xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CmovConversion.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
13 ///
14 /// Thus, the optimization applies under the following conditions:
15 ///   1. Consider as candidates only CMOVs in innermost loops (assume that
16 ///      most hotspots are represented by these loops).
17 ///   2. Given a group of CMOV instructions that are using the same EFLAGS def
18 ///      instruction:
19 ///      a. Consider them as candidates only if all have the same code condition
20 ///         or the opposite one to prevent generating more than one conditional
21 ///         jump per EFLAGS def instruction.
22 ///      b. Consider them as candidates only if all are profitable to be
23 ///         converted (assume that one bad conversion may cause a degradation).
24 ///   3. Apply conversion only for loops that are found profitable and only for
25 ///      CMOV candidates that were found profitable.
26 ///      a. A loop is considered profitable only if conversion will reduce its
27 ///         depth cost by some threshold.
28 ///      b. CMOV is considered profitable if the cost of its condition is higher
29 ///         than the average cost of its true-value and false-value by 25% of
30 ///         branch-misprediction-penalty. This assures no degradation even with
31 ///         25% branch misprediction.
32 ///
33 /// Note: This pass is assumed to run on SSA machine code.
34 //
35 //===----------------------------------------------------------------------===//
36 //
37 //  External interfaces:
38 //      FunctionPass *llvm::createX86CmovConverterPass();
39 //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "X86.h"
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/CGPassBuilderOption.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <iterator>
74 #include <utility>
75 
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "x86-cmov-conversion"
79 
80 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
81 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
82 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
83 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
84 
85 // This internal switch can be used to turn off the cmov/branch optimization.
86 static cl::opt<bool>
87     EnableCmovConverter("x86-cmov-converter",
88                         cl::desc("Enable the X86 cmov-to-branch optimization."),
89                         cl::init(true), cl::Hidden);
90 
91 static cl::opt<unsigned>
92     GainCycleThreshold("x86-cmov-converter-threshold",
93                        cl::desc("Minimum gain per loop (in cycles) threshold."),
94                        cl::init(4), cl::Hidden);
95 
96 static cl::opt<bool> ForceMemOperand(
97     "x86-cmov-converter-force-mem-operand",
98     cl::desc("Convert cmovs to branches whenever they have memory operands."),
99     cl::init(true), cl::Hidden);
100 
101 static cl::opt<bool> ForceAll(
102     "x86-cmov-converter-force-all",
103     cl::desc("Convert all cmovs to branches."),
104     cl::init(false), cl::Hidden);
105 
106 namespace {
107 
108 /// Converts X86 cmov instructions into branches when profitable.
109 class X86CmovConverterPass : public MachineFunctionPass {
110 public:
111   X86CmovConverterPass() : MachineFunctionPass(ID) { }
112 
113   StringRef getPassName() const override { return "X86 cmov Conversion"; }
114   bool runOnMachineFunction(MachineFunction &MF) override;
115   void getAnalysisUsage(AnalysisUsage &AU) const override;
116 
117   /// Pass identification, replacement for typeid.
118   static char ID;
119 
120 private:
121   MachineRegisterInfo *MRI = nullptr;
122   const TargetInstrInfo *TII = nullptr;
123   const TargetRegisterInfo *TRI = nullptr;
124   MachineLoopInfo *MLI = nullptr;
125   TargetSchedModel TSchedModel;
126 
127   /// List of consecutive CMOV instructions.
128   using CmovGroup = SmallVector<MachineInstr *, 2>;
129   using CmovGroups = SmallVector<CmovGroup, 2>;
130 
131   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
132   /// CmovInstGroups accordingly.
133   ///
134   /// \param Blocks List of blocks to process.
135   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
136   /// \returns true iff it found any CMOV-group-candidate.
137   bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
138                              CmovGroups &CmovInstGroups,
139                              bool IncludeLoads = false);
140 
141   /// Check if it is profitable to transform each CMOV-group-candidates into
142   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
143   ///
144   /// \param Blocks List of blocks to process.
145   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
146   /// \returns true iff any CMOV-group-candidate remain.
147   bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
148                                         CmovGroups &CmovInstGroups);
149 
150   /// Convert the given list of consecutive CMOV instructions into a branch.
151   ///
152   /// \param Group Consecutive CMOV instructions to be converted into branch.
153   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
154 };
155 
156 } // end anonymous namespace
157 
158 char X86CmovConverterPass::ID = 0;
159 
160 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
161   MachineFunctionPass::getAnalysisUsage(AU);
162   AU.addRequired<MachineLoopInfo>();
163 }
164 
165 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
166   if (skipFunction(MF.getFunction()))
167     return false;
168   if (!EnableCmovConverter)
169     return false;
170 
171   // If the SelectOptimize pass is enabled, cmovs have already been optimized.
172   if (!getCGPassBuilderOption().DisableSelectOptimize)
173     return false;
174 
175   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
176                     << "**********\n");
177 
178   bool Changed = false;
179   MLI = &getAnalysis<MachineLoopInfo>();
180   const TargetSubtargetInfo &STI = MF.getSubtarget();
181   MRI = &MF.getRegInfo();
182   TII = STI.getInstrInfo();
183   TRI = STI.getRegisterInfo();
184   TSchedModel.init(&STI);
185 
186   // Before we handle the more subtle cases of register-register CMOVs inside
187   // of potentially hot loops, we want to quickly remove all CMOVs (ForceAll) or
188   // the ones with a memory operand (ForceMemOperand option). The latter CMOV
189   // will risk a stall waiting for the load to complete that speculative
190   // execution behind a branch is better suited to handle on modern x86 chips.
191   if (ForceMemOperand || ForceAll) {
192     CmovGroups AllCmovGroups;
193     SmallVector<MachineBasicBlock *, 4> Blocks;
194     for (auto &MBB : MF)
195       Blocks.push_back(&MBB);
196     if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
197       for (auto &Group : AllCmovGroups) {
198         // Skip any group that doesn't do at least one memory operand cmov.
199         if (ForceMemOperand && !ForceAll &&
200             llvm::none_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
201           continue;
202 
203         // For CMOV groups which we can rewrite and which contain a memory load,
204         // always rewrite them. On x86, a CMOV will dramatically amplify any
205         // memory latency by blocking speculative execution.
206         Changed = true;
207         convertCmovInstsToBranches(Group);
208       }
209     }
210     // Early return as ForceAll converts all CmovGroups.
211     if (ForceAll)
212       return Changed;
213   }
214 
215   //===--------------------------------------------------------------------===//
216   // Register-operand Conversion Algorithm
217   // ---------
218   //   For each innermost loop
219   //     collectCmovCandidates() {
220   //       Find all CMOV-group-candidates.
221   //     }
222   //
223   //     checkForProfitableCmovCandidates() {
224   //       * Calculate both loop-depth and optimized-loop-depth.
225   //       * Use these depth to check for loop transformation profitability.
226   //       * Check for CMOV-group-candidate transformation profitability.
227   //     }
228   //
229   //     For each profitable CMOV-group-candidate
230   //       convertCmovInstsToBranches() {
231   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
232   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
233   //       }
234   //
235   // Note: For more details, see each function description.
236   //===--------------------------------------------------------------------===//
237 
238   // Build up the loops in pre-order.
239   SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end());
240   // Note that we need to check size on each iteration as we accumulate child
241   // loops.
242   for (int i = 0; i < (int)Loops.size(); ++i)
243     for (MachineLoop *Child : Loops[i]->getSubLoops())
244       Loops.push_back(Child);
245 
246   for (MachineLoop *CurrLoop : Loops) {
247     // Optimize only innermost loops.
248     if (!CurrLoop->getSubLoops().empty())
249       continue;
250 
251     // List of consecutive CMOV instructions to be processed.
252     CmovGroups CmovInstGroups;
253 
254     if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
255       continue;
256 
257     if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
258                                           CmovInstGroups))
259       continue;
260 
261     Changed = true;
262     for (auto &Group : CmovInstGroups)
263       convertCmovInstsToBranches(Group);
264   }
265 
266   return Changed;
267 }
268 
269 bool X86CmovConverterPass::collectCmovCandidates(
270     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
271     bool IncludeLoads) {
272   //===--------------------------------------------------------------------===//
273   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
274   //
275   // CMOV-group:
276   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
277   //
278   // CMOV-group-candidate:
279   //   CMOV-group where all the CMOV instructions are
280   //     1. consecutive.
281   //     2. have same condition code or opposite one.
282   //     3. have only operand registers (X86::CMOVrr).
283   //===--------------------------------------------------------------------===//
284   // List of possible improvement (TODO's):
285   // --------------------------------------
286   //   TODO: Add support for X86::CMOVrm instructions.
287   //   TODO: Add support for X86::SETcc instructions.
288   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
289   //===--------------------------------------------------------------------===//
290 
291   // Current processed CMOV-Group.
292   CmovGroup Group;
293   for (auto *MBB : Blocks) {
294     Group.clear();
295     // Condition code of first CMOV instruction current processed range and its
296     // opposite condition code.
297     X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID,
298                   MemOpCC = X86::COND_INVALID;
299     // Indicator of a non CMOVrr instruction in the current processed range.
300     bool FoundNonCMOVInst = false;
301     // Indicator for current processed CMOV-group if it should be skipped.
302     bool SkipGroup = false;
303 
304     for (auto &I : *MBB) {
305       // Skip debug instructions.
306       if (I.isDebugInstr())
307         continue;
308       X86::CondCode CC = X86::getCondFromCMov(I);
309       // Check if we found a X86::CMOVrr instruction.
310       if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
311         if (Group.empty()) {
312           // We found first CMOV in the range, reset flags.
313           FirstCC = CC;
314           FirstOppCC = X86::GetOppositeBranchCondition(CC);
315           // Clear out the prior group's memory operand CC.
316           MemOpCC = X86::COND_INVALID;
317           FoundNonCMOVInst = false;
318           SkipGroup = false;
319         }
320         Group.push_back(&I);
321         // Check if it is a non-consecutive CMOV instruction or it has different
322         // condition code than FirstCC or FirstOppCC.
323         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
324           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
325           SkipGroup = true;
326         if (I.mayLoad()) {
327           if (MemOpCC == X86::COND_INVALID)
328             // The first memory operand CMOV.
329             MemOpCC = CC;
330           else if (CC != MemOpCC)
331             // Can't handle mixed conditions with memory operands.
332             SkipGroup = true;
333         }
334         // Check if we were relying on zero-extending behavior of the CMOV.
335         if (!SkipGroup &&
336             llvm::any_of(
337                 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
338                 [&](MachineInstr &UseI) {
339                   return UseI.getOpcode() == X86::SUBREG_TO_REG;
340                 }))
341           // FIXME: We should model the cost of using an explicit MOV to handle
342           // the zero-extension rather than just refusing to handle this.
343           SkipGroup = true;
344         continue;
345       }
346       // If Group is empty, keep looking for first CMOV in the range.
347       if (Group.empty())
348         continue;
349 
350       // We found a non X86::CMOVrr instruction.
351       FoundNonCMOVInst = true;
352       // Check if this instruction define EFLAGS, to determine end of processed
353       // range, as there would be no more instructions using current EFLAGS def.
354       if (I.definesRegister(X86::EFLAGS)) {
355         // Check if current processed CMOV-group should not be skipped and add
356         // it as a CMOV-group-candidate.
357         if (!SkipGroup)
358           CmovInstGroups.push_back(Group);
359         else
360           ++NumOfSkippedCmovGroups;
361         Group.clear();
362       }
363     }
364     // End of basic block is considered end of range, check if current processed
365     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
366     if (Group.empty())
367       continue;
368     if (!SkipGroup)
369       CmovInstGroups.push_back(Group);
370     else
371       ++NumOfSkippedCmovGroups;
372   }
373 
374   NumOfCmovGroupCandidate += CmovInstGroups.size();
375   return !CmovInstGroups.empty();
376 }
377 
378 /// \returns Depth of CMOV instruction as if it was converted into branch.
379 /// \param TrueOpDepth depth cost of CMOV true value operand.
380 /// \param FalseOpDepth depth cost of CMOV false value operand.
381 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
382   // The depth of the result after branch conversion is
383   // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability.
384   // As we have no info about branch weight, we assume 75% for one and 25% for
385   // the other, and pick the result with the largest resulting depth.
386   return std::max(
387       divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4),
388       divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4));
389 }
390 
391 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
392     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
393   struct DepthInfo {
394     /// Depth of original loop.
395     unsigned Depth;
396     /// Depth of optimized loop.
397     unsigned OptDepth;
398   };
399   /// Number of loop iterations to calculate depth for ?!
400   static const unsigned LoopIterations = 2;
401   DenseMap<MachineInstr *, DepthInfo> DepthMap;
402   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
403   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
404   /// For each register type maps the register to its last def instruction.
405   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
406   /// Maps register operand to its def instruction, which can be nullptr if it
407   /// is unknown (e.g., operand is defined outside the loop).
408   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
409 
410   // Set depth of unknown instruction (i.e., nullptr) to zero.
411   DepthMap[nullptr] = {0, 0};
412 
413   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
414   for (auto &Group : CmovInstGroups)
415     CmovInstructions.insert(Group.begin(), Group.end());
416 
417   //===--------------------------------------------------------------------===//
418   // Step 1: Calculate instruction depth and loop depth.
419   // Optimized-Loop:
420   //   loop with CMOV-group-candidates converted into branches.
421   //
422   // Instruction-Depth:
423   //   instruction latency + max operand depth.
424   //     * For CMOV instruction in optimized loop the depth is calculated as:
425   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
426   // TODO: Find a better way to estimate the latency of the branch instruction
427   //       rather than using the CMOV latency.
428   //
429   // Loop-Depth:
430   //   max instruction depth of all instructions in the loop.
431   // Note: instruction with max depth represents the critical-path in the loop.
432   //
433   // Loop-Depth[i]:
434   //   Loop-Depth calculated for first `i` iterations.
435   //   Note: it is enough to calculate depth for up to two iterations.
436   //
437   // Depth-Diff[i]:
438   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
439   //===--------------------------------------------------------------------===//
440   for (DepthInfo &MaxDepth : LoopDepth) {
441     for (auto *MBB : Blocks) {
442       // Clear physical registers Def map.
443       RegDefMaps[PhyRegType].clear();
444       for (MachineInstr &MI : *MBB) {
445         // Skip debug instructions.
446         if (MI.isDebugInstr())
447           continue;
448         unsigned MIDepth = 0;
449         unsigned MIDepthOpt = 0;
450         bool IsCMOV = CmovInstructions.count(&MI);
451         for (auto &MO : MI.uses()) {
452           // Checks for "isUse()" as "uses()" returns also implicit definitions.
453           if (!MO.isReg() || !MO.isUse())
454             continue;
455           Register Reg = MO.getReg();
456           auto &RDM = RegDefMaps[Reg.isVirtual()];
457           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
458             OperandToDefMap[&MO] = DefMI;
459             DepthInfo Info = DepthMap.lookup(DefMI);
460             MIDepth = std::max(MIDepth, Info.Depth);
461             if (!IsCMOV)
462               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
463           }
464         }
465 
466         if (IsCMOV)
467           MIDepthOpt = getDepthOfOptCmov(
468               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
469               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
470 
471         // Iterates over all operands to handle implicit definitions as well.
472         for (auto &MO : MI.operands()) {
473           if (!MO.isReg() || !MO.isDef())
474             continue;
475           Register Reg = MO.getReg();
476           RegDefMaps[Reg.isVirtual()][Reg] = &MI;
477         }
478 
479         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
480         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
481         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
482         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
483       }
484     }
485   }
486 
487   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
488                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
489 
490   //===--------------------------------------------------------------------===//
491   // Step 2: Check if Loop worth to be optimized.
492   // Worth-Optimize-Loop:
493   //   case 1: Diff[1] == Diff[0]
494   //           Critical-path is iteration independent - there is no dependency
495   //           of critical-path instructions on critical-path instructions of
496   //           previous iteration.
497   //           Thus, it is enough to check gain percent of 1st iteration -
498   //           To be conservative, the optimized loop need to have a depth of
499   //           12.5% cycles less than original loop, per iteration.
500   //
501   //   case 2: Diff[1] > Diff[0]
502   //           Critical-path is iteration dependent - there is dependency of
503   //           critical-path instructions on critical-path instructions of
504   //           previous iteration.
505   //           Thus, check the gain percent of the 2nd iteration (similar to the
506   //           previous case), but it is also required to check the gradient of
507   //           the gain - the change in Depth-Diff compared to the change in
508   //           Loop-Depth between 1st and 2nd iterations.
509   //           To be conservative, the gradient need to be at least 50%.
510   //
511   //   In addition, In order not to optimize loops with very small gain, the
512   //   gain (in cycles) after 2nd iteration should not be less than a given
513   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
514   //
515   // If loop is not worth optimizing, remove all CMOV-group-candidates.
516   //===--------------------------------------------------------------------===//
517   if (Diff[1] < GainCycleThreshold)
518     return false;
519 
520   bool WorthOptLoop = false;
521   if (Diff[1] == Diff[0])
522     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
523   else if (Diff[1] > Diff[0])
524     WorthOptLoop =
525         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
526         (Diff[1] * 8 >= LoopDepth[1].Depth);
527 
528   if (!WorthOptLoop)
529     return false;
530 
531   ++NumOfLoopCandidate;
532 
533   //===--------------------------------------------------------------------===//
534   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
535   // Worth-Optimize-Group:
536   //   Iff it is worth to optimize all CMOV instructions in the group.
537   //
538   // Worth-Optimize-CMOV:
539   //   Predicted branch is faster than CMOV by the difference between depth of
540   //   condition operand and depth of taken (predicted) value operand.
541   //   To be conservative, the gain of such CMOV transformation should cover at
542   //   at least 25% of branch-misprediction-penalty.
543   //===--------------------------------------------------------------------===//
544   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
545   CmovGroups TempGroups;
546   std::swap(TempGroups, CmovInstGroups);
547   for (auto &Group : TempGroups) {
548     bool WorthOpGroup = true;
549     for (auto *MI : Group) {
550       // Avoid CMOV instruction which value is used as a pointer to load from.
551       // This is another conservative check to avoid converting CMOV instruction
552       // used with tree-search like algorithm, where the branch is unpredicted.
553       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
554       if (!UIs.empty() && ++UIs.begin() == UIs.end()) {
555         unsigned Op = UIs.begin()->getOpcode();
556         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
557           WorthOpGroup = false;
558           break;
559         }
560       }
561 
562       unsigned CondCost =
563           DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth;
564       unsigned ValCost = getDepthOfOptCmov(
565           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
566           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
567       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
568         WorthOpGroup = false;
569         break;
570       }
571     }
572 
573     if (WorthOpGroup)
574       CmovInstGroups.push_back(Group);
575   }
576 
577   return !CmovInstGroups.empty();
578 }
579 
580 static bool checkEFLAGSLive(MachineInstr *MI) {
581   if (MI->killsRegister(X86::EFLAGS))
582     return false;
583 
584   // The EFLAGS operand of MI might be missing a kill marker.
585   // Figure out whether EFLAGS operand should LIVE after MI instruction.
586   MachineBasicBlock *BB = MI->getParent();
587   MachineBasicBlock::iterator ItrMI = MI;
588 
589   // Scan forward through BB for a use/def of EFLAGS.
590   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
591     if (I->readsRegister(X86::EFLAGS))
592       return true;
593     if (I->definesRegister(X86::EFLAGS))
594       return false;
595   }
596 
597   // We hit the end of the block, check whether EFLAGS is live into a successor.
598   for (MachineBasicBlock *Succ : BB->successors())
599     if (Succ->isLiveIn(X86::EFLAGS))
600       return true;
601 
602   return false;
603 }
604 
605 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
606 /// group of CMOV instructions, which may contain debug instructions in between,
607 /// move all debug instructions to after the last CMOV instruction, making the
608 /// CMOV group consecutive.
609 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
610   assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID &&
611          "Last instruction in a CMOV group must be a CMOV instruction");
612 
613   SmallVector<MachineInstr *, 2> DBGInstructions;
614   for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
615     if (I->isDebugInstr())
616       DBGInstructions.push_back(&*I);
617   }
618 
619   // Splice the debug instruction after the cmov group.
620   MachineBasicBlock *MBB = First->getParent();
621   for (auto *MI : DBGInstructions)
622     MBB->insertAfter(Last, MI->removeFromParent());
623 }
624 
625 void X86CmovConverterPass::convertCmovInstsToBranches(
626     SmallVectorImpl<MachineInstr *> &Group) const {
627   assert(!Group.empty() && "No CMOV instructions to convert");
628   ++NumOfOptimizedCmovGroups;
629 
630   // If the CMOV group is not packed, e.g., there are debug instructions between
631   // first CMOV and last CMOV, then pack the group and make the CMOV instruction
632   // consecutive by moving the debug instructions to after the last CMOV.
633   packCmovGroup(Group.front(), Group.back());
634 
635   // To convert a CMOVcc instruction, we actually have to insert the diamond
636   // control-flow pattern.  The incoming instruction knows the destination vreg
637   // to set, the condition code register to branch on, the true/false values to
638   // select between, and a branch opcode to use.
639 
640   // Before
641   // -----
642   // MBB:
643   //   cond = cmp ...
644   //   v1 = CMOVge t1, f1, cond
645   //   v2 = CMOVlt t2, f2, cond
646   //   v3 = CMOVge v1, f3, cond
647   //
648   // After
649   // -----
650   // MBB:
651   //   cond = cmp ...
652   //   jge %SinkMBB
653   //
654   // FalseMBB:
655   //   jmp %SinkMBB
656   //
657   // SinkMBB:
658   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
659   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
660   //                                          ; true-value with false-value
661   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
662   //                                          ; previous Phi instruction result
663 
664   MachineInstr &MI = *Group.front();
665   MachineInstr *LastCMOV = Group.back();
666   DebugLoc DL = MI.getDebugLoc();
667 
668   X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI));
669   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
670   // Potentially swap the condition codes so that any memory operand to a CMOV
671   // is in the *false* position instead of the *true* position. We can invert
672   // any non-memory operand CMOV instructions to cope with this and we ensure
673   // memory operand CMOVs are only included with a single condition code.
674   if (llvm::any_of(Group, [&](MachineInstr *I) {
675         return I->mayLoad() && X86::getCondFromCMov(*I) == CC;
676       }))
677     std::swap(CC, OppCC);
678 
679   MachineBasicBlock *MBB = MI.getParent();
680   MachineFunction::iterator It = ++MBB->getIterator();
681   MachineFunction *F = MBB->getParent();
682   const BasicBlock *BB = MBB->getBasicBlock();
683 
684   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
685   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
686   F->insert(It, FalseMBB);
687   F->insert(It, SinkMBB);
688 
689   // If the EFLAGS register isn't dead in the terminator, then claim that it's
690   // live into the sink and copy blocks.
691   if (checkEFLAGSLive(LastCMOV)) {
692     FalseMBB->addLiveIn(X86::EFLAGS);
693     SinkMBB->addLiveIn(X86::EFLAGS);
694   }
695 
696   // Transfer the remainder of BB and its successor edges to SinkMBB.
697   SinkMBB->splice(SinkMBB->begin(), MBB,
698                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
699   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
700 
701   // Add the false and sink blocks as its successors.
702   MBB->addSuccessor(FalseMBB);
703   MBB->addSuccessor(SinkMBB);
704 
705   // Create the conditional branch instruction.
706   BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
707 
708   // Add the sink block to the false block successors.
709   FalseMBB->addSuccessor(SinkMBB);
710 
711   MachineInstrBuilder MIB;
712   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
713   MachineBasicBlock::iterator MIItEnd =
714       std::next(MachineBasicBlock::iterator(LastCMOV));
715   MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
716   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
717 
718   // First we need to insert an explicit load on the false path for any memory
719   // operand. We also need to potentially do register rewriting here, but it is
720   // simpler as the memory operands are always on the false path so we can
721   // simply take that input, whatever it is.
722   DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
723   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
724     auto &MI = *MIIt++;
725     // Skip any CMOVs in this group which don't load from memory.
726     if (!MI.mayLoad()) {
727       // Remember the false-side register input.
728       Register FalseReg =
729           MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg();
730       // Walk back through any intermediate cmovs referenced.
731       while (true) {
732         auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
733         if (FRIt == FalseBBRegRewriteTable.end())
734           break;
735         FalseReg = FRIt->second;
736       }
737       FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
738       continue;
739     }
740 
741     // The condition must be the *opposite* of the one we've decided to branch
742     // on as the branch will go *around* the load and the load should happen
743     // when the CMOV condition is false.
744     assert(X86::getCondFromCMov(MI) == OppCC &&
745            "Can only handle memory-operand cmov instructions with a condition "
746            "opposite to the selected branch direction.");
747 
748     // The goal is to rewrite the cmov from:
749     //
750     //   MBB:
751     //     %A = CMOVcc %B (tied), (mem)
752     //
753     // to
754     //
755     //   MBB:
756     //     %A = CMOVcc %B (tied), %C
757     //   FalseMBB:
758     //     %C = MOV (mem)
759     //
760     // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
761     //
762     //   MBB:
763     //     JMP!cc SinkMBB
764     //   FalseMBB:
765     //     %C = MOV (mem)
766     //   SinkMBB:
767     //     %A = PHI [ %C, FalseMBB ], [ %B, MBB]
768 
769     // Get a fresh register to use as the destination of the MOV.
770     const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
771     Register TmpReg = MRI->createVirtualRegister(RC);
772 
773     SmallVector<MachineInstr *, 4> NewMIs;
774     bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
775                                              /*UnfoldLoad*/ true,
776                                              /*UnfoldStore*/ false, NewMIs);
777     (void)Unfolded;
778     assert(Unfolded && "Should never fail to unfold a loading cmov!");
779 
780     // Move the new CMOV to just before the old one and reset any impacted
781     // iterator.
782     auto *NewCMOV = NewMIs.pop_back_val();
783     assert(X86::getCondFromCMov(*NewCMOV) == OppCC &&
784            "Last new instruction isn't the expected CMOV!");
785     LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
786     MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
787     if (&*MIItBegin == &MI)
788       MIItBegin = MachineBasicBlock::iterator(NewCMOV);
789 
790     // Sink whatever instructions were needed to produce the unfolded operand
791     // into the false block.
792     for (auto *NewMI : NewMIs) {
793       LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
794       FalseMBB->insert(FalseInsertionPoint, NewMI);
795       // Re-map any operands that are from other cmovs to the inputs for this block.
796       for (auto &MOp : NewMI->uses()) {
797         if (!MOp.isReg())
798           continue;
799         auto It = FalseBBRegRewriteTable.find(MOp.getReg());
800         if (It == FalseBBRegRewriteTable.end())
801           continue;
802 
803         MOp.setReg(It->second);
804         // This might have been a kill when it referenced the cmov result, but
805         // it won't necessarily be once rewritten.
806         // FIXME: We could potentially improve this by tracking whether the
807         // operand to the cmov was also a kill, and then skipping the PHI node
808         // construction below.
809         MOp.setIsKill(false);
810       }
811     }
812     MBB->erase(&MI);
813 
814     // Add this PHI to the rewrite table.
815     FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
816   }
817 
818   // As we are creating the PHIs, we have to be careful if there is more than
819   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
820   // PHIs have to reference the individual true/false inputs from earlier PHIs.
821   // That also means that PHI construction must work forward from earlier to
822   // later, and that the code must maintain a mapping from earlier PHI's
823   // destination registers, and the registers that went into the PHI.
824   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
825 
826   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
827     Register DestReg = MIIt->getOperand(0).getReg();
828     Register Op1Reg = MIIt->getOperand(1).getReg();
829     Register Op2Reg = MIIt->getOperand(2).getReg();
830 
831     // If this CMOV we are processing is the opposite condition from the jump we
832     // generated, then we have to swap the operands for the PHI that is going to
833     // be generated.
834     if (X86::getCondFromCMov(*MIIt) == OppCC)
835       std::swap(Op1Reg, Op2Reg);
836 
837     auto Op1Itr = RegRewriteTable.find(Op1Reg);
838     if (Op1Itr != RegRewriteTable.end())
839       Op1Reg = Op1Itr->second.first;
840 
841     auto Op2Itr = RegRewriteTable.find(Op2Reg);
842     if (Op2Itr != RegRewriteTable.end())
843       Op2Reg = Op2Itr->second.second;
844 
845     //  SinkMBB:
846     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
847     //  ...
848     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
849               .addReg(Op1Reg)
850               .addMBB(FalseMBB)
851               .addReg(Op2Reg)
852               .addMBB(MBB);
853     (void)MIB;
854     LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
855     LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
856 
857     // Add this PHI to the rewrite table.
858     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
859   }
860 
861   // Now remove the CMOV(s).
862   MBB->erase(MIItBegin, MIItEnd);
863 
864   // Add new basic blocks to MachineLoopInfo.
865   if (MachineLoop *L = MLI->getLoopFor(MBB)) {
866     L->addBasicBlockToLoop(FalseMBB, MLI->getBase());
867     L->addBasicBlockToLoop(SinkMBB, MLI->getBase());
868   }
869 }
870 
871 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
872                       false, false)
873 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
874 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
875                     false, false)
876 
877 FunctionPass *llvm::createX86CmovConverterPass() {
878   return new X86CmovConverterPass();
879 }
880