 29 /// than the average cost of its true-value and false-value by 25% of 30 /// branch-misprediction-penalty. This assures no degradation even with 31 /// 25% branch misprediction. 32 /// 33 /// Note: This pass is assumed to run on SSA machine code. 34 // 35 //===----------------------------------------------------------------------===// 36 // 37 // External interfaces: 38 // FunctionPass *llvm::createX86CmovConverterPass(); 39 // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF); 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "X86.h" 44 #include "X86InstrInfo.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/STLExtras.h" 48 #include "llvm/ADT/SmallPtrSet.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/CodeGen/MachineBasicBlock.h" 52 #include "llvm/CodeGen/MachineFunction.h" 53 #include "llvm/CodeGen/MachineFunctionPass.h" 54 #include "llvm/CodeGen/MachineInstr.h" 55 #include "llvm/CodeGen/MachineInstrBuilder.h" 56 #include "llvm/CodeGen/MachineLoopInfo.h" 57 #include "llvm/CodeGen/MachineOperand.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSchedule.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/MC/MCSchedule.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "x86-cmov-conversion" 78 79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups"); 80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates"); 81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops"); 82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups"); 83 84 // This internal switch can be used to turn off the cmov/branch optimization. 85 static cl::opt<bool> 86 EnableCmovConverter("x86-cmov-converter", 87 cl::desc("Enable the X86 cmov-to-branch optimization."), 88 cl::init(true), cl::Hidden); 89 90 static cl::opt<unsigned> 91 GainCycleThreshold("x86-cmov-converter-threshold", 92 cl::desc("Minimum gain per loop (in cycles) threshold."), 93 cl::init(4), cl::Hidden); 94 95 static cl::opt<bool> ForceMemOperand( 96 "x86-cmov-converter-force-mem-operand", 97 cl::desc("Convert cmovs to branches whenever they have memory operands."), 98 cl::init(true), cl::Hidden); 99 100 namespace { 101 102 /// Converts X86 cmov instructions into branches when profitable. 103 class X86CmovConverterPass : public MachineFunctionPass { 104 public: 105 X86CmovConverterPass() : MachineFunctionPass(ID) { } 106 107 StringRef getPassName() const override { return "X86 cmov Conversion"; } 108 bool runOnMachineFunction(MachineFunction &MF) override; 109 void getAnalysisUsage(AnalysisUsage &AU) const override; 110 111 /// Pass identification, replacement for typeid. 112 static char ID; 113 114 private: 115 MachineRegisterInfo *MRI = nullptr; 116 const TargetInstrInfo *TII = nullptr; 117 const TargetRegisterInfo *TRI = nullptr; 118 TargetSchedModel TSchedModel; 119 120 /// List of consecutive CMOV instructions. 121 using CmovGroup = SmallVector<MachineInstr *, 2>; 122 using CmovGroups = SmallVector<CmovGroup, 2>; 123 124 /// Collect all CMOV-group-candidates in \p CurrLoop and update \p 125 /// CmovInstGroups accordingly. 126 /// 127 /// \param Blocks List of blocks to process. 128 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. 129 /// \returns true iff it found any CMOV-group-candidate. 130 bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, 131 CmovGroups &CmovInstGroups, 132 bool IncludeLoads = false); 133 134 /// Check if it is profitable to transform each CMOV-group-candidates into 135 /// branch. Remove all groups that are not profitable from \p CmovInstGroups. 136 /// 137 /// \param Blocks List of blocks to process. 138 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. 139 /// \returns true iff any CMOV-group-candidate remain. 140 bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, 141 CmovGroups &CmovInstGroups); 142 143 /// Convert the given list of consecutive CMOV instructions into a branch. 144 /// 145 /// \param Group Consecutive CMOV instructions to be converted into branch. 146 void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const; 147 }; 148 149 } // end anonymous namespace 150 151 char X86CmovConverterPass::ID = 0; 152 153 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const { 154 MachineFunctionPass::getAnalysisUsage(AU); 155 AU.addRequired<MachineLoopInfo>(); 156 } 157 158 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) { 159 if (skipFunction(MF.getFunction())) 160 return false; 161 if (!EnableCmovConverter) 162 return false; 163 164 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() 165 << "**********\n"); 166 167 bool Changed = false; 168 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 169 const TargetSubtargetInfo &STI = MF.getSubtarget(); 170 MRI = &MF.getRegInfo(); 171 TII = STI.getInstrInfo(); 172 TRI = STI.getRegisterInfo(); 173 TSchedModel.init(&STI); 174 175 // Before we handle the more subtle cases of register-register CMOVs inside 176 // of potentially hot loops, we want to quickly remove all CMOVs with 177 // a memory operand. The CMOV will risk a stall waiting for the load to 178 // complete that speculative execution behind a branch is better suited to 179 // handle on modern x86 chips. 180 if (ForceMemOperand) { 181 CmovGroups AllCmovGroups; 182 SmallVector<MachineBasicBlock *, 4> Blocks; 183 for (auto &MBB : MF) 184 Blocks.push_back(&MBB); 185 if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) { 186 for (auto &Group : AllCmovGroups) { 187 // Skip any group that doesn't do at least one memory operand cmov. 188 if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); })) 189 continue; 190 191 // For CMOV groups which we can rewrite and which contain a memory load, 192 // always rewrite them. On x86, a CMOV will dramatically amplify any 193 // memory latency by blocking speculative execution. 194 Changed = true; 195 convertCmovInstsToBranches(Group); 196 } 197 } 198 } 199 200 //===--------------------------------------------------------------------===// 201 // Register-operand Conversion Algorithm 202 // --------- 203 // For each inner most loop 204 // collectCmovCandidates() { 205 // Find all CMOV-group-candidates. 206 // } 207 // 208 // checkForProfitableCmovCandidates() { 209 // * Calculate both loop-depth and optimized-loop-depth. 210 // * Use these depth to check for loop transformation profitability. 211 // * Check for CMOV-group-candidate transformation profitability. 212 // } 213 // 214 // For each profitable CMOV-group-candidate 215 // convertCmovInstsToBranches() { 216 // * Create FalseBB, SinkBB, Conditional branch to SinkBB. 217 // * Replace each CMOV instruction with a PHI instruction in SinkBB. 218 // } 219 // 220 // Note: For more details, see each function description. 221 //===--------------------------------------------------------------------===// 222 223 // Build up the loops in pre-order. 224 SmallVector<MachineLoop *, 4> Loops(MLI.begin(), MLI.end()); 225 // Note that we need to check size on each iteration as we accumulate child 226 // loops. 227 for (int i = 0; i < (int)Loops.size(); ++i) 228 for (MachineLoop *Child : Loops[i]->getSubLoops()) 229 Loops.push_back(Child); 230 231 for (MachineLoop *CurrLoop : Loops) { 232 // Optimize only inner most loops. 233 if (!CurrLoop->getSubLoops().empty()) 234 continue; 235 236 // List of consecutive CMOV instructions to be processed. 237 CmovGroups CmovInstGroups; 238 239 if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups)) 240 continue; 241 242 if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(), 243 CmovInstGroups)) 244 continue; 245 246 Changed = true; 247 for (auto &Group : CmovInstGroups) 248 convertCmovInstsToBranches(Group); 249 } 250 251 return Changed; 252 } 253 254 bool X86CmovConverterPass::collectCmovCandidates( 255 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups, 256 bool IncludeLoads) { 257 //===--------------------------------------------------------------------===// 258 // Collect all CMOV-group-candidates and add them into CmovInstGroups. 259 // 260 // CMOV-group: 261 // CMOV instructions, in same MBB, that uses same EFLAGS def instruction. 262 // 263 // CMOV-group-candidate: 264 // CMOV-group where all the CMOV instructions are 265 // 1. consecutive. 266 // 2. have same condition code or opposite one. 267 // 3. have only operand registers (X86::CMOVrr). 268 //===--------------------------------------------------------------------===// 269 // List of possible improvement (TODO's): 270 // -------------------------------------- 271 // TODO: Add support for X86::CMOVrm instructions. 272 // TODO: Add support for X86::SETcc instructions. 273 // TODO: Add support for CMOV-groups with non consecutive CMOV instructions. 274 //===--------------------------------------------------------------------===// 275 276 // Current processed CMOV-Group. 277 CmovGroup Group; 278 for (auto *MBB : Blocks) { 279 Group.clear(); 280 // Condition code of first CMOV instruction current processed range and its 281 // opposite condition code. 282 X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID, 283 MemOpCC = X86::COND_INVALID; 284 // Indicator of a non CMOVrr instruction in the current processed range. 285 bool FoundNonCMOVInst = false; 286 // Indicator for current processed CMOV-group if it should be skipped. 287 bool SkipGroup = false; 288 289 for (auto &I : *MBB) { 290 // Skip debug instructions. 291 if (I.isDebugInstr()) 292 continue; 293 X86::CondCode CC = X86::getCondFromCMov(I); 294 // Check if we found a X86::CMOVrr instruction. 295 if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) { 296 if (Group.empty()) { 297 // We found first CMOV in the range, reset flags. 298 FirstCC = CC; 299 FirstOppCC = X86::GetOppositeBranchCondition(CC); 300 // Clear out the prior group's memory operand CC. 301 MemOpCC = X86::COND_INVALID; 302 FoundNonCMOVInst = false; 303 SkipGroup = false; 304 } 305 Group.push_back(&I); 306 // Check if it is a non-consecutive CMOV instruction or it has different 307 // condition code than FirstCC or FirstOppCC. 308 if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC)) 309 // Mark the SKipGroup indicator to skip current processed CMOV-Group. 310 SkipGroup = true; 311 if (I.mayLoad()) { 312 if (MemOpCC == X86::COND_INVALID) 313 // The first memory operand CMOV. 314 MemOpCC = CC; 315 else if (CC != MemOpCC) 316 // Can't handle mixed conditions with memory operands. 317 SkipGroup = true; 318 } 319 // Check if we were relying on zero-extending behavior of the CMOV. 320 if (!SkipGroup && 321 llvm::any_of( 322 MRI->use_nodbg_instructions(I.defs().begin()->getReg()), 323 [&](MachineInstr &UseI) { 324 return UseI.getOpcode() == X86::SUBREG_TO_REG; 325 })) 326 // FIXME: We should model the cost of using an explicit MOV to handle 327 // the zero-extension rather than just refusing to handle this. 328 SkipGroup = true; 329 continue; 330 } 331 // If Group is empty, keep looking for first CMOV in the range. 332 if (Group.empty()) 333 continue; 334 335 // We found a non X86::CMOVrr instruction. 336 FoundNonCMOVInst = true; 337 // Check if this instruction define EFLAGS, to determine end of processed 338 // range, as there would be no more instructions using current EFLAGS def. 339 if (I.definesRegister(X86::EFLAGS)) { 340 // Check if current processed CMOV-group should not be skipped and add 341 // it as a CMOV-group-candidate. 342 if (!SkipGroup) 343 CmovInstGroups.push_back(Group); 344 else 345 ++NumOfSkippedCmovGroups; 346 Group.clear(); 347 } 348 } 349 // End of basic block is considered end of range, check if current processed 350 // CMOV-group should not be skipped and add it as a CMOV-group-candidate. 351 if (Group.empty()) 352 continue; 353 if (!SkipGroup) 354 CmovInstGroups.push_back(Group); 355 else 356 ++NumOfSkippedCmovGroups; 357 } 358 359 NumOfCmovGroupCandidate += CmovInstGroups.size(); 360 return !CmovInstGroups.empty(); 361 } 362 363 /// \returns Depth of CMOV instruction as if it was converted into branch. 364 /// \param TrueOpDepth depth cost of CMOV true value operand. 365 /// \param FalseOpDepth depth cost of CMOV false value operand. 366 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) { 367 // The depth of the result after branch conversion is 368 // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability. 369 // As we have no info about branch weight, we assume 75% for one and 25% for 370 // the other, and pick the result with the largest resulting depth. 371 return std::max( 372 divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4), 373 divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4)); 374 } 375 376 bool X86CmovConverterPass::checkForProfitableCmovCandidates( 377 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) { 378 struct DepthInfo { 379 /// Depth of original loop. 380 unsigned Depth; 381 /// Depth of optimized loop. 382 unsigned OptDepth; 383 }; 384 /// Number of loop iterations to calculate depth for ?! 385 static const unsigned LoopIterations = 2; 386 DenseMap<MachineInstr *, DepthInfo> DepthMap; 387 DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}}; 388 enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 }; 389 /// For each register type maps the register to its last def instruction. 390 DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum]; 391 /// Maps register operand to its def instruction, which can be nullptr if it 392 /// is unknown (e.g., operand is defined outside the loop). 393 DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap; 394 395 // Set depth of unknown instruction (i.e., nullptr) to zero. 396 DepthMap[nullptr] = {0, 0}; 397 398 SmallPtrSet<MachineInstr *, 4> CmovInstructions; 399 for (auto &Group : CmovInstGroups) 400 CmovInstructions.insert(Group.begin(), Group.end()); 401 402 //===--------------------------------------------------------------------===// 403 // Step 1: Calculate instruction depth and loop depth. 404 // Optimized-Loop: 405 // loop with CMOV-group-candidates converted into branches. 406 // 407 // Instruction-Depth: 408 // instruction latency + max operand depth. 409 // * For CMOV instruction in optimized loop the depth is calculated as: 410 // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth) 411 // TODO: Find a better way to estimate the latency of the branch instruction 412 // rather than using the CMOV latency. 413 // 414 // Loop-Depth: 415 // max instruction depth of all instructions in the loop. 416 // Note: instruction with max depth represents the critical-path in the loop. 417 // 418 // Loop-Depth[i]: 419 // Loop-Depth calculated for first `i` iterations. 420 // Note: it is enough to calculate depth for up to two iterations. 421 // 422 // Depth-Diff[i]: 423 // Number of cycles saved in first 'i` iterations by optimizing the loop. 424 //===--------------------------------------------------------------------===// 425 for (unsigned I = 0; I < LoopIterations; ++I) { 426 DepthInfo &MaxDepth = LoopDepth[I]; 427 for (auto *MBB : Blocks) { 428 // Clear physical registers Def map. 429 RegDefMaps[PhyRegType].clear(); 430 for (MachineInstr &MI : *MBB) { 431 // Skip debug instructions. 432 if (MI.isDebugInstr()) 433 continue; 434 unsigned MIDepth = 0; 435 unsigned MIDepthOpt = 0; 436 bool IsCMOV = CmovInstructions.count(&MI); 437 for (auto &MO : MI.uses()) { 438 // Checks for "isUse()" as "uses()" returns also implicit definitions. 439 if (!MO.isReg() || !MO.isUse()) 440 continue; 441 Register Reg = MO.getReg(); 442 auto &RDM = RegDefMaps[Register::isVirtualRegister(Reg)]; 443 if (MachineInstr *DefMI = RDM.lookup(Reg)) { 444 OperandToDefMap[&MO] = DefMI; 445 DepthInfo Info = DepthMap.lookup(DefMI); 446 MIDepth = std::max(MIDepth, Info.Depth); 447 if (!IsCMOV) 448 MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth); 449 } 450 } 451 452 if (IsCMOV) 453 MIDepthOpt = getDepthOfOptCmov( 454 DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth, 455 DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth); 456 457 // Iterates over all operands to handle implicit definitions as well. 458 for (auto &MO : MI.operands()) { 459 if (!MO.isReg() || !MO.isDef()) 460 continue; 461 Register Reg = MO.getReg(); 462 RegDefMaps[Register::isVirtualRegister(Reg)][Reg] = &MI; 463 } 464 465 unsigned Latency = TSchedModel.computeInstrLatency(&MI); 466 DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency}; 467 MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth); 468 MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt); 469 } 470 } 471 } 472 473 unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth, 474 LoopDepth[1].Depth - LoopDepth[1].OptDepth}; 475 476 //===--------------------------------------------------------------------===// 477 // Step 2: Check if Loop worth to be optimized. 478 // Worth-Optimize-Loop: 479 // case 1: Diff[1] == Diff[0] 480 // Critical-path is iteration independent - there is no dependency 481 // of critical-path instructions on critical-path instructions of 482 // previous iteration. 483 // Thus, it is enough to check gain percent of 1st iteration - 484 // To be conservative, the optimized loop need to have a depth of 485 // 12.5% cycles less than original loop, per iteration. 486 // 487 // case 2: Diff[1] > Diff[0] 488 // Critical-path is iteration dependent - there is dependency of 489 // critical-path instructions on critical-path instructions of 490 // previous iteration. 491 // Thus, check the gain percent of the 2nd iteration (similar to the 492 // previous case), but it is also required to check the gradient of 493 // the gain - the change in Depth-Diff compared to the change in 494 // Loop-Depth between 1st and 2nd iterations. 495 // To be conservative, the gradient need to be at least 50%. 496 // 497 // In addition, In order not to optimize loops with very small gain, the 498 // gain (in cycles) after 2nd iteration should not be less than a given 499 // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply. 500 // 501 // If loop is not worth optimizing, remove all CMOV-group-candidates. 502 //===--------------------------------------------------------------------===// 503 if (Diff[1] < GainCycleThreshold) 504 return false; 505 506 bool WorthOptLoop = false; 507 if (Diff[1] == Diff[0]) 508 WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth; 509 else if (Diff[1] > Diff[0]) 510 WorthOptLoop = 511 (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) && 512 (Diff[1] * 8 >= LoopDepth[1].Depth); 513 514 if (!WorthOptLoop) 515 return false; 516 517 ++NumOfLoopCandidate; 518 519 //===--------------------------------------------------------------------===// 520 // Step 3: Check for each CMOV-group-candidate if it worth to be optimized. 521 // Worth-Optimize-Group: 522 // Iff it worths to optimize all CMOV instructions in the group. 523 // 524 // Worth-Optimize-CMOV: 525 // Predicted branch is faster than CMOV by the difference between depth of 526 // condition operand and depth of taken (predicted) value operand. 527 // To be conservative, the gain of such CMOV transformation should cover at 528 // at least 25% of branch-misprediction-penalty. 529 //===--------------------------------------------------------------------===// 530 unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; 531 CmovGroups TempGroups; 532 std::swap(TempGroups, CmovInstGroups); 533 for (auto &Group : TempGroups) { 534 bool WorthOpGroup = true; 535 for (auto *MI : Group) { 536 // Avoid CMOV instruction which value is used as a pointer to load from. 537 // This is another conservative check to avoid converting CMOV instruction 538 // used with tree-search like algorithm, where the branch is unpredicted. 539 auto UIs = MRI->use_instructions(MI->defs().begin()->getReg()); 540 if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) { 541 unsigned Op = UIs.begin()->getOpcode(); 542 if (Op == X86::MOV64rm || Op == X86::MOV32rm) { 543 WorthOpGroup = false; 544 break; 545 } 546 } 547 548 unsigned CondCost = 549 DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth; 550 unsigned ValCost = getDepthOfOptCmov( 551 DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth, 552 DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth); 553 if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) { 554 WorthOpGroup = false; 555 break; 556 } 557 } 558 559 if (WorthOpGroup) 560 CmovInstGroups.push_back(Group); 561 } 562 563 return !CmovInstGroups.empty(); 564 } 565 566 static bool checkEFLAGSLive(MachineInstr *MI) { 567 if (MI->killsRegister(X86::EFLAGS)) 568 return false; 569 570 // The EFLAGS operand of MI might be missing a kill marker. 571 // Figure out whether EFLAGS operand should LIVE after MI instruction. 572 MachineBasicBlock *BB = MI->getParent(); 573 MachineBasicBlock::iterator ItrMI = MI; 574 575 // Scan forward through BB for a use/def of EFLAGS. 576 for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) { 577 if (I->readsRegister(X86::EFLAGS)) 578 return true; 579 if (I->definesRegister(X86::EFLAGS)) 580 return false; 581 } 582 583 // We hit the end of the block, check whether EFLAGS is live into a successor. 584 for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) { 585 if ((*I)->isLiveIn(X86::EFLAGS)) 586 return true; 587 } 588 589 return false; 590 } 591 592 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a 593 /// group of CMOV instructions, which may contain debug instructions in between, 594 /// move all debug instructions to after the last CMOV instruction, making the 595 /// CMOV group consecutive. 596 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) { 597 assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID && 598 "Last instruction in a CMOV group must be a CMOV instruction"); 599 600 SmallVector<MachineInstr *, 2> DBGInstructions; 601 for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) { 602 if (I->isDebugInstr()) 603 DBGInstructions.push_back(&*I); 604 } 605 606 // Splice the debug instruction after the cmov group. 607 MachineBasicBlock *MBB = First->getParent(); 608 for (auto *MI : DBGInstructions) 609 MBB->insertAfter(Last, MI->removeFromParent()); 610 } 611 612 void X86CmovConverterPass::convertCmovInstsToBranches( 613 SmallVectorImpl<MachineInstr *> &Group) const { 614 assert(!Group.empty() && "No CMOV instructions to convert"); 615 ++NumOfOptimizedCmovGroups; 616 617 // If the CMOV group is not packed, e.g., there are debug instructions between 618 // first CMOV and last CMOV, then pack the group and make the CMOV instruction 619 // consecutive by moving the debug instructions to after the last CMOV. 620 packCmovGroup(Group.front(), Group.back()); 621 622 // To convert a CMOVcc instruction, we actually have to insert the diamond 623 // control-flow pattern. The incoming instruction knows the destination vreg 624 // to set, the condition code register to branch on, the true/false values to 625 // select between, and a branch opcode to use. 626 627 // Before 628 // ----- 629 // MBB: 630 // cond = cmp ... 631 // v1 = CMOVge t1, f1, cond 632 // v2 = CMOVlt t2, f2, cond 633 // v3 = CMOVge v1, f3, cond 634 // 635 // After 636 // ----- 637 // MBB: 638 // cond = cmp ... 639 // jge %SinkMBB 640 // 641 // FalseMBB: 642 // jmp %SinkMBB 643 // 644 // SinkMBB: 645 // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB] 646 // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch 647 // ; true-value with false-value 648 // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use 649 // ; previous Phi instruction result 650 651 MachineInstr &MI = *Group.front(); 652 MachineInstr *LastCMOV = Group.back(); 653 DebugLoc DL = MI.getDebugLoc(); 654 655 X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI)); 656 X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); 657 // Potentially swap the condition codes so that any memory operand to a CMOV 658 // is in the *false* position instead of the *true* position. We can invert 659 // any non-memory operand CMOV instructions to cope with this and we ensure 660 // memory operand CMOVs are only included with a single condition code. 661 if (llvm::any_of(Group, [&](MachineInstr *I) { 662 return I->mayLoad() && X86::getCondFromCMov(*I) == CC; 663 })) 664 std::swap(CC, OppCC); 665 666 MachineBasicBlock *MBB = MI.getParent(); 667 MachineFunction::iterator It = ++MBB->getIterator(); 668 MachineFunction *F = MBB->getParent(); 669 const BasicBlock *BB = MBB->getBasicBlock(); 670 671 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB); 672 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB); 673 F->insert(It, FalseMBB); 674 F->insert(It, SinkMBB); 675 676 // If the EFLAGS register isn't dead in the terminator, then claim that it's 677 // live into the sink and copy blocks. 678 if (checkEFLAGSLive(LastCMOV)) { 679 FalseMBB->addLiveIn(X86::EFLAGS); 680 SinkMBB->addLiveIn(X86::EFLAGS); 681 } 682 683 // Transfer the remainder of BB and its successor edges to SinkMBB. 684 SinkMBB->splice(SinkMBB->begin(), MBB, 685 std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end()); 686 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 687 688 // Add the false and sink blocks as its successors. 689 MBB->addSuccessor(FalseMBB); 690 MBB->addSuccessor(SinkMBB); 691 692 // Create the conditional branch instruction. 693 BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC); 694 695 // Add the sink block to the false block successors. 696 FalseMBB->addSuccessor(SinkMBB); 697 698 MachineInstrBuilder MIB; 699 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 700 MachineBasicBlock::iterator MIItEnd = 701 std::next(MachineBasicBlock::iterator(LastCMOV)); 702 MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin(); 703 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 704 705 // First we need to insert an explicit load on the false path for any memory 706 // operand. We also need to potentially do register rewriting here, but it is 707 // simpler as the memory operands are always on the false path so we can 708 // simply take that input, whatever it is. 709 DenseMap<unsigned, unsigned> FalseBBRegRewriteTable; 710 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) { 711 auto &MI = *MIIt++; 712 // Skip any CMOVs in this group which don't load from memory. 713 if (!MI.mayLoad()) { 714 // Remember the false-side register input. 715 Register FalseReg = 716 MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg(); 717 // Walk back through any intermediate cmovs referenced. 718 while (true) { 719 auto FRIt = FalseBBRegRewriteTable.find(FalseReg); 720 if (FRIt == FalseBBRegRewriteTable.end()) 721 break; 722 FalseReg = FRIt->second; 723 } 724 FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg; 725 continue; 726 } 727 728 // The condition must be the *opposite* of the one we've decided to branch 729 // on as the branch will go *around* the load and the load should happen 730 // when the CMOV condition is false. 731 assert(X86::getCondFromCMov(MI) == OppCC && 732 "Can only handle memory-operand cmov instructions with a condition " 733 "opposite to the selected branch direction."); 734 735 // The goal is to rewrite the cmov from: 736 // 737 // MBB: 738 // %A = CMOVcc %B (tied), (mem) 739 // 740 // to 741 // 742 // MBB: 743 // %A = CMOVcc %B (tied), %C 744 // FalseMBB: 745 // %C = MOV (mem) 746 // 747 // Which will allow the next loop to rewrite the CMOV in terms of a PHI: 748 // 749 // MBB: 750 // JMP!cc SinkMBB 751 // FalseMBB: 752 // %C = MOV (mem) 753 // SinkMBB: 754 // %A = PHI [ %C, FalseMBB ], [ %B, MBB] 755 756 // Get a fresh register to use as the destination of the MOV. 757 const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg()); 758 Register TmpReg = MRI->createVirtualRegister(RC); 759 760 SmallVector<MachineInstr *, 4> NewMIs; 761 bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg, 762 /*UnfoldLoad*/ true, 763 /*UnfoldStore*/ false, NewMIs); 764 (void)Unfolded; 765 assert(Unfolded && "Should never fail to unfold a loading cmov!"); 766 767 // Move the new CMOV to just before the old one and reset any impacted 768 // iterator. 769 auto *NewCMOV = NewMIs.pop_back_val(); 770 assert(X86::getCondFromCMov(*NewCMOV) == OppCC && 771 "Last new instruction isn't the expected CMOV!"); 772 LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump()); 773 MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV); 774 if (&*MIItBegin == &MI) 775 MIItBegin = MachineBasicBlock::iterator(NewCMOV); 776 777 // Sink whatever instructions were needed to produce the unfolded operand 778 // into the false block. 779 for (auto *NewMI : NewMIs) { 780 LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump()); 781 FalseMBB->insert(FalseInsertionPoint, NewMI); 782 // Re-map any operands that are from other cmovs to the inputs for this block. 783 for (auto &MOp : NewMI->uses()) { 784 if (!MOp.isReg()) 785 continue; 786 auto It = FalseBBRegRewriteTable.find(MOp.getReg()); 787 if (It == FalseBBRegRewriteTable.end()) 788 continue; 789 790 MOp.setReg(It->second); 791 // This might have been a kill when it referenced the cmov result, but 792 // it won't necessarily be once rewritten. 793 // FIXME: We could potentially improve this by tracking whether the 794 // operand to the cmov was also a kill, and then skipping the PHI node 795 // construction below. 796 MOp.setIsKill(false); 797 } 798 } 799 MBB->erase(MachineBasicBlock::iterator(MI), 800 std::next(MachineBasicBlock::iterator(MI))); 801 802 // Add this PHI to the rewrite table. 803 FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg; 804 } 805 806 // As we are creating the PHIs, we have to be careful if there is more than 807 // one. Later CMOVs may reference the results of earlier CMOVs, but later 808 // PHIs have to reference the individual true/false inputs from earlier PHIs. 809 // That also means that PHI construction must work forward from earlier to 810 // later, and that the code must maintain a mapping from earlier PHI's 811 // destination registers, and the registers that went into the PHI. 812 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 813 814 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 815 Register DestReg = MIIt->getOperand(0).getReg(); 816 Register Op1Reg = MIIt->getOperand(1).getReg(); 817 Register Op2Reg = MIIt->getOperand(2).getReg(); 818 819 // If this CMOV we are processing is the opposite condition from the jump we 820 // generated, then we have to swap the operands for the PHI that is going to 821 // be generated. 822 if (X86::getCondFromCMov(*MIIt) == OppCC) 823 std::swap(Op1Reg, Op2Reg); 824 825 auto Op1Itr = RegRewriteTable.find(Op1Reg); 826 if (Op1Itr != RegRewriteTable.end()) 827 Op1Reg = Op1Itr->second.first; 828 829 auto Op2Itr = RegRewriteTable.find(Op2Reg); 830 if (Op2Itr != RegRewriteTable.end()) 831 Op2Reg = Op2Itr->second.second; 832 833 // SinkMBB: 834 // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ] 835 // ... 836 MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) 837 .addReg(Op1Reg) 838 .addMBB(FalseMBB) 839 .addReg(Op2Reg) 840 .addMBB(MBB); 841 (void)MIB; 842 LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump()); 843 LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump()); 844 845 // Add this PHI to the rewrite table. 846 RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); 847 } 848 849 // Now remove the CMOV(s). 850 MBB->erase(MIItBegin, MIItEnd); 851 } 852 853 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", 854 false, false) 855 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 856 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", 857 false, false) 858 859 FunctionPass *llvm::createX86CmovConverterPass() { 860 return new X86CmovConverterPass(); 861 } 862