1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements a pass that converts X86 cmov instructions into 11 /// branches when profitable. This pass is conservative. It transforms if and 12 /// only if it can guarantee a gain with high confidence. 13 /// 14 /// Thus, the optimization applies under the following conditions: 15 /// 1. Consider as candidates only CMOVs in innermost loops (assume that 16 /// most hotspots are represented by these loops). 17 /// 2. Given a group of CMOV instructions that are using the same EFLAGS def 18 /// instruction: 19 /// a. Consider them as candidates only if all have the same code condition 20 /// or the opposite one to prevent generating more than one conditional 21 /// jump per EFLAGS def instruction. 22 /// b. Consider them as candidates only if all are profitable to be 23 /// converted (assume that one bad conversion may cause a degradation). 24 /// 3. Apply conversion only for loops that are found profitable and only for 25 /// CMOV candidates that were found profitable. 26 /// a. A loop is considered profitable only if conversion will reduce its 27 /// depth cost by some threshold. 28 /// b. CMOV is considered profitable if the cost of its condition is higher 29 /// than the average cost of its true-value and false-value by 25% of 30 /// branch-misprediction-penalty. This assures no degradation even with 31 /// 25% branch misprediction. 32 /// 33 /// Note: This pass is assumed to run on SSA machine code. 34 // 35 //===----------------------------------------------------------------------===// 36 // 37 // External interfaces: 38 // FunctionPass *llvm::createX86CmovConverterPass(); 39 // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF); 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "X86.h" 44 #include "X86InstrInfo.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/STLExtras.h" 48 #include "llvm/ADT/SmallPtrSet.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/CodeGen/MachineBasicBlock.h" 52 #include "llvm/CodeGen/MachineFunction.h" 53 #include "llvm/CodeGen/MachineFunctionPass.h" 54 #include "llvm/CodeGen/MachineInstr.h" 55 #include "llvm/CodeGen/MachineInstrBuilder.h" 56 #include "llvm/CodeGen/MachineLoopInfo.h" 57 #include "llvm/CodeGen/MachineOperand.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSchedule.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/MC/MCSchedule.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "x86-cmov-conversion" 78 79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups"); 80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates"); 81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops"); 82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups"); 83 84 // This internal switch can be used to turn off the cmov/branch optimization. 85 static cl::opt<bool> 86 EnableCmovConverter("x86-cmov-converter", 87 cl::desc("Enable the X86 cmov-to-branch optimization."), 88 cl::init(true), cl::Hidden); 89 90 static cl::opt<unsigned> 91 GainCycleThreshold("x86-cmov-converter-threshold", 92 cl::desc("Minimum gain per loop (in cycles) threshold."), 93 cl::init(4), cl::Hidden); 94 95 static cl::opt<bool> ForceMemOperand( 96 "x86-cmov-converter-force-mem-operand", 97 cl::desc("Convert cmovs to branches whenever they have memory operands."), 98 cl::init(true), cl::Hidden); 99 100 static cl::opt<bool> ForceAll( 101 "x86-cmov-converter-force-all", 102 cl::desc("Convert all cmovs to branches."), 103 cl::init(false), cl::Hidden); 104 105 namespace { 106 107 /// Converts X86 cmov instructions into branches when profitable. 108 class X86CmovConverterPass : public MachineFunctionPass { 109 public: 110 X86CmovConverterPass() : MachineFunctionPass(ID) { } 111 112 StringRef getPassName() const override { return "X86 cmov Conversion"; } 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 void getAnalysisUsage(AnalysisUsage &AU) const override; 115 116 /// Pass identification, replacement for typeid. 117 static char ID; 118 119 private: 120 MachineRegisterInfo *MRI = nullptr; 121 const TargetInstrInfo *TII = nullptr; 122 const TargetRegisterInfo *TRI = nullptr; 123 MachineLoopInfo *MLI = nullptr; 124 TargetSchedModel TSchedModel; 125 126 /// List of consecutive CMOV instructions. 127 using CmovGroup = SmallVector<MachineInstr *, 2>; 128 using CmovGroups = SmallVector<CmovGroup, 2>; 129 130 /// Collect all CMOV-group-candidates in \p CurrLoop and update \p 131 /// CmovInstGroups accordingly. 132 /// 133 /// \param Blocks List of blocks to process. 134 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. 135 /// \returns true iff it found any CMOV-group-candidate. 136 bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, 137 CmovGroups &CmovInstGroups, 138 bool IncludeLoads = false); 139 140 /// Check if it is profitable to transform each CMOV-group-candidates into 141 /// branch. Remove all groups that are not profitable from \p CmovInstGroups. 142 /// 143 /// \param Blocks List of blocks to process. 144 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. 145 /// \returns true iff any CMOV-group-candidate remain. 146 bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, 147 CmovGroups &CmovInstGroups); 148 149 /// Convert the given list of consecutive CMOV instructions into a branch. 150 /// 151 /// \param Group Consecutive CMOV instructions to be converted into branch. 152 void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const; 153 }; 154 155 } // end anonymous namespace 156 157 char X86CmovConverterPass::ID = 0; 158 159 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const { 160 MachineFunctionPass::getAnalysisUsage(AU); 161 AU.addRequired<MachineLoopInfo>(); 162 } 163 164 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) { 165 if (skipFunction(MF.getFunction())) 166 return false; 167 if (!EnableCmovConverter) 168 return false; 169 170 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() 171 << "**********\n"); 172 173 bool Changed = false; 174 MLI = &getAnalysis<MachineLoopInfo>(); 175 const TargetSubtargetInfo &STI = MF.getSubtarget(); 176 MRI = &MF.getRegInfo(); 177 TII = STI.getInstrInfo(); 178 TRI = STI.getRegisterInfo(); 179 TSchedModel.init(&STI); 180 181 // Before we handle the more subtle cases of register-register CMOVs inside 182 // of potentially hot loops, we want to quickly remove all CMOVs (ForceAll) or 183 // the ones with a memory operand (ForceMemOperand option). The latter CMOV 184 // will risk a stall waiting for the load to complete that speculative 185 // execution behind a branch is better suited to handle on modern x86 chips. 186 if (ForceMemOperand || ForceAll) { 187 CmovGroups AllCmovGroups; 188 SmallVector<MachineBasicBlock *, 4> Blocks; 189 for (auto &MBB : MF) 190 Blocks.push_back(&MBB); 191 if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) { 192 for (auto &Group : AllCmovGroups) { 193 // Skip any group that doesn't do at least one memory operand cmov. 194 if (ForceMemOperand && !ForceAll && 195 llvm::none_of(Group, [&](MachineInstr *I) { return I->mayLoad(); })) 196 continue; 197 198 // For CMOV groups which we can rewrite and which contain a memory load, 199 // always rewrite them. On x86, a CMOV will dramatically amplify any 200 // memory latency by blocking speculative execution. 201 Changed = true; 202 convertCmovInstsToBranches(Group); 203 } 204 } 205 // Early return as ForceAll converts all CmovGroups. 206 if (ForceAll) 207 return Changed; 208 } 209 210 //===--------------------------------------------------------------------===// 211 // Register-operand Conversion Algorithm 212 // --------- 213 // For each innermost loop 214 // collectCmovCandidates() { 215 // Find all CMOV-group-candidates. 216 // } 217 // 218 // checkForProfitableCmovCandidates() { 219 // * Calculate both loop-depth and optimized-loop-depth. 220 // * Use these depth to check for loop transformation profitability. 221 // * Check for CMOV-group-candidate transformation profitability. 222 // } 223 // 224 // For each profitable CMOV-group-candidate 225 // convertCmovInstsToBranches() { 226 // * Create FalseBB, SinkBB, Conditional branch to SinkBB. 227 // * Replace each CMOV instruction with a PHI instruction in SinkBB. 228 // } 229 // 230 // Note: For more details, see each function description. 231 //===--------------------------------------------------------------------===// 232 233 // Build up the loops in pre-order. 234 SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end()); 235 // Note that we need to check size on each iteration as we accumulate child 236 // loops. 237 for (int i = 0; i < (int)Loops.size(); ++i) 238 for (MachineLoop *Child : Loops[i]->getSubLoops()) 239 Loops.push_back(Child); 240 241 for (MachineLoop *CurrLoop : Loops) { 242 // Optimize only innermost loops. 243 if (!CurrLoop->getSubLoops().empty()) 244 continue; 245 246 // List of consecutive CMOV instructions to be processed. 247 CmovGroups CmovInstGroups; 248 249 if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups)) 250 continue; 251 252 if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(), 253 CmovInstGroups)) 254 continue; 255 256 Changed = true; 257 for (auto &Group : CmovInstGroups) 258 convertCmovInstsToBranches(Group); 259 } 260 261 return Changed; 262 } 263 264 bool X86CmovConverterPass::collectCmovCandidates( 265 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups, 266 bool IncludeLoads) { 267 //===--------------------------------------------------------------------===// 268 // Collect all CMOV-group-candidates and add them into CmovInstGroups. 269 // 270 // CMOV-group: 271 // CMOV instructions, in same MBB, that uses same EFLAGS def instruction. 272 // 273 // CMOV-group-candidate: 274 // CMOV-group where all the CMOV instructions are 275 // 1. consecutive. 276 // 2. have same condition code or opposite one. 277 // 3. have only operand registers (X86::CMOVrr). 278 //===--------------------------------------------------------------------===// 279 // List of possible improvement (TODO's): 280 // -------------------------------------- 281 // TODO: Add support for X86::CMOVrm instructions. 282 // TODO: Add support for X86::SETcc instructions. 283 // TODO: Add support for CMOV-groups with non consecutive CMOV instructions. 284 //===--------------------------------------------------------------------===// 285 286 // Current processed CMOV-Group. 287 CmovGroup Group; 288 for (auto *MBB : Blocks) { 289 Group.clear(); 290 // Condition code of first CMOV instruction current processed range and its 291 // opposite condition code. 292 X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID, 293 MemOpCC = X86::COND_INVALID; 294 // Indicator of a non CMOVrr instruction in the current processed range. 295 bool FoundNonCMOVInst = false; 296 // Indicator for current processed CMOV-group if it should be skipped. 297 bool SkipGroup = false; 298 299 for (auto &I : *MBB) { 300 // Skip debug instructions. 301 if (I.isDebugInstr()) 302 continue; 303 X86::CondCode CC = X86::getCondFromCMov(I); 304 // Check if we found a X86::CMOVrr instruction. 305 if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) { 306 if (Group.empty()) { 307 // We found first CMOV in the range, reset flags. 308 FirstCC = CC; 309 FirstOppCC = X86::GetOppositeBranchCondition(CC); 310 // Clear out the prior group's memory operand CC. 311 MemOpCC = X86::COND_INVALID; 312 FoundNonCMOVInst = false; 313 SkipGroup = false; 314 } 315 Group.push_back(&I); 316 // Check if it is a non-consecutive CMOV instruction or it has different 317 // condition code than FirstCC or FirstOppCC. 318 if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC)) 319 // Mark the SKipGroup indicator to skip current processed CMOV-Group. 320 SkipGroup = true; 321 if (I.mayLoad()) { 322 if (MemOpCC == X86::COND_INVALID) 323 // The first memory operand CMOV. 324 MemOpCC = CC; 325 else if (CC != MemOpCC) 326 // Can't handle mixed conditions with memory operands. 327 SkipGroup = true; 328 } 329 // Check if we were relying on zero-extending behavior of the CMOV. 330 if (!SkipGroup && 331 llvm::any_of( 332 MRI->use_nodbg_instructions(I.defs().begin()->getReg()), 333 [&](MachineInstr &UseI) { 334 return UseI.getOpcode() == X86::SUBREG_TO_REG; 335 })) 336 // FIXME: We should model the cost of using an explicit MOV to handle 337 // the zero-extension rather than just refusing to handle this. 338 SkipGroup = true; 339 continue; 340 } 341 // If Group is empty, keep looking for first CMOV in the range. 342 if (Group.empty()) 343 continue; 344 345 // We found a non X86::CMOVrr instruction. 346 FoundNonCMOVInst = true; 347 // Check if this instruction define EFLAGS, to determine end of processed 348 // range, as there would be no more instructions using current EFLAGS def. 349 if (I.definesRegister(X86::EFLAGS)) { 350 // Check if current processed CMOV-group should not be skipped and add 351 // it as a CMOV-group-candidate. 352 if (!SkipGroup) 353 CmovInstGroups.push_back(Group); 354 else 355 ++NumOfSkippedCmovGroups; 356 Group.clear(); 357 } 358 } 359 // End of basic block is considered end of range, check if current processed 360 // CMOV-group should not be skipped and add it as a CMOV-group-candidate. 361 if (Group.empty()) 362 continue; 363 if (!SkipGroup) 364 CmovInstGroups.push_back(Group); 365 else 366 ++NumOfSkippedCmovGroups; 367 } 368 369 NumOfCmovGroupCandidate += CmovInstGroups.size(); 370 return !CmovInstGroups.empty(); 371 } 372 373 /// \returns Depth of CMOV instruction as if it was converted into branch. 374 /// \param TrueOpDepth depth cost of CMOV true value operand. 375 /// \param FalseOpDepth depth cost of CMOV false value operand. 376 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) { 377 // The depth of the result after branch conversion is 378 // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability. 379 // As we have no info about branch weight, we assume 75% for one and 25% for 380 // the other, and pick the result with the largest resulting depth. 381 return std::max( 382 divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4), 383 divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4)); 384 } 385 386 bool X86CmovConverterPass::checkForProfitableCmovCandidates( 387 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) { 388 struct DepthInfo { 389 /// Depth of original loop. 390 unsigned Depth; 391 /// Depth of optimized loop. 392 unsigned OptDepth; 393 }; 394 /// Number of loop iterations to calculate depth for ?! 395 static const unsigned LoopIterations = 2; 396 DenseMap<MachineInstr *, DepthInfo> DepthMap; 397 DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}}; 398 enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 }; 399 /// For each register type maps the register to its last def instruction. 400 DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum]; 401 /// Maps register operand to its def instruction, which can be nullptr if it 402 /// is unknown (e.g., operand is defined outside the loop). 403 DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap; 404 405 // Set depth of unknown instruction (i.e., nullptr) to zero. 406 DepthMap[nullptr] = {0, 0}; 407 408 SmallPtrSet<MachineInstr *, 4> CmovInstructions; 409 for (auto &Group : CmovInstGroups) 410 CmovInstructions.insert(Group.begin(), Group.end()); 411 412 //===--------------------------------------------------------------------===// 413 // Step 1: Calculate instruction depth and loop depth. 414 // Optimized-Loop: 415 // loop with CMOV-group-candidates converted into branches. 416 // 417 // Instruction-Depth: 418 // instruction latency + max operand depth. 419 // * For CMOV instruction in optimized loop the depth is calculated as: 420 // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth) 421 // TODO: Find a better way to estimate the latency of the branch instruction 422 // rather than using the CMOV latency. 423 // 424 // Loop-Depth: 425 // max instruction depth of all instructions in the loop. 426 // Note: instruction with max depth represents the critical-path in the loop. 427 // 428 // Loop-Depth[i]: 429 // Loop-Depth calculated for first `i` iterations. 430 // Note: it is enough to calculate depth for up to two iterations. 431 // 432 // Depth-Diff[i]: 433 // Number of cycles saved in first 'i` iterations by optimizing the loop. 434 //===--------------------------------------------------------------------===// 435 for (unsigned I = 0; I < LoopIterations; ++I) { 436 DepthInfo &MaxDepth = LoopDepth[I]; 437 for (auto *MBB : Blocks) { 438 // Clear physical registers Def map. 439 RegDefMaps[PhyRegType].clear(); 440 for (MachineInstr &MI : *MBB) { 441 // Skip debug instructions. 442 if (MI.isDebugInstr()) 443 continue; 444 unsigned MIDepth = 0; 445 unsigned MIDepthOpt = 0; 446 bool IsCMOV = CmovInstructions.count(&MI); 447 for (auto &MO : MI.uses()) { 448 // Checks for "isUse()" as "uses()" returns also implicit definitions. 449 if (!MO.isReg() || !MO.isUse()) 450 continue; 451 Register Reg = MO.getReg(); 452 auto &RDM = RegDefMaps[Reg.isVirtual()]; 453 if (MachineInstr *DefMI = RDM.lookup(Reg)) { 454 OperandToDefMap[&MO] = DefMI; 455 DepthInfo Info = DepthMap.lookup(DefMI); 456 MIDepth = std::max(MIDepth, Info.Depth); 457 if (!IsCMOV) 458 MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth); 459 } 460 } 461 462 if (IsCMOV) 463 MIDepthOpt = getDepthOfOptCmov( 464 DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth, 465 DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth); 466 467 // Iterates over all operands to handle implicit definitions as well. 468 for (auto &MO : MI.operands()) { 469 if (!MO.isReg() || !MO.isDef()) 470 continue; 471 Register Reg = MO.getReg(); 472 RegDefMaps[Reg.isVirtual()][Reg] = &MI; 473 } 474 475 unsigned Latency = TSchedModel.computeInstrLatency(&MI); 476 DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency}; 477 MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth); 478 MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt); 479 } 480 } 481 } 482 483 unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth, 484 LoopDepth[1].Depth - LoopDepth[1].OptDepth}; 485 486 //===--------------------------------------------------------------------===// 487 // Step 2: Check if Loop worth to be optimized. 488 // Worth-Optimize-Loop: 489 // case 1: Diff[1] == Diff[0] 490 // Critical-path is iteration independent - there is no dependency 491 // of critical-path instructions on critical-path instructions of 492 // previous iteration. 493 // Thus, it is enough to check gain percent of 1st iteration - 494 // To be conservative, the optimized loop need to have a depth of 495 // 12.5% cycles less than original loop, per iteration. 496 // 497 // case 2: Diff[1] > Diff[0] 498 // Critical-path is iteration dependent - there is dependency of 499 // critical-path instructions on critical-path instructions of 500 // previous iteration. 501 // Thus, check the gain percent of the 2nd iteration (similar to the 502 // previous case), but it is also required to check the gradient of 503 // the gain - the change in Depth-Diff compared to the change in 504 // Loop-Depth between 1st and 2nd iterations. 505 // To be conservative, the gradient need to be at least 50%. 506 // 507 // In addition, In order not to optimize loops with very small gain, the 508 // gain (in cycles) after 2nd iteration should not be less than a given 509 // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply. 510 // 511 // If loop is not worth optimizing, remove all CMOV-group-candidates. 512 //===--------------------------------------------------------------------===// 513 if (Diff[1] < GainCycleThreshold) 514 return false; 515 516 bool WorthOptLoop = false; 517 if (Diff[1] == Diff[0]) 518 WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth; 519 else if (Diff[1] > Diff[0]) 520 WorthOptLoop = 521 (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) && 522 (Diff[1] * 8 >= LoopDepth[1].Depth); 523 524 if (!WorthOptLoop) 525 return false; 526 527 ++NumOfLoopCandidate; 528 529 //===--------------------------------------------------------------------===// 530 // Step 3: Check for each CMOV-group-candidate if it worth to be optimized. 531 // Worth-Optimize-Group: 532 // Iff it is worth to optimize all CMOV instructions in the group. 533 // 534 // Worth-Optimize-CMOV: 535 // Predicted branch is faster than CMOV by the difference between depth of 536 // condition operand and depth of taken (predicted) value operand. 537 // To be conservative, the gain of such CMOV transformation should cover at 538 // at least 25% of branch-misprediction-penalty. 539 //===--------------------------------------------------------------------===// 540 unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; 541 CmovGroups TempGroups; 542 std::swap(TempGroups, CmovInstGroups); 543 for (auto &Group : TempGroups) { 544 bool WorthOpGroup = true; 545 for (auto *MI : Group) { 546 // Avoid CMOV instruction which value is used as a pointer to load from. 547 // This is another conservative check to avoid converting CMOV instruction 548 // used with tree-search like algorithm, where the branch is unpredicted. 549 auto UIs = MRI->use_instructions(MI->defs().begin()->getReg()); 550 if (!UIs.empty() && ++UIs.begin() == UIs.end()) { 551 unsigned Op = UIs.begin()->getOpcode(); 552 if (Op == X86::MOV64rm || Op == X86::MOV32rm) { 553 WorthOpGroup = false; 554 break; 555 } 556 } 557 558 unsigned CondCost = 559 DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth; 560 unsigned ValCost = getDepthOfOptCmov( 561 DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth, 562 DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth); 563 if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) { 564 WorthOpGroup = false; 565 break; 566 } 567 } 568 569 if (WorthOpGroup) 570 CmovInstGroups.push_back(Group); 571 } 572 573 return !CmovInstGroups.empty(); 574 } 575 576 static bool checkEFLAGSLive(MachineInstr *MI) { 577 if (MI->killsRegister(X86::EFLAGS)) 578 return false; 579 580 // The EFLAGS operand of MI might be missing a kill marker. 581 // Figure out whether EFLAGS operand should LIVE after MI instruction. 582 MachineBasicBlock *BB = MI->getParent(); 583 MachineBasicBlock::iterator ItrMI = MI; 584 585 // Scan forward through BB for a use/def of EFLAGS. 586 for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) { 587 if (I->readsRegister(X86::EFLAGS)) 588 return true; 589 if (I->definesRegister(X86::EFLAGS)) 590 return false; 591 } 592 593 // We hit the end of the block, check whether EFLAGS is live into a successor. 594 for (MachineBasicBlock *Succ : BB->successors()) 595 if (Succ->isLiveIn(X86::EFLAGS)) 596 return true; 597 598 return false; 599 } 600 601 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a 602 /// group of CMOV instructions, which may contain debug instructions in between, 603 /// move all debug instructions to after the last CMOV instruction, making the 604 /// CMOV group consecutive. 605 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) { 606 assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID && 607 "Last instruction in a CMOV group must be a CMOV instruction"); 608 609 SmallVector<MachineInstr *, 2> DBGInstructions; 610 for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) { 611 if (I->isDebugInstr()) 612 DBGInstructions.push_back(&*I); 613 } 614 615 // Splice the debug instruction after the cmov group. 616 MachineBasicBlock *MBB = First->getParent(); 617 for (auto *MI : DBGInstructions) 618 MBB->insertAfter(Last, MI->removeFromParent()); 619 } 620 621 void X86CmovConverterPass::convertCmovInstsToBranches( 622 SmallVectorImpl<MachineInstr *> &Group) const { 623 assert(!Group.empty() && "No CMOV instructions to convert"); 624 ++NumOfOptimizedCmovGroups; 625 626 // If the CMOV group is not packed, e.g., there are debug instructions between 627 // first CMOV and last CMOV, then pack the group and make the CMOV instruction 628 // consecutive by moving the debug instructions to after the last CMOV. 629 packCmovGroup(Group.front(), Group.back()); 630 631 // To convert a CMOVcc instruction, we actually have to insert the diamond 632 // control-flow pattern. The incoming instruction knows the destination vreg 633 // to set, the condition code register to branch on, the true/false values to 634 // select between, and a branch opcode to use. 635 636 // Before 637 // ----- 638 // MBB: 639 // cond = cmp ... 640 // v1 = CMOVge t1, f1, cond 641 // v2 = CMOVlt t2, f2, cond 642 // v3 = CMOVge v1, f3, cond 643 // 644 // After 645 // ----- 646 // MBB: 647 // cond = cmp ... 648 // jge %SinkMBB 649 // 650 // FalseMBB: 651 // jmp %SinkMBB 652 // 653 // SinkMBB: 654 // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB] 655 // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch 656 // ; true-value with false-value 657 // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use 658 // ; previous Phi instruction result 659 660 MachineInstr &MI = *Group.front(); 661 MachineInstr *LastCMOV = Group.back(); 662 DebugLoc DL = MI.getDebugLoc(); 663 664 X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI)); 665 X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); 666 // Potentially swap the condition codes so that any memory operand to a CMOV 667 // is in the *false* position instead of the *true* position. We can invert 668 // any non-memory operand CMOV instructions to cope with this and we ensure 669 // memory operand CMOVs are only included with a single condition code. 670 if (llvm::any_of(Group, [&](MachineInstr *I) { 671 return I->mayLoad() && X86::getCondFromCMov(*I) == CC; 672 })) 673 std::swap(CC, OppCC); 674 675 MachineBasicBlock *MBB = MI.getParent(); 676 MachineFunction::iterator It = ++MBB->getIterator(); 677 MachineFunction *F = MBB->getParent(); 678 const BasicBlock *BB = MBB->getBasicBlock(); 679 680 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB); 681 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB); 682 F->insert(It, FalseMBB); 683 F->insert(It, SinkMBB); 684 685 // If the EFLAGS register isn't dead in the terminator, then claim that it's 686 // live into the sink and copy blocks. 687 if (checkEFLAGSLive(LastCMOV)) { 688 FalseMBB->addLiveIn(X86::EFLAGS); 689 SinkMBB->addLiveIn(X86::EFLAGS); 690 } 691 692 // Transfer the remainder of BB and its successor edges to SinkMBB. 693 SinkMBB->splice(SinkMBB->begin(), MBB, 694 std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end()); 695 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 696 697 // Add the false and sink blocks as its successors. 698 MBB->addSuccessor(FalseMBB); 699 MBB->addSuccessor(SinkMBB); 700 701 // Create the conditional branch instruction. 702 BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC); 703 704 // Add the sink block to the false block successors. 705 FalseMBB->addSuccessor(SinkMBB); 706 707 MachineInstrBuilder MIB; 708 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 709 MachineBasicBlock::iterator MIItEnd = 710 std::next(MachineBasicBlock::iterator(LastCMOV)); 711 MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin(); 712 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 713 714 // First we need to insert an explicit load on the false path for any memory 715 // operand. We also need to potentially do register rewriting here, but it is 716 // simpler as the memory operands are always on the false path so we can 717 // simply take that input, whatever it is. 718 DenseMap<unsigned, unsigned> FalseBBRegRewriteTable; 719 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) { 720 auto &MI = *MIIt++; 721 // Skip any CMOVs in this group which don't load from memory. 722 if (!MI.mayLoad()) { 723 // Remember the false-side register input. 724 Register FalseReg = 725 MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg(); 726 // Walk back through any intermediate cmovs referenced. 727 while (true) { 728 auto FRIt = FalseBBRegRewriteTable.find(FalseReg); 729 if (FRIt == FalseBBRegRewriteTable.end()) 730 break; 731 FalseReg = FRIt->second; 732 } 733 FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg; 734 continue; 735 } 736 737 // The condition must be the *opposite* of the one we've decided to branch 738 // on as the branch will go *around* the load and the load should happen 739 // when the CMOV condition is false. 740 assert(X86::getCondFromCMov(MI) == OppCC && 741 "Can only handle memory-operand cmov instructions with a condition " 742 "opposite to the selected branch direction."); 743 744 // The goal is to rewrite the cmov from: 745 // 746 // MBB: 747 // %A = CMOVcc %B (tied), (mem) 748 // 749 // to 750 // 751 // MBB: 752 // %A = CMOVcc %B (tied), %C 753 // FalseMBB: 754 // %C = MOV (mem) 755 // 756 // Which will allow the next loop to rewrite the CMOV in terms of a PHI: 757 // 758 // MBB: 759 // JMP!cc SinkMBB 760 // FalseMBB: 761 // %C = MOV (mem) 762 // SinkMBB: 763 // %A = PHI [ %C, FalseMBB ], [ %B, MBB] 764 765 // Get a fresh register to use as the destination of the MOV. 766 const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg()); 767 Register TmpReg = MRI->createVirtualRegister(RC); 768 769 SmallVector<MachineInstr *, 4> NewMIs; 770 bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg, 771 /*UnfoldLoad*/ true, 772 /*UnfoldStore*/ false, NewMIs); 773 (void)Unfolded; 774 assert(Unfolded && "Should never fail to unfold a loading cmov!"); 775 776 // Move the new CMOV to just before the old one and reset any impacted 777 // iterator. 778 auto *NewCMOV = NewMIs.pop_back_val(); 779 assert(X86::getCondFromCMov(*NewCMOV) == OppCC && 780 "Last new instruction isn't the expected CMOV!"); 781 LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump()); 782 MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV); 783 if (&*MIItBegin == &MI) 784 MIItBegin = MachineBasicBlock::iterator(NewCMOV); 785 786 // Sink whatever instructions were needed to produce the unfolded operand 787 // into the false block. 788 for (auto *NewMI : NewMIs) { 789 LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump()); 790 FalseMBB->insert(FalseInsertionPoint, NewMI); 791 // Re-map any operands that are from other cmovs to the inputs for this block. 792 for (auto &MOp : NewMI->uses()) { 793 if (!MOp.isReg()) 794 continue; 795 auto It = FalseBBRegRewriteTable.find(MOp.getReg()); 796 if (It == FalseBBRegRewriteTable.end()) 797 continue; 798 799 MOp.setReg(It->second); 800 // This might have been a kill when it referenced the cmov result, but 801 // it won't necessarily be once rewritten. 802 // FIXME: We could potentially improve this by tracking whether the 803 // operand to the cmov was also a kill, and then skipping the PHI node 804 // construction below. 805 MOp.setIsKill(false); 806 } 807 } 808 MBB->erase(&MI); 809 810 // Add this PHI to the rewrite table. 811 FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg; 812 } 813 814 // As we are creating the PHIs, we have to be careful if there is more than 815 // one. Later CMOVs may reference the results of earlier CMOVs, but later 816 // PHIs have to reference the individual true/false inputs from earlier PHIs. 817 // That also means that PHI construction must work forward from earlier to 818 // later, and that the code must maintain a mapping from earlier PHI's 819 // destination registers, and the registers that went into the PHI. 820 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 821 822 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 823 Register DestReg = MIIt->getOperand(0).getReg(); 824 Register Op1Reg = MIIt->getOperand(1).getReg(); 825 Register Op2Reg = MIIt->getOperand(2).getReg(); 826 827 // If this CMOV we are processing is the opposite condition from the jump we 828 // generated, then we have to swap the operands for the PHI that is going to 829 // be generated. 830 if (X86::getCondFromCMov(*MIIt) == OppCC) 831 std::swap(Op1Reg, Op2Reg); 832 833 auto Op1Itr = RegRewriteTable.find(Op1Reg); 834 if (Op1Itr != RegRewriteTable.end()) 835 Op1Reg = Op1Itr->second.first; 836 837 auto Op2Itr = RegRewriteTable.find(Op2Reg); 838 if (Op2Itr != RegRewriteTable.end()) 839 Op2Reg = Op2Itr->second.second; 840 841 // SinkMBB: 842 // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ] 843 // ... 844 MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) 845 .addReg(Op1Reg) 846 .addMBB(FalseMBB) 847 .addReg(Op2Reg) 848 .addMBB(MBB); 849 (void)MIB; 850 LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump()); 851 LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump()); 852 853 // Add this PHI to the rewrite table. 854 RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); 855 } 856 857 // Now remove the CMOV(s). 858 MBB->erase(MIItBegin, MIItEnd); 859 860 // Add new basic blocks to MachineLoopInfo. 861 if (MachineLoop *L = MLI->getLoopFor(MBB)) { 862 L->addBasicBlockToLoop(FalseMBB, MLI->getBase()); 863 L->addBasicBlockToLoop(SinkMBB, MLI->getBase()); 864 } 865 } 866 867 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", 868 false, false) 869 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 870 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", 871 false, false) 872 873 FunctionPass *llvm::createX86CmovConverterPass() { 874 return new X86CmovConverterPass(); 875 } 876