1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements a pass that converts X86 cmov instructions into 11 /// branches when profitable. This pass is conservative. It transforms if and 12 /// only if it can guarantee a gain with high confidence. 13 /// 14 /// Thus, the optimization applies under the following conditions: 15 /// 1. Consider as candidates only CMOVs in innermost loops (assume that 16 /// most hotspots are represented by these loops). 17 /// 2. Given a group of CMOV instructions that are using the same EFLAGS def 18 /// instruction: 19 /// a. Consider them as candidates only if all have the same code condition 20 /// or the opposite one to prevent generating more than one conditional 21 /// jump per EFLAGS def instruction. 22 /// b. Consider them as candidates only if all are profitable to be 23 /// converted (assume that one bad conversion may cause a degradation). 24 /// 3. Apply conversion only for loops that are found profitable and only for 25 /// CMOV candidates that were found profitable. 26 /// a. A loop is considered profitable only if conversion will reduce its 27 /// depth cost by some threshold. 28 /// b. CMOV is considered profitable if the cost of its condition is higher 29 /// than the average cost of its true-value and false-value by 25% of 30 /// branch-misprediction-penalty. This assures no degradation even with 31 /// 25% branch misprediction. 32 /// 33 /// Note: This pass is assumed to run on SSA machine code. 34 // 35 //===----------------------------------------------------------------------===// 36 // 37 // External interfaces: 38 // FunctionPass *llvm::createX86CmovConverterPass(); 39 // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF); 40 // 41 //===----------------------------------------------------------------------===// 42 43 #include "X86.h" 44 #include "X86InstrInfo.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/STLExtras.h" 48 #include "llvm/ADT/SmallPtrSet.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/CodeGen/MachineBasicBlock.h" 52 #include "llvm/CodeGen/MachineFunction.h" 53 #include "llvm/CodeGen/MachineFunctionPass.h" 54 #include "llvm/CodeGen/MachineInstr.h" 55 #include "llvm/CodeGen/MachineInstrBuilder.h" 56 #include "llvm/CodeGen/MachineLoopInfo.h" 57 #include "llvm/CodeGen/MachineOperand.h" 58 #include "llvm/CodeGen/MachineRegisterInfo.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSchedule.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/MC/MCSchedule.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "x86-cmov-conversion" 78 79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups"); 80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates"); 81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops"); 82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups"); 83 84 // This internal switch can be used to turn off the cmov/branch optimization. 85 static cl::opt<bool> 86 EnableCmovConverter("x86-cmov-converter", 87 cl::desc("Enable the X86 cmov-to-branch optimization."), 88 cl::init(true), cl::Hidden); 89 90 static cl::opt<unsigned> 91 GainCycleThreshold("x86-cmov-converter-threshold", 92 cl::desc("Minimum gain per loop (in cycles) threshold."), 93 cl::init(4), cl::Hidden); 94 95 static cl::opt<bool> ForceMemOperand( 96 "x86-cmov-converter-force-mem-operand", 97 cl::desc("Convert cmovs to branches whenever they have memory operands."), 98 cl::init(true), cl::Hidden); 99 100 namespace { 101 102 /// Converts X86 cmov instructions into branches when profitable. 103 class X86CmovConverterPass : public MachineFunctionPass { 104 public: 105 X86CmovConverterPass() : MachineFunctionPass(ID) { } 106 107 StringRef getPassName() const override { return "X86 cmov Conversion"; } 108 bool runOnMachineFunction(MachineFunction &MF) override; 109 void getAnalysisUsage(AnalysisUsage &AU) const override; 110 111 /// Pass identification, replacement for typeid. 112 static char ID; 113 114 private: 115 MachineRegisterInfo *MRI = nullptr; 116 const TargetInstrInfo *TII = nullptr; 117 const TargetRegisterInfo *TRI = nullptr; 118 MachineLoopInfo *MLI = nullptr; 119 TargetSchedModel TSchedModel; 120 121 /// List of consecutive CMOV instructions. 122 using CmovGroup = SmallVector<MachineInstr *, 2>; 123 using CmovGroups = SmallVector<CmovGroup, 2>; 124 125 /// Collect all CMOV-group-candidates in \p CurrLoop and update \p 126 /// CmovInstGroups accordingly. 127 /// 128 /// \param Blocks List of blocks to process. 129 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. 130 /// \returns true iff it found any CMOV-group-candidate. 131 bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, 132 CmovGroups &CmovInstGroups, 133 bool IncludeLoads = false); 134 135 /// Check if it is profitable to transform each CMOV-group-candidates into 136 /// branch. Remove all groups that are not profitable from \p CmovInstGroups. 137 /// 138 /// \param Blocks List of blocks to process. 139 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. 140 /// \returns true iff any CMOV-group-candidate remain. 141 bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, 142 CmovGroups &CmovInstGroups); 143 144 /// Convert the given list of consecutive CMOV instructions into a branch. 145 /// 146 /// \param Group Consecutive CMOV instructions to be converted into branch. 147 void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const; 148 }; 149 150 } // end anonymous namespace 151 152 char X86CmovConverterPass::ID = 0; 153 154 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const { 155 MachineFunctionPass::getAnalysisUsage(AU); 156 AU.addRequired<MachineLoopInfo>(); 157 } 158 159 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) { 160 if (skipFunction(MF.getFunction())) 161 return false; 162 if (!EnableCmovConverter) 163 return false; 164 165 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() 166 << "**********\n"); 167 168 bool Changed = false; 169 MLI = &getAnalysis<MachineLoopInfo>(); 170 const TargetSubtargetInfo &STI = MF.getSubtarget(); 171 MRI = &MF.getRegInfo(); 172 TII = STI.getInstrInfo(); 173 TRI = STI.getRegisterInfo(); 174 TSchedModel.init(&STI); 175 176 // Before we handle the more subtle cases of register-register CMOVs inside 177 // of potentially hot loops, we want to quickly remove all CMOVs with 178 // a memory operand. The CMOV will risk a stall waiting for the load to 179 // complete that speculative execution behind a branch is better suited to 180 // handle on modern x86 chips. 181 if (ForceMemOperand) { 182 CmovGroups AllCmovGroups; 183 SmallVector<MachineBasicBlock *, 4> Blocks; 184 for (auto &MBB : MF) 185 Blocks.push_back(&MBB); 186 if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) { 187 for (auto &Group : AllCmovGroups) { 188 // Skip any group that doesn't do at least one memory operand cmov. 189 if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); })) 190 continue; 191 192 // For CMOV groups which we can rewrite and which contain a memory load, 193 // always rewrite them. On x86, a CMOV will dramatically amplify any 194 // memory latency by blocking speculative execution. 195 Changed = true; 196 convertCmovInstsToBranches(Group); 197 } 198 } 199 } 200 201 //===--------------------------------------------------------------------===// 202 // Register-operand Conversion Algorithm 203 // --------- 204 // For each inner most loop 205 // collectCmovCandidates() { 206 // Find all CMOV-group-candidates. 207 // } 208 // 209 // checkForProfitableCmovCandidates() { 210 // * Calculate both loop-depth and optimized-loop-depth. 211 // * Use these depth to check for loop transformation profitability. 212 // * Check for CMOV-group-candidate transformation profitability. 213 // } 214 // 215 // For each profitable CMOV-group-candidate 216 // convertCmovInstsToBranches() { 217 // * Create FalseBB, SinkBB, Conditional branch to SinkBB. 218 // * Replace each CMOV instruction with a PHI instruction in SinkBB. 219 // } 220 // 221 // Note: For more details, see each function description. 222 //===--------------------------------------------------------------------===// 223 224 // Build up the loops in pre-order. 225 SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end()); 226 // Note that we need to check size on each iteration as we accumulate child 227 // loops. 228 for (int i = 0; i < (int)Loops.size(); ++i) 229 for (MachineLoop *Child : Loops[i]->getSubLoops()) 230 Loops.push_back(Child); 231 232 for (MachineLoop *CurrLoop : Loops) { 233 // Optimize only inner most loops. 234 if (!CurrLoop->getSubLoops().empty()) 235 continue; 236 237 // List of consecutive CMOV instructions to be processed. 238 CmovGroups CmovInstGroups; 239 240 if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups)) 241 continue; 242 243 if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(), 244 CmovInstGroups)) 245 continue; 246 247 Changed = true; 248 for (auto &Group : CmovInstGroups) 249 convertCmovInstsToBranches(Group); 250 } 251 252 return Changed; 253 } 254 255 bool X86CmovConverterPass::collectCmovCandidates( 256 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups, 257 bool IncludeLoads) { 258 //===--------------------------------------------------------------------===// 259 // Collect all CMOV-group-candidates and add them into CmovInstGroups. 260 // 261 // CMOV-group: 262 // CMOV instructions, in same MBB, that uses same EFLAGS def instruction. 263 // 264 // CMOV-group-candidate: 265 // CMOV-group where all the CMOV instructions are 266 // 1. consecutive. 267 // 2. have same condition code or opposite one. 268 // 3. have only operand registers (X86::CMOVrr). 269 //===--------------------------------------------------------------------===// 270 // List of possible improvement (TODO's): 271 // -------------------------------------- 272 // TODO: Add support for X86::CMOVrm instructions. 273 // TODO: Add support for X86::SETcc instructions. 274 // TODO: Add support for CMOV-groups with non consecutive CMOV instructions. 275 //===--------------------------------------------------------------------===// 276 277 // Current processed CMOV-Group. 278 CmovGroup Group; 279 for (auto *MBB : Blocks) { 280 Group.clear(); 281 // Condition code of first CMOV instruction current processed range and its 282 // opposite condition code. 283 X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID, 284 MemOpCC = X86::COND_INVALID; 285 // Indicator of a non CMOVrr instruction in the current processed range. 286 bool FoundNonCMOVInst = false; 287 // Indicator for current processed CMOV-group if it should be skipped. 288 bool SkipGroup = false; 289 290 for (auto &I : *MBB) { 291 // Skip debug instructions. 292 if (I.isDebugInstr()) 293 continue; 294 X86::CondCode CC = X86::getCondFromCMov(I); 295 // Check if we found a X86::CMOVrr instruction. 296 if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) { 297 if (Group.empty()) { 298 // We found first CMOV in the range, reset flags. 299 FirstCC = CC; 300 FirstOppCC = X86::GetOppositeBranchCondition(CC); 301 // Clear out the prior group's memory operand CC. 302 MemOpCC = X86::COND_INVALID; 303 FoundNonCMOVInst = false; 304 SkipGroup = false; 305 } 306 Group.push_back(&I); 307 // Check if it is a non-consecutive CMOV instruction or it has different 308 // condition code than FirstCC or FirstOppCC. 309 if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC)) 310 // Mark the SKipGroup indicator to skip current processed CMOV-Group. 311 SkipGroup = true; 312 if (I.mayLoad()) { 313 if (MemOpCC == X86::COND_INVALID) 314 // The first memory operand CMOV. 315 MemOpCC = CC; 316 else if (CC != MemOpCC) 317 // Can't handle mixed conditions with memory operands. 318 SkipGroup = true; 319 } 320 // Check if we were relying on zero-extending behavior of the CMOV. 321 if (!SkipGroup && 322 llvm::any_of( 323 MRI->use_nodbg_instructions(I.defs().begin()->getReg()), 324 [&](MachineInstr &UseI) { 325 return UseI.getOpcode() == X86::SUBREG_TO_REG; 326 })) 327 // FIXME: We should model the cost of using an explicit MOV to handle 328 // the zero-extension rather than just refusing to handle this. 329 SkipGroup = true; 330 continue; 331 } 332 // If Group is empty, keep looking for first CMOV in the range. 333 if (Group.empty()) 334 continue; 335 336 // We found a non X86::CMOVrr instruction. 337 FoundNonCMOVInst = true; 338 // Check if this instruction define EFLAGS, to determine end of processed 339 // range, as there would be no more instructions using current EFLAGS def. 340 if (I.definesRegister(X86::EFLAGS)) { 341 // Check if current processed CMOV-group should not be skipped and add 342 // it as a CMOV-group-candidate. 343 if (!SkipGroup) 344 CmovInstGroups.push_back(Group); 345 else 346 ++NumOfSkippedCmovGroups; 347 Group.clear(); 348 } 349 } 350 // End of basic block is considered end of range, check if current processed 351 // CMOV-group should not be skipped and add it as a CMOV-group-candidate. 352 if (Group.empty()) 353 continue; 354 if (!SkipGroup) 355 CmovInstGroups.push_back(Group); 356 else 357 ++NumOfSkippedCmovGroups; 358 } 359 360 NumOfCmovGroupCandidate += CmovInstGroups.size(); 361 return !CmovInstGroups.empty(); 362 } 363 364 /// \returns Depth of CMOV instruction as if it was converted into branch. 365 /// \param TrueOpDepth depth cost of CMOV true value operand. 366 /// \param FalseOpDepth depth cost of CMOV false value operand. 367 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) { 368 // The depth of the result after branch conversion is 369 // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability. 370 // As we have no info about branch weight, we assume 75% for one and 25% for 371 // the other, and pick the result with the largest resulting depth. 372 return std::max( 373 divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4), 374 divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4)); 375 } 376 377 bool X86CmovConverterPass::checkForProfitableCmovCandidates( 378 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) { 379 struct DepthInfo { 380 /// Depth of original loop. 381 unsigned Depth; 382 /// Depth of optimized loop. 383 unsigned OptDepth; 384 }; 385 /// Number of loop iterations to calculate depth for ?! 386 static const unsigned LoopIterations = 2; 387 DenseMap<MachineInstr *, DepthInfo> DepthMap; 388 DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}}; 389 enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 }; 390 /// For each register type maps the register to its last def instruction. 391 DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum]; 392 /// Maps register operand to its def instruction, which can be nullptr if it 393 /// is unknown (e.g., operand is defined outside the loop). 394 DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap; 395 396 // Set depth of unknown instruction (i.e., nullptr) to zero. 397 DepthMap[nullptr] = {0, 0}; 398 399 SmallPtrSet<MachineInstr *, 4> CmovInstructions; 400 for (auto &Group : CmovInstGroups) 401 CmovInstructions.insert(Group.begin(), Group.end()); 402 403 //===--------------------------------------------------------------------===// 404 // Step 1: Calculate instruction depth and loop depth. 405 // Optimized-Loop: 406 // loop with CMOV-group-candidates converted into branches. 407 // 408 // Instruction-Depth: 409 // instruction latency + max operand depth. 410 // * For CMOV instruction in optimized loop the depth is calculated as: 411 // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth) 412 // TODO: Find a better way to estimate the latency of the branch instruction 413 // rather than using the CMOV latency. 414 // 415 // Loop-Depth: 416 // max instruction depth of all instructions in the loop. 417 // Note: instruction with max depth represents the critical-path in the loop. 418 // 419 // Loop-Depth[i]: 420 // Loop-Depth calculated for first `i` iterations. 421 // Note: it is enough to calculate depth for up to two iterations. 422 // 423 // Depth-Diff[i]: 424 // Number of cycles saved in first 'i` iterations by optimizing the loop. 425 //===--------------------------------------------------------------------===// 426 for (unsigned I = 0; I < LoopIterations; ++I) { 427 DepthInfo &MaxDepth = LoopDepth[I]; 428 for (auto *MBB : Blocks) { 429 // Clear physical registers Def map. 430 RegDefMaps[PhyRegType].clear(); 431 for (MachineInstr &MI : *MBB) { 432 // Skip debug instructions. 433 if (MI.isDebugInstr()) 434 continue; 435 unsigned MIDepth = 0; 436 unsigned MIDepthOpt = 0; 437 bool IsCMOV = CmovInstructions.count(&MI); 438 for (auto &MO : MI.uses()) { 439 // Checks for "isUse()" as "uses()" returns also implicit definitions. 440 if (!MO.isReg() || !MO.isUse()) 441 continue; 442 Register Reg = MO.getReg(); 443 auto &RDM = RegDefMaps[Reg.isVirtual()]; 444 if (MachineInstr *DefMI = RDM.lookup(Reg)) { 445 OperandToDefMap[&MO] = DefMI; 446 DepthInfo Info = DepthMap.lookup(DefMI); 447 MIDepth = std::max(MIDepth, Info.Depth); 448 if (!IsCMOV) 449 MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth); 450 } 451 } 452 453 if (IsCMOV) 454 MIDepthOpt = getDepthOfOptCmov( 455 DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth, 456 DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth); 457 458 // Iterates over all operands to handle implicit definitions as well. 459 for (auto &MO : MI.operands()) { 460 if (!MO.isReg() || !MO.isDef()) 461 continue; 462 Register Reg = MO.getReg(); 463 RegDefMaps[Reg.isVirtual()][Reg] = &MI; 464 } 465 466 unsigned Latency = TSchedModel.computeInstrLatency(&MI); 467 DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency}; 468 MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth); 469 MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt); 470 } 471 } 472 } 473 474 unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth, 475 LoopDepth[1].Depth - LoopDepth[1].OptDepth}; 476 477 //===--------------------------------------------------------------------===// 478 // Step 2: Check if Loop worth to be optimized. 479 // Worth-Optimize-Loop: 480 // case 1: Diff[1] == Diff[0] 481 // Critical-path is iteration independent - there is no dependency 482 // of critical-path instructions on critical-path instructions of 483 // previous iteration. 484 // Thus, it is enough to check gain percent of 1st iteration - 485 // To be conservative, the optimized loop need to have a depth of 486 // 12.5% cycles less than original loop, per iteration. 487 // 488 // case 2: Diff[1] > Diff[0] 489 // Critical-path is iteration dependent - there is dependency of 490 // critical-path instructions on critical-path instructions of 491 // previous iteration. 492 // Thus, check the gain percent of the 2nd iteration (similar to the 493 // previous case), but it is also required to check the gradient of 494 // the gain - the change in Depth-Diff compared to the change in 495 // Loop-Depth between 1st and 2nd iterations. 496 // To be conservative, the gradient need to be at least 50%. 497 // 498 // In addition, In order not to optimize loops with very small gain, the 499 // gain (in cycles) after 2nd iteration should not be less than a given 500 // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply. 501 // 502 // If loop is not worth optimizing, remove all CMOV-group-candidates. 503 //===--------------------------------------------------------------------===// 504 if (Diff[1] < GainCycleThreshold) 505 return false; 506 507 bool WorthOptLoop = false; 508 if (Diff[1] == Diff[0]) 509 WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth; 510 else if (Diff[1] > Diff[0]) 511 WorthOptLoop = 512 (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) && 513 (Diff[1] * 8 >= LoopDepth[1].Depth); 514 515 if (!WorthOptLoop) 516 return false; 517 518 ++NumOfLoopCandidate; 519 520 //===--------------------------------------------------------------------===// 521 // Step 3: Check for each CMOV-group-candidate if it worth to be optimized. 522 // Worth-Optimize-Group: 523 // Iff it worths to optimize all CMOV instructions in the group. 524 // 525 // Worth-Optimize-CMOV: 526 // Predicted branch is faster than CMOV by the difference between depth of 527 // condition operand and depth of taken (predicted) value operand. 528 // To be conservative, the gain of such CMOV transformation should cover at 529 // at least 25% of branch-misprediction-penalty. 530 //===--------------------------------------------------------------------===// 531 unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; 532 CmovGroups TempGroups; 533 std::swap(TempGroups, CmovInstGroups); 534 for (auto &Group : TempGroups) { 535 bool WorthOpGroup = true; 536 for (auto *MI : Group) { 537 // Avoid CMOV instruction which value is used as a pointer to load from. 538 // This is another conservative check to avoid converting CMOV instruction 539 // used with tree-search like algorithm, where the branch is unpredicted. 540 auto UIs = MRI->use_instructions(MI->defs().begin()->getReg()); 541 if (!UIs.empty() && ++UIs.begin() == UIs.end()) { 542 unsigned Op = UIs.begin()->getOpcode(); 543 if (Op == X86::MOV64rm || Op == X86::MOV32rm) { 544 WorthOpGroup = false; 545 break; 546 } 547 } 548 549 unsigned CondCost = 550 DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth; 551 unsigned ValCost = getDepthOfOptCmov( 552 DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth, 553 DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth); 554 if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) { 555 WorthOpGroup = false; 556 break; 557 } 558 } 559 560 if (WorthOpGroup) 561 CmovInstGroups.push_back(Group); 562 } 563 564 return !CmovInstGroups.empty(); 565 } 566 567 static bool checkEFLAGSLive(MachineInstr *MI) { 568 if (MI->killsRegister(X86::EFLAGS)) 569 return false; 570 571 // The EFLAGS operand of MI might be missing a kill marker. 572 // Figure out whether EFLAGS operand should LIVE after MI instruction. 573 MachineBasicBlock *BB = MI->getParent(); 574 MachineBasicBlock::iterator ItrMI = MI; 575 576 // Scan forward through BB for a use/def of EFLAGS. 577 for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) { 578 if (I->readsRegister(X86::EFLAGS)) 579 return true; 580 if (I->definesRegister(X86::EFLAGS)) 581 return false; 582 } 583 584 // We hit the end of the block, check whether EFLAGS is live into a successor. 585 for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) { 586 if ((*I)->isLiveIn(X86::EFLAGS)) 587 return true; 588 } 589 590 return false; 591 } 592 593 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a 594 /// group of CMOV instructions, which may contain debug instructions in between, 595 /// move all debug instructions to after the last CMOV instruction, making the 596 /// CMOV group consecutive. 597 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) { 598 assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID && 599 "Last instruction in a CMOV group must be a CMOV instruction"); 600 601 SmallVector<MachineInstr *, 2> DBGInstructions; 602 for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) { 603 if (I->isDebugInstr()) 604 DBGInstructions.push_back(&*I); 605 } 606 607 // Splice the debug instruction after the cmov group. 608 MachineBasicBlock *MBB = First->getParent(); 609 for (auto *MI : DBGInstructions) 610 MBB->insertAfter(Last, MI->removeFromParent()); 611 } 612 613 void X86CmovConverterPass::convertCmovInstsToBranches( 614 SmallVectorImpl<MachineInstr *> &Group) const { 615 assert(!Group.empty() && "No CMOV instructions to convert"); 616 ++NumOfOptimizedCmovGroups; 617 618 // If the CMOV group is not packed, e.g., there are debug instructions between 619 // first CMOV and last CMOV, then pack the group and make the CMOV instruction 620 // consecutive by moving the debug instructions to after the last CMOV. 621 packCmovGroup(Group.front(), Group.back()); 622 623 // To convert a CMOVcc instruction, we actually have to insert the diamond 624 // control-flow pattern. The incoming instruction knows the destination vreg 625 // to set, the condition code register to branch on, the true/false values to 626 // select between, and a branch opcode to use. 627 628 // Before 629 // ----- 630 // MBB: 631 // cond = cmp ... 632 // v1 = CMOVge t1, f1, cond 633 // v2 = CMOVlt t2, f2, cond 634 // v3 = CMOVge v1, f3, cond 635 // 636 // After 637 // ----- 638 // MBB: 639 // cond = cmp ... 640 // jge %SinkMBB 641 // 642 // FalseMBB: 643 // jmp %SinkMBB 644 // 645 // SinkMBB: 646 // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB] 647 // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch 648 // ; true-value with false-value 649 // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use 650 // ; previous Phi instruction result 651 652 MachineInstr &MI = *Group.front(); 653 MachineInstr *LastCMOV = Group.back(); 654 DebugLoc DL = MI.getDebugLoc(); 655 656 X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI)); 657 X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); 658 // Potentially swap the condition codes so that any memory operand to a CMOV 659 // is in the *false* position instead of the *true* position. We can invert 660 // any non-memory operand CMOV instructions to cope with this and we ensure 661 // memory operand CMOVs are only included with a single condition code. 662 if (llvm::any_of(Group, [&](MachineInstr *I) { 663 return I->mayLoad() && X86::getCondFromCMov(*I) == CC; 664 })) 665 std::swap(CC, OppCC); 666 667 MachineBasicBlock *MBB = MI.getParent(); 668 MachineFunction::iterator It = ++MBB->getIterator(); 669 MachineFunction *F = MBB->getParent(); 670 const BasicBlock *BB = MBB->getBasicBlock(); 671 672 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB); 673 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB); 674 F->insert(It, FalseMBB); 675 F->insert(It, SinkMBB); 676 677 // If the EFLAGS register isn't dead in the terminator, then claim that it's 678 // live into the sink and copy blocks. 679 if (checkEFLAGSLive(LastCMOV)) { 680 FalseMBB->addLiveIn(X86::EFLAGS); 681 SinkMBB->addLiveIn(X86::EFLAGS); 682 } 683 684 // Transfer the remainder of BB and its successor edges to SinkMBB. 685 SinkMBB->splice(SinkMBB->begin(), MBB, 686 std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end()); 687 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 688 689 // Add the false and sink blocks as its successors. 690 MBB->addSuccessor(FalseMBB); 691 MBB->addSuccessor(SinkMBB); 692 693 // Create the conditional branch instruction. 694 BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC); 695 696 // Add the sink block to the false block successors. 697 FalseMBB->addSuccessor(SinkMBB); 698 699 MachineInstrBuilder MIB; 700 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 701 MachineBasicBlock::iterator MIItEnd = 702 std::next(MachineBasicBlock::iterator(LastCMOV)); 703 MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin(); 704 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 705 706 // First we need to insert an explicit load on the false path for any memory 707 // operand. We also need to potentially do register rewriting here, but it is 708 // simpler as the memory operands are always on the false path so we can 709 // simply take that input, whatever it is. 710 DenseMap<unsigned, unsigned> FalseBBRegRewriteTable; 711 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) { 712 auto &MI = *MIIt++; 713 // Skip any CMOVs in this group which don't load from memory. 714 if (!MI.mayLoad()) { 715 // Remember the false-side register input. 716 Register FalseReg = 717 MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg(); 718 // Walk back through any intermediate cmovs referenced. 719 while (true) { 720 auto FRIt = FalseBBRegRewriteTable.find(FalseReg); 721 if (FRIt == FalseBBRegRewriteTable.end()) 722 break; 723 FalseReg = FRIt->second; 724 } 725 FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg; 726 continue; 727 } 728 729 // The condition must be the *opposite* of the one we've decided to branch 730 // on as the branch will go *around* the load and the load should happen 731 // when the CMOV condition is false. 732 assert(X86::getCondFromCMov(MI) == OppCC && 733 "Can only handle memory-operand cmov instructions with a condition " 734 "opposite to the selected branch direction."); 735 736 // The goal is to rewrite the cmov from: 737 // 738 // MBB: 739 // %A = CMOVcc %B (tied), (mem) 740 // 741 // to 742 // 743 // MBB: 744 // %A = CMOVcc %B (tied), %C 745 // FalseMBB: 746 // %C = MOV (mem) 747 // 748 // Which will allow the next loop to rewrite the CMOV in terms of a PHI: 749 // 750 // MBB: 751 // JMP!cc SinkMBB 752 // FalseMBB: 753 // %C = MOV (mem) 754 // SinkMBB: 755 // %A = PHI [ %C, FalseMBB ], [ %B, MBB] 756 757 // Get a fresh register to use as the destination of the MOV. 758 const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg()); 759 Register TmpReg = MRI->createVirtualRegister(RC); 760 761 SmallVector<MachineInstr *, 4> NewMIs; 762 bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg, 763 /*UnfoldLoad*/ true, 764 /*UnfoldStore*/ false, NewMIs); 765 (void)Unfolded; 766 assert(Unfolded && "Should never fail to unfold a loading cmov!"); 767 768 // Move the new CMOV to just before the old one and reset any impacted 769 // iterator. 770 auto *NewCMOV = NewMIs.pop_back_val(); 771 assert(X86::getCondFromCMov(*NewCMOV) == OppCC && 772 "Last new instruction isn't the expected CMOV!"); 773 LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump()); 774 MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV); 775 if (&*MIItBegin == &MI) 776 MIItBegin = MachineBasicBlock::iterator(NewCMOV); 777 778 // Sink whatever instructions were needed to produce the unfolded operand 779 // into the false block. 780 for (auto *NewMI : NewMIs) { 781 LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump()); 782 FalseMBB->insert(FalseInsertionPoint, NewMI); 783 // Re-map any operands that are from other cmovs to the inputs for this block. 784 for (auto &MOp : NewMI->uses()) { 785 if (!MOp.isReg()) 786 continue; 787 auto It = FalseBBRegRewriteTable.find(MOp.getReg()); 788 if (It == FalseBBRegRewriteTable.end()) 789 continue; 790 791 MOp.setReg(It->second); 792 // This might have been a kill when it referenced the cmov result, but 793 // it won't necessarily be once rewritten. 794 // FIXME: We could potentially improve this by tracking whether the 795 // operand to the cmov was also a kill, and then skipping the PHI node 796 // construction below. 797 MOp.setIsKill(false); 798 } 799 } 800 MBB->erase(MachineBasicBlock::iterator(MI), 801 std::next(MachineBasicBlock::iterator(MI))); 802 803 // Add this PHI to the rewrite table. 804 FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg; 805 } 806 807 // As we are creating the PHIs, we have to be careful if there is more than 808 // one. Later CMOVs may reference the results of earlier CMOVs, but later 809 // PHIs have to reference the individual true/false inputs from earlier PHIs. 810 // That also means that PHI construction must work forward from earlier to 811 // later, and that the code must maintain a mapping from earlier PHI's 812 // destination registers, and the registers that went into the PHI. 813 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 814 815 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 816 Register DestReg = MIIt->getOperand(0).getReg(); 817 Register Op1Reg = MIIt->getOperand(1).getReg(); 818 Register Op2Reg = MIIt->getOperand(2).getReg(); 819 820 // If this CMOV we are processing is the opposite condition from the jump we 821 // generated, then we have to swap the operands for the PHI that is going to 822 // be generated. 823 if (X86::getCondFromCMov(*MIIt) == OppCC) 824 std::swap(Op1Reg, Op2Reg); 825 826 auto Op1Itr = RegRewriteTable.find(Op1Reg); 827 if (Op1Itr != RegRewriteTable.end()) 828 Op1Reg = Op1Itr->second.first; 829 830 auto Op2Itr = RegRewriteTable.find(Op2Reg); 831 if (Op2Itr != RegRewriteTable.end()) 832 Op2Reg = Op2Itr->second.second; 833 834 // SinkMBB: 835 // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ] 836 // ... 837 MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) 838 .addReg(Op1Reg) 839 .addMBB(FalseMBB) 840 .addReg(Op2Reg) 841 .addMBB(MBB); 842 (void)MIB; 843 LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump()); 844 LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump()); 845 846 // Add this PHI to the rewrite table. 847 RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); 848 } 849 850 // Now remove the CMOV(s). 851 MBB->erase(MIItBegin, MIItEnd); 852 853 // Add new basic blocks to MachineLoopInfo. 854 if (MachineLoop *L = MLI->getLoopFor(MBB)) { 855 L->addBasicBlockToLoop(FalseMBB, MLI->getBase()); 856 L->addBasicBlockToLoop(SinkMBB, MLI->getBase()); 857 } 858 } 859 860 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", 861 false, false) 862 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 863 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", 864 false, false) 865 866 FunctionPass *llvm::createX86CmovConverterPass() { 867 return new X86CmovConverterPass(); 868 } 869