xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CmovConversion.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
13 ///
14 /// Thus, the optimization applies under the following conditions:
15 ///   1. Consider as candidates only CMOVs in innermost loops (assume that
16 ///      most hotspots are represented by these loops).
17 ///   2. Given a group of CMOV instructions that are using the same EFLAGS def
18 ///      instruction:
19 ///      a. Consider them as candidates only if all have the same code condition
20 ///         or the opposite one to prevent generating more than one conditional
21 ///         jump per EFLAGS def instruction.
22 ///      b. Consider them as candidates only if all are profitable to be
23 ///         converted (assume that one bad conversion may cause a degradation).
24 ///   3. Apply conversion only for loops that are found profitable and only for
25 ///      CMOV candidates that were found profitable.
26 ///      a. A loop is considered profitable only if conversion will reduce its
27 ///         depth cost by some threshold.
28 ///      b. CMOV is considered profitable if the cost of its condition is higher
29 ///         than the average cost of its true-value and false-value by 25% of
30 ///         branch-misprediction-penalty. This assures no degradation even with
31 ///         25% branch misprediction.
32 ///
33 /// Note: This pass is assumed to run on SSA machine code.
34 //
35 //===----------------------------------------------------------------------===//
36 //
37 //  External interfaces:
38 //      FunctionPass *llvm::createX86CmovConverterPass();
39 //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "X86.h"
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/CGPassBuilderOption.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <iterator>
74 #include <utility>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "x86-cmov-conversion"
79 
80 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
81 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
82 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
83 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
84 
85 // This internal switch can be used to turn off the cmov/branch optimization.
86 static cl::opt<bool>
87     EnableCmovConverter("x86-cmov-converter",
88                         cl::desc("Enable the X86 cmov-to-branch optimization."),
89                         cl::init(true), cl::Hidden);
90 
91 static cl::opt<unsigned>
92     GainCycleThreshold("x86-cmov-converter-threshold",
93                        cl::desc("Minimum gain per loop (in cycles) threshold."),
94                        cl::init(4), cl::Hidden);
95 
96 static cl::opt<bool> ForceMemOperand(
97     "x86-cmov-converter-force-mem-operand",
98     cl::desc("Convert cmovs to branches whenever they have memory operands."),
99     cl::init(true), cl::Hidden);
100 
101 static cl::opt<bool> ForceAll(
102     "x86-cmov-converter-force-all",
103     cl::desc("Convert all cmovs to branches."),
104     cl::init(false), cl::Hidden);
105 
106 namespace {
107 
108 /// Converts X86 cmov instructions into branches when profitable.
109 class X86CmovConverterPass : public MachineFunctionPass {
110 public:
111   X86CmovConverterPass() : MachineFunctionPass(ID) { }
112 
113   StringRef getPassName() const override { return "X86 cmov Conversion"; }
114   bool runOnMachineFunction(MachineFunction &MF) override;
115   void getAnalysisUsage(AnalysisUsage &AU) const override;
116 
117   /// Pass identification, replacement for typeid.
118   static char ID;
119 
120 private:
121   MachineRegisterInfo *MRI = nullptr;
122   const TargetInstrInfo *TII = nullptr;
123   const TargetRegisterInfo *TRI = nullptr;
124   MachineLoopInfo *MLI = nullptr;
125   TargetSchedModel TSchedModel;
126 
127   /// List of consecutive CMOV instructions.
128   using CmovGroup = SmallVector<MachineInstr *, 2>;
129   using CmovGroups = SmallVector<CmovGroup, 2>;
130 
131   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
132   /// CmovInstGroups accordingly.
133   ///
134   /// \param Blocks List of blocks to process.
135   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
136   /// \returns true iff it found any CMOV-group-candidate.
137   bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
138                              CmovGroups &CmovInstGroups,
139                              bool IncludeLoads = false);
140 
141   /// Check if it is profitable to transform each CMOV-group-candidates into
142   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
143   ///
144   /// \param Blocks List of blocks to process.
145   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
146   /// \returns true iff any CMOV-group-candidate remain.
147   bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
148                                         CmovGroups &CmovInstGroups);
149 
150   /// Convert the given list of consecutive CMOV instructions into a branch.
151   ///
152   /// \param Group Consecutive CMOV instructions to be converted into branch.
153   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
154 };
155 
156 } // end anonymous namespace
157 
158 char X86CmovConverterPass::ID = 0;
159 
160 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
161   MachineFunctionPass::getAnalysisUsage(AU);
162   AU.addRequired<MachineLoopInfo>();
163 }
164 
165 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
166   if (skipFunction(MF.getFunction()))
167     return false;
168   if (!EnableCmovConverter)
169     return false;
170 
171   // If the SelectOptimize pass is enabled, cmovs have already been optimized.
172   if (!getCGPassBuilderOption().DisableSelectOptimize)
173     return false;
174 
175   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
176                     << "**********\n");
177 
178   bool Changed = false;
179   MLI = &getAnalysis<MachineLoopInfo>();
180   const TargetSubtargetInfo &STI = MF.getSubtarget();
181   MRI = &MF.getRegInfo();
182   TII = STI.getInstrInfo();
183   TRI = STI.getRegisterInfo();
184   TSchedModel.init(&STI);
185 
186   // Before we handle the more subtle cases of register-register CMOVs inside
187   // of potentially hot loops, we want to quickly remove all CMOVs (ForceAll) or
188   // the ones with a memory operand (ForceMemOperand option). The latter CMOV
189   // will risk a stall waiting for the load to complete that speculative
190   // execution behind a branch is better suited to handle on modern x86 chips.
191   if (ForceMemOperand || ForceAll) {
192     CmovGroups AllCmovGroups;
193     SmallVector<MachineBasicBlock *, 4> Blocks;
194     for (auto &MBB : MF)
195       Blocks.push_back(&MBB);
196     if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
197       for (auto &Group : AllCmovGroups) {
198         // Skip any group that doesn't do at least one memory operand cmov.
199         if (ForceMemOperand && !ForceAll &&
200             llvm::none_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
201           continue;
202 
203         // For CMOV groups which we can rewrite and which contain a memory load,
204         // always rewrite them. On x86, a CMOV will dramatically amplify any
205         // memory latency by blocking speculative execution.
206         Changed = true;
207         convertCmovInstsToBranches(Group);
208       }
209     }
210     // Early return as ForceAll converts all CmovGroups.
211     if (ForceAll)
212       return Changed;
213   }
214 
215   //===--------------------------------------------------------------------===//
216   // Register-operand Conversion Algorithm
217   // ---------
218   //   For each innermost loop
219   //     collectCmovCandidates() {
220   //       Find all CMOV-group-candidates.
221   //     }
222   //
223   //     checkForProfitableCmovCandidates() {
224   //       * Calculate both loop-depth and optimized-loop-depth.
225   //       * Use these depth to check for loop transformation profitability.
226   //       * Check for CMOV-group-candidate transformation profitability.
227   //     }
228   //
229   //     For each profitable CMOV-group-candidate
230   //       convertCmovInstsToBranches() {
231   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
232   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
233   //       }
234   //
235   // Note: For more details, see each function description.
236   //===--------------------------------------------------------------------===//
237 
238   // Build up the loops in pre-order.
239   SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end());
240   // Note that we need to check size on each iteration as we accumulate child
241   // loops.
242   for (int i = 0; i < (int)Loops.size(); ++i)
243     for (MachineLoop *Child : Loops[i]->getSubLoops())
244       Loops.push_back(Child);
245 
246   for (MachineLoop *CurrLoop : Loops) {
247     // Optimize only innermost loops.
248     if (!CurrLoop->getSubLoops().empty())
249       continue;
250 
251     // List of consecutive CMOV instructions to be processed.
252     CmovGroups CmovInstGroups;
253 
254     if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
255       continue;
256 
257     if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
258                                           CmovInstGroups))
259       continue;
260 
261     Changed = true;
262     for (auto &Group : CmovInstGroups)
263       convertCmovInstsToBranches(Group);
264   }
265 
266   return Changed;
267 }
268 
269 bool X86CmovConverterPass::collectCmovCandidates(
270     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
271     bool IncludeLoads) {
272   //===--------------------------------------------------------------------===//
273   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
274   //
275   // CMOV-group:
276   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
277   //
278   // CMOV-group-candidate:
279   //   CMOV-group where all the CMOV instructions are
280   //     1. consecutive.
281   //     2. have same condition code or opposite one.
282   //     3. have only operand registers (X86::CMOVrr).
283   //===--------------------------------------------------------------------===//
284   // List of possible improvement (TODO's):
285   // --------------------------------------
286   //   TODO: Add support for X86::CMOVrm instructions.
287   //   TODO: Add support for X86::SETcc instructions.
288   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
289   //===--------------------------------------------------------------------===//
290 
291   // Current processed CMOV-Group.
292   CmovGroup Group;
293   for (auto *MBB : Blocks) {
294     Group.clear();
295     // Condition code of first CMOV instruction current processed range and its
296     // opposite condition code.
297     X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID,
298                   MemOpCC = X86::COND_INVALID;
299     // Indicator of a non CMOVrr instruction in the current processed range.
300     bool FoundNonCMOVInst = false;
301     // Indicator for current processed CMOV-group if it should be skipped.
302     bool SkipGroup = false;
303 
304     for (auto &I : *MBB) {
305       // Skip debug instructions.
306       if (I.isDebugInstr())
307         continue;
308 
309       X86::CondCode CC = X86::getCondFromCMov(I);
310       // Check if we found a X86::CMOVrr instruction. If it is marked as
311       // unpredictable, skip it and do not convert it to branch.
312       if (CC != X86::COND_INVALID &&
313           !I.getFlag(MachineInstr::MIFlag::Unpredictable) &&
314           (IncludeLoads || !I.mayLoad())) {
315         if (Group.empty()) {
316           // We found first CMOV in the range, reset flags.
317           FirstCC = CC;
318           FirstOppCC = X86::GetOppositeBranchCondition(CC);
319           // Clear out the prior group's memory operand CC.
320           MemOpCC = X86::COND_INVALID;
321           FoundNonCMOVInst = false;
322           SkipGroup = false;
323         }
324         Group.push_back(&I);
325         // Check if it is a non-consecutive CMOV instruction or it has different
326         // condition code than FirstCC or FirstOppCC.
327         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
328           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
329           SkipGroup = true;
330         if (I.mayLoad()) {
331           if (MemOpCC == X86::COND_INVALID)
332             // The first memory operand CMOV.
333             MemOpCC = CC;
334           else if (CC != MemOpCC)
335             // Can't handle mixed conditions with memory operands.
336             SkipGroup = true;
337         }
338         // Check if we were relying on zero-extending behavior of the CMOV.
339         if (!SkipGroup &&
340             llvm::any_of(
341                 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
342                 [&](MachineInstr &UseI) {
343                   return UseI.getOpcode() == X86::SUBREG_TO_REG;
344                 }))
345           // FIXME: We should model the cost of using an explicit MOV to handle
346           // the zero-extension rather than just refusing to handle this.
347           SkipGroup = true;
348         continue;
349       }
350       // If Group is empty, keep looking for first CMOV in the range.
351       if (Group.empty())
352         continue;
353 
354       // We found a non X86::CMOVrr instruction.
355       FoundNonCMOVInst = true;
356       // Check if this instruction define EFLAGS, to determine end of processed
357       // range, as there would be no more instructions using current EFLAGS def.
358       if (I.definesRegister(X86::EFLAGS)) {
359         // Check if current processed CMOV-group should not be skipped and add
360         // it as a CMOV-group-candidate.
361         if (!SkipGroup)
362           CmovInstGroups.push_back(Group);
363         else
364           ++NumOfSkippedCmovGroups;
365         Group.clear();
366       }
367     }
368     // End of basic block is considered end of range, check if current processed
369     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
370     if (Group.empty())
371       continue;
372     if (!SkipGroup)
373       CmovInstGroups.push_back(Group);
374     else
375       ++NumOfSkippedCmovGroups;
376   }
377 
378   NumOfCmovGroupCandidate += CmovInstGroups.size();
379   return !CmovInstGroups.empty();
380 }
381 
382 /// \returns Depth of CMOV instruction as if it was converted into branch.
383 /// \param TrueOpDepth depth cost of CMOV true value operand.
384 /// \param FalseOpDepth depth cost of CMOV false value operand.
385 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
386   // The depth of the result after branch conversion is
387   // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability.
388   // As we have no info about branch weight, we assume 75% for one and 25% for
389   // the other, and pick the result with the largest resulting depth.
390   return std::max(
391       divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4),
392       divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4));
393 }
394 
395 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
396     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
397   struct DepthInfo {
398     /// Depth of original loop.
399     unsigned Depth;
400     /// Depth of optimized loop.
401     unsigned OptDepth;
402   };
403   /// Number of loop iterations to calculate depth for ?!
404   static const unsigned LoopIterations = 2;
405   DenseMap<MachineInstr *, DepthInfo> DepthMap;
406   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
407   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
408   /// For each register type maps the register to its last def instruction.
409   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
410   /// Maps register operand to its def instruction, which can be nullptr if it
411   /// is unknown (e.g., operand is defined outside the loop).
412   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
413 
414   // Set depth of unknown instruction (i.e., nullptr) to zero.
415   DepthMap[nullptr] = {0, 0};
416 
417   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
418   for (auto &Group : CmovInstGroups)
419     CmovInstructions.insert(Group.begin(), Group.end());
420 
421   //===--------------------------------------------------------------------===//
422   // Step 1: Calculate instruction depth and loop depth.
423   // Optimized-Loop:
424   //   loop with CMOV-group-candidates converted into branches.
425   //
426   // Instruction-Depth:
427   //   instruction latency + max operand depth.
428   //     * For CMOV instruction in optimized loop the depth is calculated as:
429   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
430   // TODO: Find a better way to estimate the latency of the branch instruction
431   //       rather than using the CMOV latency.
432   //
433   // Loop-Depth:
434   //   max instruction depth of all instructions in the loop.
435   // Note: instruction with max depth represents the critical-path in the loop.
436   //
437   // Loop-Depth[i]:
438   //   Loop-Depth calculated for first `i` iterations.
439   //   Note: it is enough to calculate depth for up to two iterations.
440   //
441   // Depth-Diff[i]:
442   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
443   //===--------------------------------------------------------------------===//
444   for (DepthInfo &MaxDepth : LoopDepth) {
445     for (auto *MBB : Blocks) {
446       // Clear physical registers Def map.
447       RegDefMaps[PhyRegType].clear();
448       for (MachineInstr &MI : *MBB) {
449         // Skip debug instructions.
450         if (MI.isDebugInstr())
451           continue;
452         unsigned MIDepth = 0;
453         unsigned MIDepthOpt = 0;
454         bool IsCMOV = CmovInstructions.count(&MI);
455         for (auto &MO : MI.uses()) {
456           // Checks for "isUse()" as "uses()" returns also implicit definitions.
457           if (!MO.isReg() || !MO.isUse())
458             continue;
459           Register Reg = MO.getReg();
460           auto &RDM = RegDefMaps[Reg.isVirtual()];
461           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
462             OperandToDefMap[&MO] = DefMI;
463             DepthInfo Info = DepthMap.lookup(DefMI);
464             MIDepth = std::max(MIDepth, Info.Depth);
465             if (!IsCMOV)
466               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
467           }
468         }
469 
470         if (IsCMOV)
471           MIDepthOpt = getDepthOfOptCmov(
472               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
473               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
474 
475         // Iterates over all operands to handle implicit definitions as well.
476         for (auto &MO : MI.operands()) {
477           if (!MO.isReg() || !MO.isDef())
478             continue;
479           Register Reg = MO.getReg();
480           RegDefMaps[Reg.isVirtual()][Reg] = &MI;
481         }
482 
483         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
484         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
485         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
486         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
487       }
488     }
489   }
490 
491   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
492                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
493 
494   //===--------------------------------------------------------------------===//
495   // Step 2: Check if Loop worth to be optimized.
496   // Worth-Optimize-Loop:
497   //   case 1: Diff[1] == Diff[0]
498   //           Critical-path is iteration independent - there is no dependency
499   //           of critical-path instructions on critical-path instructions of
500   //           previous iteration.
501   //           Thus, it is enough to check gain percent of 1st iteration -
502   //           To be conservative, the optimized loop need to have a depth of
503   //           12.5% cycles less than original loop, per iteration.
504   //
505   //   case 2: Diff[1] > Diff[0]
506   //           Critical-path is iteration dependent - there is dependency of
507   //           critical-path instructions on critical-path instructions of
508   //           previous iteration.
509   //           Thus, check the gain percent of the 2nd iteration (similar to the
510   //           previous case), but it is also required to check the gradient of
511   //           the gain - the change in Depth-Diff compared to the change in
512   //           Loop-Depth between 1st and 2nd iterations.
513   //           To be conservative, the gradient need to be at least 50%.
514   //
515   //   In addition, In order not to optimize loops with very small gain, the
516   //   gain (in cycles) after 2nd iteration should not be less than a given
517   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
518   //
519   // If loop is not worth optimizing, remove all CMOV-group-candidates.
520   //===--------------------------------------------------------------------===//
521   if (Diff[1] < GainCycleThreshold)
522     return false;
523 
524   bool WorthOptLoop = false;
525   if (Diff[1] == Diff[0])
526     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
527   else if (Diff[1] > Diff[0])
528     WorthOptLoop =
529         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
530         (Diff[1] * 8 >= LoopDepth[1].Depth);
531 
532   if (!WorthOptLoop)
533     return false;
534 
535   ++NumOfLoopCandidate;
536 
537   //===--------------------------------------------------------------------===//
538   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
539   // Worth-Optimize-Group:
540   //   Iff it is worth to optimize all CMOV instructions in the group.
541   //
542   // Worth-Optimize-CMOV:
543   //   Predicted branch is faster than CMOV by the difference between depth of
544   //   condition operand and depth of taken (predicted) value operand.
545   //   To be conservative, the gain of such CMOV transformation should cover at
546   //   at least 25% of branch-misprediction-penalty.
547   //===--------------------------------------------------------------------===//
548   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
549   CmovGroups TempGroups;
550   std::swap(TempGroups, CmovInstGroups);
551   for (auto &Group : TempGroups) {
552     bool WorthOpGroup = true;
553     for (auto *MI : Group) {
554       // Avoid CMOV instruction which value is used as a pointer to load from.
555       // This is another conservative check to avoid converting CMOV instruction
556       // used with tree-search like algorithm, where the branch is unpredicted.
557       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
558       if (!UIs.empty() && ++UIs.begin() == UIs.end()) {
559         unsigned Op = UIs.begin()->getOpcode();
560         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
561           WorthOpGroup = false;
562           break;
563         }
564       }
565 
566       unsigned CondCost =
567           DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth;
568       unsigned ValCost = getDepthOfOptCmov(
569           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
570           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
571       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
572         WorthOpGroup = false;
573         break;
574       }
575     }
576 
577     if (WorthOpGroup)
578       CmovInstGroups.push_back(Group);
579   }
580 
581   return !CmovInstGroups.empty();
582 }
583 
584 static bool checkEFLAGSLive(MachineInstr *MI) {
585   if (MI->killsRegister(X86::EFLAGS))
586     return false;
587 
588   // The EFLAGS operand of MI might be missing a kill marker.
589   // Figure out whether EFLAGS operand should LIVE after MI instruction.
590   MachineBasicBlock *BB = MI->getParent();
591   MachineBasicBlock::iterator ItrMI = MI;
592 
593   // Scan forward through BB for a use/def of EFLAGS.
594   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
595     if (I->readsRegister(X86::EFLAGS))
596       return true;
597     if (I->definesRegister(X86::EFLAGS))
598       return false;
599   }
600 
601   // We hit the end of the block, check whether EFLAGS is live into a successor.
602   for (MachineBasicBlock *Succ : BB->successors())
603     if (Succ->isLiveIn(X86::EFLAGS))
604       return true;
605 
606   return false;
607 }
608 
609 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
610 /// group of CMOV instructions, which may contain debug instructions in between,
611 /// move all debug instructions to after the last CMOV instruction, making the
612 /// CMOV group consecutive.
613 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
614   assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID &&
615          "Last instruction in a CMOV group must be a CMOV instruction");
616 
617   SmallVector<MachineInstr *, 2> DBGInstructions;
618   for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
619     if (I->isDebugInstr())
620       DBGInstructions.push_back(&*I);
621   }
622 
623   // Splice the debug instruction after the cmov group.
624   MachineBasicBlock *MBB = First->getParent();
625   for (auto *MI : DBGInstructions)
626     MBB->insertAfter(Last, MI->removeFromParent());
627 }
628 
629 void X86CmovConverterPass::convertCmovInstsToBranches(
630     SmallVectorImpl<MachineInstr *> &Group) const {
631   assert(!Group.empty() && "No CMOV instructions to convert");
632   ++NumOfOptimizedCmovGroups;
633 
634   // If the CMOV group is not packed, e.g., there are debug instructions between
635   // first CMOV and last CMOV, then pack the group and make the CMOV instruction
636   // consecutive by moving the debug instructions to after the last CMOV.
637   packCmovGroup(Group.front(), Group.back());
638 
639   // To convert a CMOVcc instruction, we actually have to insert the diamond
640   // control-flow pattern.  The incoming instruction knows the destination vreg
641   // to set, the condition code register to branch on, the true/false values to
642   // select between, and a branch opcode to use.
643 
644   // Before
645   // -----
646   // MBB:
647   //   cond = cmp ...
648   //   v1 = CMOVge t1, f1, cond
649   //   v2 = CMOVlt t2, f2, cond
650   //   v3 = CMOVge v1, f3, cond
651   //
652   // After
653   // -----
654   // MBB:
655   //   cond = cmp ...
656   //   jge %SinkMBB
657   //
658   // FalseMBB:
659   //   jmp %SinkMBB
660   //
661   // SinkMBB:
662   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
663   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
664   //                                          ; true-value with false-value
665   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
666   //                                          ; previous Phi instruction result
667 
668   MachineInstr &MI = *Group.front();
669   MachineInstr *LastCMOV = Group.back();
670   DebugLoc DL = MI.getDebugLoc();
671 
672   X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI));
673   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
674   // Potentially swap the condition codes so that any memory operand to a CMOV
675   // is in the *false* position instead of the *true* position. We can invert
676   // any non-memory operand CMOV instructions to cope with this and we ensure
677   // memory operand CMOVs are only included with a single condition code.
678   if (llvm::any_of(Group, [&](MachineInstr *I) {
679         return I->mayLoad() && X86::getCondFromCMov(*I) == CC;
680       }))
681     std::swap(CC, OppCC);
682 
683   MachineBasicBlock *MBB = MI.getParent();
684   MachineFunction::iterator It = ++MBB->getIterator();
685   MachineFunction *F = MBB->getParent();
686   const BasicBlock *BB = MBB->getBasicBlock();
687 
688   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
689   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
690   F->insert(It, FalseMBB);
691   F->insert(It, SinkMBB);
692 
693   // If the EFLAGS register isn't dead in the terminator, then claim that it's
694   // live into the sink and copy blocks.
695   if (checkEFLAGSLive(LastCMOV)) {
696     FalseMBB->addLiveIn(X86::EFLAGS);
697     SinkMBB->addLiveIn(X86::EFLAGS);
698   }
699 
700   // Transfer the remainder of BB and its successor edges to SinkMBB.
701   SinkMBB->splice(SinkMBB->begin(), MBB,
702                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
703   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
704 
705   // Add the false and sink blocks as its successors.
706   MBB->addSuccessor(FalseMBB);
707   MBB->addSuccessor(SinkMBB);
708 
709   // Create the conditional branch instruction.
710   BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
711 
712   // Add the sink block to the false block successors.
713   FalseMBB->addSuccessor(SinkMBB);
714 
715   MachineInstrBuilder MIB;
716   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
717   MachineBasicBlock::iterator MIItEnd =
718       std::next(MachineBasicBlock::iterator(LastCMOV));
719   MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
720   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
721 
722   // First we need to insert an explicit load on the false path for any memory
723   // operand. We also need to potentially do register rewriting here, but it is
724   // simpler as the memory operands are always on the false path so we can
725   // simply take that input, whatever it is.
726   DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
727   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
728     auto &MI = *MIIt++;
729     // Skip any CMOVs in this group which don't load from memory.
730     if (!MI.mayLoad()) {
731       // Remember the false-side register input.
732       Register FalseReg =
733           MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg();
734       // Walk back through any intermediate cmovs referenced.
735       while (true) {
736         auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
737         if (FRIt == FalseBBRegRewriteTable.end())
738           break;
739         FalseReg = FRIt->second;
740       }
741       FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
742       continue;
743     }
744 
745     // The condition must be the *opposite* of the one we've decided to branch
746     // on as the branch will go *around* the load and the load should happen
747     // when the CMOV condition is false.
748     assert(X86::getCondFromCMov(MI) == OppCC &&
749            "Can only handle memory-operand cmov instructions with a condition "
750            "opposite to the selected branch direction.");
751 
752     // The goal is to rewrite the cmov from:
753     //
754     //   MBB:
755     //     %A = CMOVcc %B (tied), (mem)
756     //
757     // to
758     //
759     //   MBB:
760     //     %A = CMOVcc %B (tied), %C
761     //   FalseMBB:
762     //     %C = MOV (mem)
763     //
764     // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
765     //
766     //   MBB:
767     //     JMP!cc SinkMBB
768     //   FalseMBB:
769     //     %C = MOV (mem)
770     //   SinkMBB:
771     //     %A = PHI [ %C, FalseMBB ], [ %B, MBB]
772 
773     // Get a fresh register to use as the destination of the MOV.
774     const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
775     Register TmpReg = MRI->createVirtualRegister(RC);
776 
777     // Retain debug instr number when unfolded.
778     unsigned OldDebugInstrNum = MI.peekDebugInstrNum();
779     SmallVector<MachineInstr *, 4> NewMIs;
780     bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
781                                              /*UnfoldLoad*/ true,
782                                              /*UnfoldStore*/ false, NewMIs);
783     (void)Unfolded;
784     assert(Unfolded && "Should never fail to unfold a loading cmov!");
785 
786     // Move the new CMOV to just before the old one and reset any impacted
787     // iterator.
788     auto *NewCMOV = NewMIs.pop_back_val();
789     assert(X86::getCondFromCMov(*NewCMOV) == OppCC &&
790            "Last new instruction isn't the expected CMOV!");
791     LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
792     MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
793     if (&*MIItBegin == &MI)
794       MIItBegin = MachineBasicBlock::iterator(NewCMOV);
795 
796     if (OldDebugInstrNum)
797       NewCMOV->setDebugInstrNum(OldDebugInstrNum);
798 
799     // Sink whatever instructions were needed to produce the unfolded operand
800     // into the false block.
801     for (auto *NewMI : NewMIs) {
802       LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
803       FalseMBB->insert(FalseInsertionPoint, NewMI);
804       // Re-map any operands that are from other cmovs to the inputs for this block.
805       for (auto &MOp : NewMI->uses()) {
806         if (!MOp.isReg())
807           continue;
808         auto It = FalseBBRegRewriteTable.find(MOp.getReg());
809         if (It == FalseBBRegRewriteTable.end())
810           continue;
811 
812         MOp.setReg(It->second);
813         // This might have been a kill when it referenced the cmov result, but
814         // it won't necessarily be once rewritten.
815         // FIXME: We could potentially improve this by tracking whether the
816         // operand to the cmov was also a kill, and then skipping the PHI node
817         // construction below.
818         MOp.setIsKill(false);
819       }
820     }
821     MBB->erase(&MI);
822 
823     // Add this PHI to the rewrite table.
824     FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
825   }
826 
827   // As we are creating the PHIs, we have to be careful if there is more than
828   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
829   // PHIs have to reference the individual true/false inputs from earlier PHIs.
830   // That also means that PHI construction must work forward from earlier to
831   // later, and that the code must maintain a mapping from earlier PHI's
832   // destination registers, and the registers that went into the PHI.
833   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
834 
835   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
836     Register DestReg = MIIt->getOperand(0).getReg();
837     Register Op1Reg = MIIt->getOperand(1).getReg();
838     Register Op2Reg = MIIt->getOperand(2).getReg();
839 
840     // If this CMOV we are processing is the opposite condition from the jump we
841     // generated, then we have to swap the operands for the PHI that is going to
842     // be generated.
843     if (X86::getCondFromCMov(*MIIt) == OppCC)
844       std::swap(Op1Reg, Op2Reg);
845 
846     auto Op1Itr = RegRewriteTable.find(Op1Reg);
847     if (Op1Itr != RegRewriteTable.end())
848       Op1Reg = Op1Itr->second.first;
849 
850     auto Op2Itr = RegRewriteTable.find(Op2Reg);
851     if (Op2Itr != RegRewriteTable.end())
852       Op2Reg = Op2Itr->second.second;
853 
854     //  SinkMBB:
855     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
856     //  ...
857     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
858               .addReg(Op1Reg)
859               .addMBB(FalseMBB)
860               .addReg(Op2Reg)
861               .addMBB(MBB);
862     (void)MIB;
863     LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
864     LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
865 
866     // debug-info: we can just copy the instr-ref number from one instruction
867     // to the other, seeing how it's a one-for-one substitution.
868     if (unsigned InstrNum = MIIt->peekDebugInstrNum())
869       MIB->setDebugInstrNum(InstrNum);
870 
871     // Add this PHI to the rewrite table.
872     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
873   }
874 
875   // Reset the NoPHIs property if a PHI was inserted to prevent a conflict with
876   // the MachineVerifier during testing.
877   if (MIItBegin != MIItEnd)
878     F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
879 
880   // Now remove the CMOV(s).
881   MBB->erase(MIItBegin, MIItEnd);
882 
883   // Add new basic blocks to MachineLoopInfo.
884   if (MachineLoop *L = MLI->getLoopFor(MBB)) {
885     L->addBasicBlockToLoop(FalseMBB, MLI->getBase());
886     L->addBasicBlockToLoop(SinkMBB, MLI->getBase());
887   }
888 }
889 
890 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
891                       false, false)
892 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
893 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
894                     false, false)
895 
896 FunctionPass *llvm::createX86CmovConverterPass() {
897   return new X86CmovConverterPass();
898 }
899