xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CmovConversion.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
13 ///
14 /// Thus, the optimization applies under the following conditions:
15 ///   1. Consider as candidates only CMOVs in innermost loops (assume that
16 ///      most hotspots are represented by these loops).
17 ///   2. Given a group of CMOV instructions that are using the same EFLAGS def
18 ///      instruction:
19 ///      a. Consider them as candidates only if all have the same code condition
20 ///         or the opposite one to prevent generating more than one conditional
21 ///         jump per EFLAGS def instruction.
22 ///      b. Consider them as candidates only if all are profitable to be
23 ///         converted (assume that one bad conversion may cause a degradation).
24 ///   3. Apply conversion only for loops that are found profitable and only for
25 ///      CMOV candidates that were found profitable.
26 ///      a. A loop is considered profitable only if conversion will reduce its
27 ///         depth cost by some threshold.
28 ///      b. CMOV is considered profitable if the cost of its condition is higher
29 ///         than the average cost of its true-value and false-value by 25% of
30 ///         branch-misprediction-penalty. This assures no degradation even with
31 ///         25% branch misprediction.
32 ///
33 /// Note: This pass is assumed to run on SSA machine code.
34 //
35 //===----------------------------------------------------------------------===//
36 //
37 //  External interfaces:
38 //      FunctionPass *llvm::createX86CmovConverterPass();
39 //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "X86.h"
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "x86-cmov-conversion"
78 
79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
83 
84 // This internal switch can be used to turn off the cmov/branch optimization.
85 static cl::opt<bool>
86     EnableCmovConverter("x86-cmov-converter",
87                         cl::desc("Enable the X86 cmov-to-branch optimization."),
88                         cl::init(true), cl::Hidden);
89 
90 static cl::opt<unsigned>
91     GainCycleThreshold("x86-cmov-converter-threshold",
92                        cl::desc("Minimum gain per loop (in cycles) threshold."),
93                        cl::init(4), cl::Hidden);
94 
95 static cl::opt<bool> ForceMemOperand(
96     "x86-cmov-converter-force-mem-operand",
97     cl::desc("Convert cmovs to branches whenever they have memory operands."),
98     cl::init(true), cl::Hidden);
99 
100 static cl::opt<bool> ForceAll(
101     "x86-cmov-converter-force-all",
102     cl::desc("Convert all cmovs to branches."),
103     cl::init(false), cl::Hidden);
104 
105 namespace {
106 
107 /// Converts X86 cmov instructions into branches when profitable.
108 class X86CmovConverterPass : public MachineFunctionPass {
109 public:
110   X86CmovConverterPass() : MachineFunctionPass(ID) { }
111 
112   StringRef getPassName() const override { return "X86 cmov Conversion"; }
113   bool runOnMachineFunction(MachineFunction &MF) override;
114   void getAnalysisUsage(AnalysisUsage &AU) const override;
115 
116   /// Pass identification, replacement for typeid.
117   static char ID;
118 
119 private:
120   MachineRegisterInfo *MRI = nullptr;
121   const TargetInstrInfo *TII = nullptr;
122   const TargetRegisterInfo *TRI = nullptr;
123   MachineLoopInfo *MLI = nullptr;
124   TargetSchedModel TSchedModel;
125 
126   /// List of consecutive CMOV instructions.
127   using CmovGroup = SmallVector<MachineInstr *, 2>;
128   using CmovGroups = SmallVector<CmovGroup, 2>;
129 
130   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
131   /// CmovInstGroups accordingly.
132   ///
133   /// \param Blocks List of blocks to process.
134   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
135   /// \returns true iff it found any CMOV-group-candidate.
136   bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
137                              CmovGroups &CmovInstGroups,
138                              bool IncludeLoads = false);
139 
140   /// Check if it is profitable to transform each CMOV-group-candidates into
141   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
142   ///
143   /// \param Blocks List of blocks to process.
144   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
145   /// \returns true iff any CMOV-group-candidate remain.
146   bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
147                                         CmovGroups &CmovInstGroups);
148 
149   /// Convert the given list of consecutive CMOV instructions into a branch.
150   ///
151   /// \param Group Consecutive CMOV instructions to be converted into branch.
152   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
153 };
154 
155 } // end anonymous namespace
156 
157 char X86CmovConverterPass::ID = 0;
158 
159 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
160   MachineFunctionPass::getAnalysisUsage(AU);
161   AU.addRequired<MachineLoopInfo>();
162 }
163 
164 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
165   if (skipFunction(MF.getFunction()))
166     return false;
167   if (!EnableCmovConverter)
168     return false;
169 
170   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
171                     << "**********\n");
172 
173   bool Changed = false;
174   MLI = &getAnalysis<MachineLoopInfo>();
175   const TargetSubtargetInfo &STI = MF.getSubtarget();
176   MRI = &MF.getRegInfo();
177   TII = STI.getInstrInfo();
178   TRI = STI.getRegisterInfo();
179   TSchedModel.init(&STI);
180 
181   // Before we handle the more subtle cases of register-register CMOVs inside
182   // of potentially hot loops, we want to quickly remove all CMOVs (ForceAll) or
183   // the ones with a memory operand (ForceMemOperand option). The latter CMOV
184   // will risk a stall waiting for the load to complete that speculative
185   // execution behind a branch is better suited to handle on modern x86 chips.
186   if (ForceMemOperand || ForceAll) {
187     CmovGroups AllCmovGroups;
188     SmallVector<MachineBasicBlock *, 4> Blocks;
189     for (auto &MBB : MF)
190       Blocks.push_back(&MBB);
191     if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
192       for (auto &Group : AllCmovGroups) {
193         // Skip any group that doesn't do at least one memory operand cmov.
194         if (ForceMemOperand && !ForceAll &&
195             llvm::none_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
196           continue;
197 
198         // For CMOV groups which we can rewrite and which contain a memory load,
199         // always rewrite them. On x86, a CMOV will dramatically amplify any
200         // memory latency by blocking speculative execution.
201         Changed = true;
202         convertCmovInstsToBranches(Group);
203       }
204     }
205     // Early return as ForceAll converts all CmovGroups.
206     if (ForceAll)
207       return Changed;
208   }
209 
210   //===--------------------------------------------------------------------===//
211   // Register-operand Conversion Algorithm
212   // ---------
213   //   For each innermost loop
214   //     collectCmovCandidates() {
215   //       Find all CMOV-group-candidates.
216   //     }
217   //
218   //     checkForProfitableCmovCandidates() {
219   //       * Calculate both loop-depth and optimized-loop-depth.
220   //       * Use these depth to check for loop transformation profitability.
221   //       * Check for CMOV-group-candidate transformation profitability.
222   //     }
223   //
224   //     For each profitable CMOV-group-candidate
225   //       convertCmovInstsToBranches() {
226   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
227   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
228   //       }
229   //
230   // Note: For more details, see each function description.
231   //===--------------------------------------------------------------------===//
232 
233   // Build up the loops in pre-order.
234   SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end());
235   // Note that we need to check size on each iteration as we accumulate child
236   // loops.
237   for (int i = 0; i < (int)Loops.size(); ++i)
238     for (MachineLoop *Child : Loops[i]->getSubLoops())
239       Loops.push_back(Child);
240 
241   for (MachineLoop *CurrLoop : Loops) {
242     // Optimize only innermost loops.
243     if (!CurrLoop->getSubLoops().empty())
244       continue;
245 
246     // List of consecutive CMOV instructions to be processed.
247     CmovGroups CmovInstGroups;
248 
249     if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
250       continue;
251 
252     if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
253                                           CmovInstGroups))
254       continue;
255 
256     Changed = true;
257     for (auto &Group : CmovInstGroups)
258       convertCmovInstsToBranches(Group);
259   }
260 
261   return Changed;
262 }
263 
264 bool X86CmovConverterPass::collectCmovCandidates(
265     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
266     bool IncludeLoads) {
267   //===--------------------------------------------------------------------===//
268   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
269   //
270   // CMOV-group:
271   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
272   //
273   // CMOV-group-candidate:
274   //   CMOV-group where all the CMOV instructions are
275   //     1. consecutive.
276   //     2. have same condition code or opposite one.
277   //     3. have only operand registers (X86::CMOVrr).
278   //===--------------------------------------------------------------------===//
279   // List of possible improvement (TODO's):
280   // --------------------------------------
281   //   TODO: Add support for X86::CMOVrm instructions.
282   //   TODO: Add support for X86::SETcc instructions.
283   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
284   //===--------------------------------------------------------------------===//
285 
286   // Current processed CMOV-Group.
287   CmovGroup Group;
288   for (auto *MBB : Blocks) {
289     Group.clear();
290     // Condition code of first CMOV instruction current processed range and its
291     // opposite condition code.
292     X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID,
293                   MemOpCC = X86::COND_INVALID;
294     // Indicator of a non CMOVrr instruction in the current processed range.
295     bool FoundNonCMOVInst = false;
296     // Indicator for current processed CMOV-group if it should be skipped.
297     bool SkipGroup = false;
298 
299     for (auto &I : *MBB) {
300       // Skip debug instructions.
301       if (I.isDebugInstr())
302         continue;
303       X86::CondCode CC = X86::getCondFromCMov(I);
304       // Check if we found a X86::CMOVrr instruction.
305       if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
306         if (Group.empty()) {
307           // We found first CMOV in the range, reset flags.
308           FirstCC = CC;
309           FirstOppCC = X86::GetOppositeBranchCondition(CC);
310           // Clear out the prior group's memory operand CC.
311           MemOpCC = X86::COND_INVALID;
312           FoundNonCMOVInst = false;
313           SkipGroup = false;
314         }
315         Group.push_back(&I);
316         // Check if it is a non-consecutive CMOV instruction or it has different
317         // condition code than FirstCC or FirstOppCC.
318         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
319           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
320           SkipGroup = true;
321         if (I.mayLoad()) {
322           if (MemOpCC == X86::COND_INVALID)
323             // The first memory operand CMOV.
324             MemOpCC = CC;
325           else if (CC != MemOpCC)
326             // Can't handle mixed conditions with memory operands.
327             SkipGroup = true;
328         }
329         // Check if we were relying on zero-extending behavior of the CMOV.
330         if (!SkipGroup &&
331             llvm::any_of(
332                 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
333                 [&](MachineInstr &UseI) {
334                   return UseI.getOpcode() == X86::SUBREG_TO_REG;
335                 }))
336           // FIXME: We should model the cost of using an explicit MOV to handle
337           // the zero-extension rather than just refusing to handle this.
338           SkipGroup = true;
339         continue;
340       }
341       // If Group is empty, keep looking for first CMOV in the range.
342       if (Group.empty())
343         continue;
344 
345       // We found a non X86::CMOVrr instruction.
346       FoundNonCMOVInst = true;
347       // Check if this instruction define EFLAGS, to determine end of processed
348       // range, as there would be no more instructions using current EFLAGS def.
349       if (I.definesRegister(X86::EFLAGS)) {
350         // Check if current processed CMOV-group should not be skipped and add
351         // it as a CMOV-group-candidate.
352         if (!SkipGroup)
353           CmovInstGroups.push_back(Group);
354         else
355           ++NumOfSkippedCmovGroups;
356         Group.clear();
357       }
358     }
359     // End of basic block is considered end of range, check if current processed
360     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
361     if (Group.empty())
362       continue;
363     if (!SkipGroup)
364       CmovInstGroups.push_back(Group);
365     else
366       ++NumOfSkippedCmovGroups;
367   }
368 
369   NumOfCmovGroupCandidate += CmovInstGroups.size();
370   return !CmovInstGroups.empty();
371 }
372 
373 /// \returns Depth of CMOV instruction as if it was converted into branch.
374 /// \param TrueOpDepth depth cost of CMOV true value operand.
375 /// \param FalseOpDepth depth cost of CMOV false value operand.
376 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
377   // The depth of the result after branch conversion is
378   // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability.
379   // As we have no info about branch weight, we assume 75% for one and 25% for
380   // the other, and pick the result with the largest resulting depth.
381   return std::max(
382       divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4),
383       divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4));
384 }
385 
386 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
387     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
388   struct DepthInfo {
389     /// Depth of original loop.
390     unsigned Depth;
391     /// Depth of optimized loop.
392     unsigned OptDepth;
393   };
394   /// Number of loop iterations to calculate depth for ?!
395   static const unsigned LoopIterations = 2;
396   DenseMap<MachineInstr *, DepthInfo> DepthMap;
397   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
398   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
399   /// For each register type maps the register to its last def instruction.
400   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
401   /// Maps register operand to its def instruction, which can be nullptr if it
402   /// is unknown (e.g., operand is defined outside the loop).
403   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
404 
405   // Set depth of unknown instruction (i.e., nullptr) to zero.
406   DepthMap[nullptr] = {0, 0};
407 
408   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
409   for (auto &Group : CmovInstGroups)
410     CmovInstructions.insert(Group.begin(), Group.end());
411 
412   //===--------------------------------------------------------------------===//
413   // Step 1: Calculate instruction depth and loop depth.
414   // Optimized-Loop:
415   //   loop with CMOV-group-candidates converted into branches.
416   //
417   // Instruction-Depth:
418   //   instruction latency + max operand depth.
419   //     * For CMOV instruction in optimized loop the depth is calculated as:
420   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
421   // TODO: Find a better way to estimate the latency of the branch instruction
422   //       rather than using the CMOV latency.
423   //
424   // Loop-Depth:
425   //   max instruction depth of all instructions in the loop.
426   // Note: instruction with max depth represents the critical-path in the loop.
427   //
428   // Loop-Depth[i]:
429   //   Loop-Depth calculated for first `i` iterations.
430   //   Note: it is enough to calculate depth for up to two iterations.
431   //
432   // Depth-Diff[i]:
433   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
434   //===--------------------------------------------------------------------===//
435   for (unsigned I = 0; I < LoopIterations; ++I) {
436     DepthInfo &MaxDepth = LoopDepth[I];
437     for (auto *MBB : Blocks) {
438       // Clear physical registers Def map.
439       RegDefMaps[PhyRegType].clear();
440       for (MachineInstr &MI : *MBB) {
441         // Skip debug instructions.
442         if (MI.isDebugInstr())
443           continue;
444         unsigned MIDepth = 0;
445         unsigned MIDepthOpt = 0;
446         bool IsCMOV = CmovInstructions.count(&MI);
447         for (auto &MO : MI.uses()) {
448           // Checks for "isUse()" as "uses()" returns also implicit definitions.
449           if (!MO.isReg() || !MO.isUse())
450             continue;
451           Register Reg = MO.getReg();
452           auto &RDM = RegDefMaps[Reg.isVirtual()];
453           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
454             OperandToDefMap[&MO] = DefMI;
455             DepthInfo Info = DepthMap.lookup(DefMI);
456             MIDepth = std::max(MIDepth, Info.Depth);
457             if (!IsCMOV)
458               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
459           }
460         }
461 
462         if (IsCMOV)
463           MIDepthOpt = getDepthOfOptCmov(
464               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
465               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
466 
467         // Iterates over all operands to handle implicit definitions as well.
468         for (auto &MO : MI.operands()) {
469           if (!MO.isReg() || !MO.isDef())
470             continue;
471           Register Reg = MO.getReg();
472           RegDefMaps[Reg.isVirtual()][Reg] = &MI;
473         }
474 
475         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
476         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
477         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
478         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
479       }
480     }
481   }
482 
483   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
484                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
485 
486   //===--------------------------------------------------------------------===//
487   // Step 2: Check if Loop worth to be optimized.
488   // Worth-Optimize-Loop:
489   //   case 1: Diff[1] == Diff[0]
490   //           Critical-path is iteration independent - there is no dependency
491   //           of critical-path instructions on critical-path instructions of
492   //           previous iteration.
493   //           Thus, it is enough to check gain percent of 1st iteration -
494   //           To be conservative, the optimized loop need to have a depth of
495   //           12.5% cycles less than original loop, per iteration.
496   //
497   //   case 2: Diff[1] > Diff[0]
498   //           Critical-path is iteration dependent - there is dependency of
499   //           critical-path instructions on critical-path instructions of
500   //           previous iteration.
501   //           Thus, check the gain percent of the 2nd iteration (similar to the
502   //           previous case), but it is also required to check the gradient of
503   //           the gain - the change in Depth-Diff compared to the change in
504   //           Loop-Depth between 1st and 2nd iterations.
505   //           To be conservative, the gradient need to be at least 50%.
506   //
507   //   In addition, In order not to optimize loops with very small gain, the
508   //   gain (in cycles) after 2nd iteration should not be less than a given
509   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
510   //
511   // If loop is not worth optimizing, remove all CMOV-group-candidates.
512   //===--------------------------------------------------------------------===//
513   if (Diff[1] < GainCycleThreshold)
514     return false;
515 
516   bool WorthOptLoop = false;
517   if (Diff[1] == Diff[0])
518     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
519   else if (Diff[1] > Diff[0])
520     WorthOptLoop =
521         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
522         (Diff[1] * 8 >= LoopDepth[1].Depth);
523 
524   if (!WorthOptLoop)
525     return false;
526 
527   ++NumOfLoopCandidate;
528 
529   //===--------------------------------------------------------------------===//
530   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
531   // Worth-Optimize-Group:
532   //   Iff it is worth to optimize all CMOV instructions in the group.
533   //
534   // Worth-Optimize-CMOV:
535   //   Predicted branch is faster than CMOV by the difference between depth of
536   //   condition operand and depth of taken (predicted) value operand.
537   //   To be conservative, the gain of such CMOV transformation should cover at
538   //   at least 25% of branch-misprediction-penalty.
539   //===--------------------------------------------------------------------===//
540   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
541   CmovGroups TempGroups;
542   std::swap(TempGroups, CmovInstGroups);
543   for (auto &Group : TempGroups) {
544     bool WorthOpGroup = true;
545     for (auto *MI : Group) {
546       // Avoid CMOV instruction which value is used as a pointer to load from.
547       // This is another conservative check to avoid converting CMOV instruction
548       // used with tree-search like algorithm, where the branch is unpredicted.
549       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
550       if (!UIs.empty() && ++UIs.begin() == UIs.end()) {
551         unsigned Op = UIs.begin()->getOpcode();
552         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
553           WorthOpGroup = false;
554           break;
555         }
556       }
557 
558       unsigned CondCost =
559           DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth;
560       unsigned ValCost = getDepthOfOptCmov(
561           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
562           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
563       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
564         WorthOpGroup = false;
565         break;
566       }
567     }
568 
569     if (WorthOpGroup)
570       CmovInstGroups.push_back(Group);
571   }
572 
573   return !CmovInstGroups.empty();
574 }
575 
576 static bool checkEFLAGSLive(MachineInstr *MI) {
577   if (MI->killsRegister(X86::EFLAGS))
578     return false;
579 
580   // The EFLAGS operand of MI might be missing a kill marker.
581   // Figure out whether EFLAGS operand should LIVE after MI instruction.
582   MachineBasicBlock *BB = MI->getParent();
583   MachineBasicBlock::iterator ItrMI = MI;
584 
585   // Scan forward through BB for a use/def of EFLAGS.
586   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
587     if (I->readsRegister(X86::EFLAGS))
588       return true;
589     if (I->definesRegister(X86::EFLAGS))
590       return false;
591   }
592 
593   // We hit the end of the block, check whether EFLAGS is live into a successor.
594   for (MachineBasicBlock *Succ : BB->successors())
595     if (Succ->isLiveIn(X86::EFLAGS))
596       return true;
597 
598   return false;
599 }
600 
601 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
602 /// group of CMOV instructions, which may contain debug instructions in between,
603 /// move all debug instructions to after the last CMOV instruction, making the
604 /// CMOV group consecutive.
605 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
606   assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID &&
607          "Last instruction in a CMOV group must be a CMOV instruction");
608 
609   SmallVector<MachineInstr *, 2> DBGInstructions;
610   for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
611     if (I->isDebugInstr())
612       DBGInstructions.push_back(&*I);
613   }
614 
615   // Splice the debug instruction after the cmov group.
616   MachineBasicBlock *MBB = First->getParent();
617   for (auto *MI : DBGInstructions)
618     MBB->insertAfter(Last, MI->removeFromParent());
619 }
620 
621 void X86CmovConverterPass::convertCmovInstsToBranches(
622     SmallVectorImpl<MachineInstr *> &Group) const {
623   assert(!Group.empty() && "No CMOV instructions to convert");
624   ++NumOfOptimizedCmovGroups;
625 
626   // If the CMOV group is not packed, e.g., there are debug instructions between
627   // first CMOV and last CMOV, then pack the group and make the CMOV instruction
628   // consecutive by moving the debug instructions to after the last CMOV.
629   packCmovGroup(Group.front(), Group.back());
630 
631   // To convert a CMOVcc instruction, we actually have to insert the diamond
632   // control-flow pattern.  The incoming instruction knows the destination vreg
633   // to set, the condition code register to branch on, the true/false values to
634   // select between, and a branch opcode to use.
635 
636   // Before
637   // -----
638   // MBB:
639   //   cond = cmp ...
640   //   v1 = CMOVge t1, f1, cond
641   //   v2 = CMOVlt t2, f2, cond
642   //   v3 = CMOVge v1, f3, cond
643   //
644   // After
645   // -----
646   // MBB:
647   //   cond = cmp ...
648   //   jge %SinkMBB
649   //
650   // FalseMBB:
651   //   jmp %SinkMBB
652   //
653   // SinkMBB:
654   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
655   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
656   //                                          ; true-value with false-value
657   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
658   //                                          ; previous Phi instruction result
659 
660   MachineInstr &MI = *Group.front();
661   MachineInstr *LastCMOV = Group.back();
662   DebugLoc DL = MI.getDebugLoc();
663 
664   X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI));
665   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
666   // Potentially swap the condition codes so that any memory operand to a CMOV
667   // is in the *false* position instead of the *true* position. We can invert
668   // any non-memory operand CMOV instructions to cope with this and we ensure
669   // memory operand CMOVs are only included with a single condition code.
670   if (llvm::any_of(Group, [&](MachineInstr *I) {
671         return I->mayLoad() && X86::getCondFromCMov(*I) == CC;
672       }))
673     std::swap(CC, OppCC);
674 
675   MachineBasicBlock *MBB = MI.getParent();
676   MachineFunction::iterator It = ++MBB->getIterator();
677   MachineFunction *F = MBB->getParent();
678   const BasicBlock *BB = MBB->getBasicBlock();
679 
680   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
681   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
682   F->insert(It, FalseMBB);
683   F->insert(It, SinkMBB);
684 
685   // If the EFLAGS register isn't dead in the terminator, then claim that it's
686   // live into the sink and copy blocks.
687   if (checkEFLAGSLive(LastCMOV)) {
688     FalseMBB->addLiveIn(X86::EFLAGS);
689     SinkMBB->addLiveIn(X86::EFLAGS);
690   }
691 
692   // Transfer the remainder of BB and its successor edges to SinkMBB.
693   SinkMBB->splice(SinkMBB->begin(), MBB,
694                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
695   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
696 
697   // Add the false and sink blocks as its successors.
698   MBB->addSuccessor(FalseMBB);
699   MBB->addSuccessor(SinkMBB);
700 
701   // Create the conditional branch instruction.
702   BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
703 
704   // Add the sink block to the false block successors.
705   FalseMBB->addSuccessor(SinkMBB);
706 
707   MachineInstrBuilder MIB;
708   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
709   MachineBasicBlock::iterator MIItEnd =
710       std::next(MachineBasicBlock::iterator(LastCMOV));
711   MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
712   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
713 
714   // First we need to insert an explicit load on the false path for any memory
715   // operand. We also need to potentially do register rewriting here, but it is
716   // simpler as the memory operands are always on the false path so we can
717   // simply take that input, whatever it is.
718   DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
719   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
720     auto &MI = *MIIt++;
721     // Skip any CMOVs in this group which don't load from memory.
722     if (!MI.mayLoad()) {
723       // Remember the false-side register input.
724       Register FalseReg =
725           MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg();
726       // Walk back through any intermediate cmovs referenced.
727       while (true) {
728         auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
729         if (FRIt == FalseBBRegRewriteTable.end())
730           break;
731         FalseReg = FRIt->second;
732       }
733       FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
734       continue;
735     }
736 
737     // The condition must be the *opposite* of the one we've decided to branch
738     // on as the branch will go *around* the load and the load should happen
739     // when the CMOV condition is false.
740     assert(X86::getCondFromCMov(MI) == OppCC &&
741            "Can only handle memory-operand cmov instructions with a condition "
742            "opposite to the selected branch direction.");
743 
744     // The goal is to rewrite the cmov from:
745     //
746     //   MBB:
747     //     %A = CMOVcc %B (tied), (mem)
748     //
749     // to
750     //
751     //   MBB:
752     //     %A = CMOVcc %B (tied), %C
753     //   FalseMBB:
754     //     %C = MOV (mem)
755     //
756     // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
757     //
758     //   MBB:
759     //     JMP!cc SinkMBB
760     //   FalseMBB:
761     //     %C = MOV (mem)
762     //   SinkMBB:
763     //     %A = PHI [ %C, FalseMBB ], [ %B, MBB]
764 
765     // Get a fresh register to use as the destination of the MOV.
766     const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
767     Register TmpReg = MRI->createVirtualRegister(RC);
768 
769     SmallVector<MachineInstr *, 4> NewMIs;
770     bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
771                                              /*UnfoldLoad*/ true,
772                                              /*UnfoldStore*/ false, NewMIs);
773     (void)Unfolded;
774     assert(Unfolded && "Should never fail to unfold a loading cmov!");
775 
776     // Move the new CMOV to just before the old one and reset any impacted
777     // iterator.
778     auto *NewCMOV = NewMIs.pop_back_val();
779     assert(X86::getCondFromCMov(*NewCMOV) == OppCC &&
780            "Last new instruction isn't the expected CMOV!");
781     LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
782     MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
783     if (&*MIItBegin == &MI)
784       MIItBegin = MachineBasicBlock::iterator(NewCMOV);
785 
786     // Sink whatever instructions were needed to produce the unfolded operand
787     // into the false block.
788     for (auto *NewMI : NewMIs) {
789       LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
790       FalseMBB->insert(FalseInsertionPoint, NewMI);
791       // Re-map any operands that are from other cmovs to the inputs for this block.
792       for (auto &MOp : NewMI->uses()) {
793         if (!MOp.isReg())
794           continue;
795         auto It = FalseBBRegRewriteTable.find(MOp.getReg());
796         if (It == FalseBBRegRewriteTable.end())
797           continue;
798 
799         MOp.setReg(It->second);
800         // This might have been a kill when it referenced the cmov result, but
801         // it won't necessarily be once rewritten.
802         // FIXME: We could potentially improve this by tracking whether the
803         // operand to the cmov was also a kill, and then skipping the PHI node
804         // construction below.
805         MOp.setIsKill(false);
806       }
807     }
808     MBB->erase(&MI);
809 
810     // Add this PHI to the rewrite table.
811     FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
812   }
813 
814   // As we are creating the PHIs, we have to be careful if there is more than
815   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
816   // PHIs have to reference the individual true/false inputs from earlier PHIs.
817   // That also means that PHI construction must work forward from earlier to
818   // later, and that the code must maintain a mapping from earlier PHI's
819   // destination registers, and the registers that went into the PHI.
820   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
821 
822   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
823     Register DestReg = MIIt->getOperand(0).getReg();
824     Register Op1Reg = MIIt->getOperand(1).getReg();
825     Register Op2Reg = MIIt->getOperand(2).getReg();
826 
827     // If this CMOV we are processing is the opposite condition from the jump we
828     // generated, then we have to swap the operands for the PHI that is going to
829     // be generated.
830     if (X86::getCondFromCMov(*MIIt) == OppCC)
831       std::swap(Op1Reg, Op2Reg);
832 
833     auto Op1Itr = RegRewriteTable.find(Op1Reg);
834     if (Op1Itr != RegRewriteTable.end())
835       Op1Reg = Op1Itr->second.first;
836 
837     auto Op2Itr = RegRewriteTable.find(Op2Reg);
838     if (Op2Itr != RegRewriteTable.end())
839       Op2Reg = Op2Itr->second.second;
840 
841     //  SinkMBB:
842     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
843     //  ...
844     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
845               .addReg(Op1Reg)
846               .addMBB(FalseMBB)
847               .addReg(Op2Reg)
848               .addMBB(MBB);
849     (void)MIB;
850     LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
851     LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
852 
853     // Add this PHI to the rewrite table.
854     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
855   }
856 
857   // Now remove the CMOV(s).
858   MBB->erase(MIItBegin, MIItEnd);
859 
860   // Add new basic blocks to MachineLoopInfo.
861   if (MachineLoop *L = MLI->getLoopFor(MBB)) {
862     L->addBasicBlockToLoop(FalseMBB, MLI->getBase());
863     L->addBasicBlockToLoop(SinkMBB, MLI->getBase());
864   }
865 }
866 
867 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
868                       false, false)
869 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
870 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
871                     false, false)
872 
873 FunctionPass *llvm::createX86CmovConverterPass() {
874   return new X86CmovConverterPass();
875 }
876