xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CmovConversion.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
13 ///
14 /// Thus, the optimization applies under the following conditions:
15 ///   1. Consider as candidates only CMOVs in innermost loops (assume that
16 ///      most hotspots are represented by these loops).
17 ///   2. Given a group of CMOV instructions that are using the same EFLAGS def
18 ///      instruction:
19 ///      a. Consider them as candidates only if all have the same code condition
20 ///         or the opposite one to prevent generating more than one conditional
21 ///         jump per EFLAGS def instruction.
22 ///      b. Consider them as candidates only if all are profitable to be
23 ///         converted (assume that one bad conversion may cause a degradation).
24 ///   3. Apply conversion only for loops that are found profitable and only for
25 ///      CMOV candidates that were found profitable.
26 ///      a. A loop is considered profitable only if conversion will reduce its
27 ///         depth cost by some threshold.
28 ///      b. CMOV is considered profitable if the cost of its condition is higher
29 ///         than the average cost of its true-value and false-value by 25% of
30 ///         branch-misprediction-penalty. This assures no degradation even with
31 ///         25% branch misprediction.
32 ///
33 /// Note: This pass is assumed to run on SSA machine code.
34 //
35 //===----------------------------------------------------------------------===//
36 //
37 //  External interfaces:
38 //      FunctionPass *llvm::createX86CmovConverterPass();
39 //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "X86.h"
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "x86-cmov-conversion"
78 
79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
83 
84 // This internal switch can be used to turn off the cmov/branch optimization.
85 static cl::opt<bool>
86     EnableCmovConverter("x86-cmov-converter",
87                         cl::desc("Enable the X86 cmov-to-branch optimization."),
88                         cl::init(true), cl::Hidden);
89 
90 static cl::opt<unsigned>
91     GainCycleThreshold("x86-cmov-converter-threshold",
92                        cl::desc("Minimum gain per loop (in cycles) threshold."),
93                        cl::init(4), cl::Hidden);
94 
95 static cl::opt<bool> ForceMemOperand(
96     "x86-cmov-converter-force-mem-operand",
97     cl::desc("Convert cmovs to branches whenever they have memory operands."),
98     cl::init(true), cl::Hidden);
99 
100 namespace {
101 
102 /// Converts X86 cmov instructions into branches when profitable.
103 class X86CmovConverterPass : public MachineFunctionPass {
104 public:
105   X86CmovConverterPass() : MachineFunctionPass(ID) { }
106 
107   StringRef getPassName() const override { return "X86 cmov Conversion"; }
108   bool runOnMachineFunction(MachineFunction &MF) override;
109   void getAnalysisUsage(AnalysisUsage &AU) const override;
110 
111   /// Pass identification, replacement for typeid.
112   static char ID;
113 
114 private:
115   MachineRegisterInfo *MRI = nullptr;
116   const TargetInstrInfo *TII = nullptr;
117   const TargetRegisterInfo *TRI = nullptr;
118   MachineLoopInfo *MLI = nullptr;
119   TargetSchedModel TSchedModel;
120 
121   /// List of consecutive CMOV instructions.
122   using CmovGroup = SmallVector<MachineInstr *, 2>;
123   using CmovGroups = SmallVector<CmovGroup, 2>;
124 
125   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
126   /// CmovInstGroups accordingly.
127   ///
128   /// \param Blocks List of blocks to process.
129   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
130   /// \returns true iff it found any CMOV-group-candidate.
131   bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
132                              CmovGroups &CmovInstGroups,
133                              bool IncludeLoads = false);
134 
135   /// Check if it is profitable to transform each CMOV-group-candidates into
136   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
137   ///
138   /// \param Blocks List of blocks to process.
139   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
140   /// \returns true iff any CMOV-group-candidate remain.
141   bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
142                                         CmovGroups &CmovInstGroups);
143 
144   /// Convert the given list of consecutive CMOV instructions into a branch.
145   ///
146   /// \param Group Consecutive CMOV instructions to be converted into branch.
147   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
148 };
149 
150 } // end anonymous namespace
151 
152 char X86CmovConverterPass::ID = 0;
153 
154 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
155   MachineFunctionPass::getAnalysisUsage(AU);
156   AU.addRequired<MachineLoopInfo>();
157 }
158 
159 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
160   if (skipFunction(MF.getFunction()))
161     return false;
162   if (!EnableCmovConverter)
163     return false;
164 
165   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
166                     << "**********\n");
167 
168   bool Changed = false;
169   MLI = &getAnalysis<MachineLoopInfo>();
170   const TargetSubtargetInfo &STI = MF.getSubtarget();
171   MRI = &MF.getRegInfo();
172   TII = STI.getInstrInfo();
173   TRI = STI.getRegisterInfo();
174   TSchedModel.init(&STI);
175 
176   // Before we handle the more subtle cases of register-register CMOVs inside
177   // of potentially hot loops, we want to quickly remove all CMOVs with
178   // a memory operand. The CMOV will risk a stall waiting for the load to
179   // complete that speculative execution behind a branch is better suited to
180   // handle on modern x86 chips.
181   if (ForceMemOperand) {
182     CmovGroups AllCmovGroups;
183     SmallVector<MachineBasicBlock *, 4> Blocks;
184     for (auto &MBB : MF)
185       Blocks.push_back(&MBB);
186     if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
187       for (auto &Group : AllCmovGroups) {
188         // Skip any group that doesn't do at least one memory operand cmov.
189         if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
190           continue;
191 
192         // For CMOV groups which we can rewrite and which contain a memory load,
193         // always rewrite them. On x86, a CMOV will dramatically amplify any
194         // memory latency by blocking speculative execution.
195         Changed = true;
196         convertCmovInstsToBranches(Group);
197       }
198     }
199   }
200 
201   //===--------------------------------------------------------------------===//
202   // Register-operand Conversion Algorithm
203   // ---------
204   //   For each inner most loop
205   //     collectCmovCandidates() {
206   //       Find all CMOV-group-candidates.
207   //     }
208   //
209   //     checkForProfitableCmovCandidates() {
210   //       * Calculate both loop-depth and optimized-loop-depth.
211   //       * Use these depth to check for loop transformation profitability.
212   //       * Check for CMOV-group-candidate transformation profitability.
213   //     }
214   //
215   //     For each profitable CMOV-group-candidate
216   //       convertCmovInstsToBranches() {
217   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
218   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
219   //       }
220   //
221   // Note: For more details, see each function description.
222   //===--------------------------------------------------------------------===//
223 
224   // Build up the loops in pre-order.
225   SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end());
226   // Note that we need to check size on each iteration as we accumulate child
227   // loops.
228   for (int i = 0; i < (int)Loops.size(); ++i)
229     for (MachineLoop *Child : Loops[i]->getSubLoops())
230       Loops.push_back(Child);
231 
232   for (MachineLoop *CurrLoop : Loops) {
233     // Optimize only inner most loops.
234     if (!CurrLoop->getSubLoops().empty())
235       continue;
236 
237     // List of consecutive CMOV instructions to be processed.
238     CmovGroups CmovInstGroups;
239 
240     if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
241       continue;
242 
243     if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
244                                           CmovInstGroups))
245       continue;
246 
247     Changed = true;
248     for (auto &Group : CmovInstGroups)
249       convertCmovInstsToBranches(Group);
250   }
251 
252   return Changed;
253 }
254 
255 bool X86CmovConverterPass::collectCmovCandidates(
256     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
257     bool IncludeLoads) {
258   //===--------------------------------------------------------------------===//
259   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
260   //
261   // CMOV-group:
262   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
263   //
264   // CMOV-group-candidate:
265   //   CMOV-group where all the CMOV instructions are
266   //     1. consecutive.
267   //     2. have same condition code or opposite one.
268   //     3. have only operand registers (X86::CMOVrr).
269   //===--------------------------------------------------------------------===//
270   // List of possible improvement (TODO's):
271   // --------------------------------------
272   //   TODO: Add support for X86::CMOVrm instructions.
273   //   TODO: Add support for X86::SETcc instructions.
274   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
275   //===--------------------------------------------------------------------===//
276 
277   // Current processed CMOV-Group.
278   CmovGroup Group;
279   for (auto *MBB : Blocks) {
280     Group.clear();
281     // Condition code of first CMOV instruction current processed range and its
282     // opposite condition code.
283     X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID,
284                   MemOpCC = X86::COND_INVALID;
285     // Indicator of a non CMOVrr instruction in the current processed range.
286     bool FoundNonCMOVInst = false;
287     // Indicator for current processed CMOV-group if it should be skipped.
288     bool SkipGroup = false;
289 
290     for (auto &I : *MBB) {
291       // Skip debug instructions.
292       if (I.isDebugInstr())
293         continue;
294       X86::CondCode CC = X86::getCondFromCMov(I);
295       // Check if we found a X86::CMOVrr instruction.
296       if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
297         if (Group.empty()) {
298           // We found first CMOV in the range, reset flags.
299           FirstCC = CC;
300           FirstOppCC = X86::GetOppositeBranchCondition(CC);
301           // Clear out the prior group's memory operand CC.
302           MemOpCC = X86::COND_INVALID;
303           FoundNonCMOVInst = false;
304           SkipGroup = false;
305         }
306         Group.push_back(&I);
307         // Check if it is a non-consecutive CMOV instruction or it has different
308         // condition code than FirstCC or FirstOppCC.
309         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
310           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
311           SkipGroup = true;
312         if (I.mayLoad()) {
313           if (MemOpCC == X86::COND_INVALID)
314             // The first memory operand CMOV.
315             MemOpCC = CC;
316           else if (CC != MemOpCC)
317             // Can't handle mixed conditions with memory operands.
318             SkipGroup = true;
319         }
320         // Check if we were relying on zero-extending behavior of the CMOV.
321         if (!SkipGroup &&
322             llvm::any_of(
323                 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
324                 [&](MachineInstr &UseI) {
325                   return UseI.getOpcode() == X86::SUBREG_TO_REG;
326                 }))
327           // FIXME: We should model the cost of using an explicit MOV to handle
328           // the zero-extension rather than just refusing to handle this.
329           SkipGroup = true;
330         continue;
331       }
332       // If Group is empty, keep looking for first CMOV in the range.
333       if (Group.empty())
334         continue;
335 
336       // We found a non X86::CMOVrr instruction.
337       FoundNonCMOVInst = true;
338       // Check if this instruction define EFLAGS, to determine end of processed
339       // range, as there would be no more instructions using current EFLAGS def.
340       if (I.definesRegister(X86::EFLAGS)) {
341         // Check if current processed CMOV-group should not be skipped and add
342         // it as a CMOV-group-candidate.
343         if (!SkipGroup)
344           CmovInstGroups.push_back(Group);
345         else
346           ++NumOfSkippedCmovGroups;
347         Group.clear();
348       }
349     }
350     // End of basic block is considered end of range, check if current processed
351     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
352     if (Group.empty())
353       continue;
354     if (!SkipGroup)
355       CmovInstGroups.push_back(Group);
356     else
357       ++NumOfSkippedCmovGroups;
358   }
359 
360   NumOfCmovGroupCandidate += CmovInstGroups.size();
361   return !CmovInstGroups.empty();
362 }
363 
364 /// \returns Depth of CMOV instruction as if it was converted into branch.
365 /// \param TrueOpDepth depth cost of CMOV true value operand.
366 /// \param FalseOpDepth depth cost of CMOV false value operand.
367 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
368   // The depth of the result after branch conversion is
369   // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability.
370   // As we have no info about branch weight, we assume 75% for one and 25% for
371   // the other, and pick the result with the largest resulting depth.
372   return std::max(
373       divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4),
374       divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4));
375 }
376 
377 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
378     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
379   struct DepthInfo {
380     /// Depth of original loop.
381     unsigned Depth;
382     /// Depth of optimized loop.
383     unsigned OptDepth;
384   };
385   /// Number of loop iterations to calculate depth for ?!
386   static const unsigned LoopIterations = 2;
387   DenseMap<MachineInstr *, DepthInfo> DepthMap;
388   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
389   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
390   /// For each register type maps the register to its last def instruction.
391   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
392   /// Maps register operand to its def instruction, which can be nullptr if it
393   /// is unknown (e.g., operand is defined outside the loop).
394   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
395 
396   // Set depth of unknown instruction (i.e., nullptr) to zero.
397   DepthMap[nullptr] = {0, 0};
398 
399   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
400   for (auto &Group : CmovInstGroups)
401     CmovInstructions.insert(Group.begin(), Group.end());
402 
403   //===--------------------------------------------------------------------===//
404   // Step 1: Calculate instruction depth and loop depth.
405   // Optimized-Loop:
406   //   loop with CMOV-group-candidates converted into branches.
407   //
408   // Instruction-Depth:
409   //   instruction latency + max operand depth.
410   //     * For CMOV instruction in optimized loop the depth is calculated as:
411   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
412   // TODO: Find a better way to estimate the latency of the branch instruction
413   //       rather than using the CMOV latency.
414   //
415   // Loop-Depth:
416   //   max instruction depth of all instructions in the loop.
417   // Note: instruction with max depth represents the critical-path in the loop.
418   //
419   // Loop-Depth[i]:
420   //   Loop-Depth calculated for first `i` iterations.
421   //   Note: it is enough to calculate depth for up to two iterations.
422   //
423   // Depth-Diff[i]:
424   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
425   //===--------------------------------------------------------------------===//
426   for (unsigned I = 0; I < LoopIterations; ++I) {
427     DepthInfo &MaxDepth = LoopDepth[I];
428     for (auto *MBB : Blocks) {
429       // Clear physical registers Def map.
430       RegDefMaps[PhyRegType].clear();
431       for (MachineInstr &MI : *MBB) {
432         // Skip debug instructions.
433         if (MI.isDebugInstr())
434           continue;
435         unsigned MIDepth = 0;
436         unsigned MIDepthOpt = 0;
437         bool IsCMOV = CmovInstructions.count(&MI);
438         for (auto &MO : MI.uses()) {
439           // Checks for "isUse()" as "uses()" returns also implicit definitions.
440           if (!MO.isReg() || !MO.isUse())
441             continue;
442           Register Reg = MO.getReg();
443           auto &RDM = RegDefMaps[Reg.isVirtual()];
444           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
445             OperandToDefMap[&MO] = DefMI;
446             DepthInfo Info = DepthMap.lookup(DefMI);
447             MIDepth = std::max(MIDepth, Info.Depth);
448             if (!IsCMOV)
449               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
450           }
451         }
452 
453         if (IsCMOV)
454           MIDepthOpt = getDepthOfOptCmov(
455               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
456               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
457 
458         // Iterates over all operands to handle implicit definitions as well.
459         for (auto &MO : MI.operands()) {
460           if (!MO.isReg() || !MO.isDef())
461             continue;
462           Register Reg = MO.getReg();
463           RegDefMaps[Reg.isVirtual()][Reg] = &MI;
464         }
465 
466         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
467         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
468         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
469         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
470       }
471     }
472   }
473 
474   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
475                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
476 
477   //===--------------------------------------------------------------------===//
478   // Step 2: Check if Loop worth to be optimized.
479   // Worth-Optimize-Loop:
480   //   case 1: Diff[1] == Diff[0]
481   //           Critical-path is iteration independent - there is no dependency
482   //           of critical-path instructions on critical-path instructions of
483   //           previous iteration.
484   //           Thus, it is enough to check gain percent of 1st iteration -
485   //           To be conservative, the optimized loop need to have a depth of
486   //           12.5% cycles less than original loop, per iteration.
487   //
488   //   case 2: Diff[1] > Diff[0]
489   //           Critical-path is iteration dependent - there is dependency of
490   //           critical-path instructions on critical-path instructions of
491   //           previous iteration.
492   //           Thus, check the gain percent of the 2nd iteration (similar to the
493   //           previous case), but it is also required to check the gradient of
494   //           the gain - the change in Depth-Diff compared to the change in
495   //           Loop-Depth between 1st and 2nd iterations.
496   //           To be conservative, the gradient need to be at least 50%.
497   //
498   //   In addition, In order not to optimize loops with very small gain, the
499   //   gain (in cycles) after 2nd iteration should not be less than a given
500   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
501   //
502   // If loop is not worth optimizing, remove all CMOV-group-candidates.
503   //===--------------------------------------------------------------------===//
504   if (Diff[1] < GainCycleThreshold)
505     return false;
506 
507   bool WorthOptLoop = false;
508   if (Diff[1] == Diff[0])
509     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
510   else if (Diff[1] > Diff[0])
511     WorthOptLoop =
512         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
513         (Diff[1] * 8 >= LoopDepth[1].Depth);
514 
515   if (!WorthOptLoop)
516     return false;
517 
518   ++NumOfLoopCandidate;
519 
520   //===--------------------------------------------------------------------===//
521   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
522   // Worth-Optimize-Group:
523   //   Iff it worths to optimize all CMOV instructions in the group.
524   //
525   // Worth-Optimize-CMOV:
526   //   Predicted branch is faster than CMOV by the difference between depth of
527   //   condition operand and depth of taken (predicted) value operand.
528   //   To be conservative, the gain of such CMOV transformation should cover at
529   //   at least 25% of branch-misprediction-penalty.
530   //===--------------------------------------------------------------------===//
531   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
532   CmovGroups TempGroups;
533   std::swap(TempGroups, CmovInstGroups);
534   for (auto &Group : TempGroups) {
535     bool WorthOpGroup = true;
536     for (auto *MI : Group) {
537       // Avoid CMOV instruction which value is used as a pointer to load from.
538       // This is another conservative check to avoid converting CMOV instruction
539       // used with tree-search like algorithm, where the branch is unpredicted.
540       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
541       if (!UIs.empty() && ++UIs.begin() == UIs.end()) {
542         unsigned Op = UIs.begin()->getOpcode();
543         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
544           WorthOpGroup = false;
545           break;
546         }
547       }
548 
549       unsigned CondCost =
550           DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth;
551       unsigned ValCost = getDepthOfOptCmov(
552           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
553           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
554       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
555         WorthOpGroup = false;
556         break;
557       }
558     }
559 
560     if (WorthOpGroup)
561       CmovInstGroups.push_back(Group);
562   }
563 
564   return !CmovInstGroups.empty();
565 }
566 
567 static bool checkEFLAGSLive(MachineInstr *MI) {
568   if (MI->killsRegister(X86::EFLAGS))
569     return false;
570 
571   // The EFLAGS operand of MI might be missing a kill marker.
572   // Figure out whether EFLAGS operand should LIVE after MI instruction.
573   MachineBasicBlock *BB = MI->getParent();
574   MachineBasicBlock::iterator ItrMI = MI;
575 
576   // Scan forward through BB for a use/def of EFLAGS.
577   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
578     if (I->readsRegister(X86::EFLAGS))
579       return true;
580     if (I->definesRegister(X86::EFLAGS))
581       return false;
582   }
583 
584   // We hit the end of the block, check whether EFLAGS is live into a successor.
585   for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) {
586     if ((*I)->isLiveIn(X86::EFLAGS))
587       return true;
588   }
589 
590   return false;
591 }
592 
593 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
594 /// group of CMOV instructions, which may contain debug instructions in between,
595 /// move all debug instructions to after the last CMOV instruction, making the
596 /// CMOV group consecutive.
597 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
598   assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID &&
599          "Last instruction in a CMOV group must be a CMOV instruction");
600 
601   SmallVector<MachineInstr *, 2> DBGInstructions;
602   for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
603     if (I->isDebugInstr())
604       DBGInstructions.push_back(&*I);
605   }
606 
607   // Splice the debug instruction after the cmov group.
608   MachineBasicBlock *MBB = First->getParent();
609   for (auto *MI : DBGInstructions)
610     MBB->insertAfter(Last, MI->removeFromParent());
611 }
612 
613 void X86CmovConverterPass::convertCmovInstsToBranches(
614     SmallVectorImpl<MachineInstr *> &Group) const {
615   assert(!Group.empty() && "No CMOV instructions to convert");
616   ++NumOfOptimizedCmovGroups;
617 
618   // If the CMOV group is not packed, e.g., there are debug instructions between
619   // first CMOV and last CMOV, then pack the group and make the CMOV instruction
620   // consecutive by moving the debug instructions to after the last CMOV.
621   packCmovGroup(Group.front(), Group.back());
622 
623   // To convert a CMOVcc instruction, we actually have to insert the diamond
624   // control-flow pattern.  The incoming instruction knows the destination vreg
625   // to set, the condition code register to branch on, the true/false values to
626   // select between, and a branch opcode to use.
627 
628   // Before
629   // -----
630   // MBB:
631   //   cond = cmp ...
632   //   v1 = CMOVge t1, f1, cond
633   //   v2 = CMOVlt t2, f2, cond
634   //   v3 = CMOVge v1, f3, cond
635   //
636   // After
637   // -----
638   // MBB:
639   //   cond = cmp ...
640   //   jge %SinkMBB
641   //
642   // FalseMBB:
643   //   jmp %SinkMBB
644   //
645   // SinkMBB:
646   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
647   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
648   //                                          ; true-value with false-value
649   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
650   //                                          ; previous Phi instruction result
651 
652   MachineInstr &MI = *Group.front();
653   MachineInstr *LastCMOV = Group.back();
654   DebugLoc DL = MI.getDebugLoc();
655 
656   X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI));
657   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
658   // Potentially swap the condition codes so that any memory operand to a CMOV
659   // is in the *false* position instead of the *true* position. We can invert
660   // any non-memory operand CMOV instructions to cope with this and we ensure
661   // memory operand CMOVs are only included with a single condition code.
662   if (llvm::any_of(Group, [&](MachineInstr *I) {
663         return I->mayLoad() && X86::getCondFromCMov(*I) == CC;
664       }))
665     std::swap(CC, OppCC);
666 
667   MachineBasicBlock *MBB = MI.getParent();
668   MachineFunction::iterator It = ++MBB->getIterator();
669   MachineFunction *F = MBB->getParent();
670   const BasicBlock *BB = MBB->getBasicBlock();
671 
672   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
673   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
674   F->insert(It, FalseMBB);
675   F->insert(It, SinkMBB);
676 
677   // If the EFLAGS register isn't dead in the terminator, then claim that it's
678   // live into the sink and copy blocks.
679   if (checkEFLAGSLive(LastCMOV)) {
680     FalseMBB->addLiveIn(X86::EFLAGS);
681     SinkMBB->addLiveIn(X86::EFLAGS);
682   }
683 
684   // Transfer the remainder of BB and its successor edges to SinkMBB.
685   SinkMBB->splice(SinkMBB->begin(), MBB,
686                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
687   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
688 
689   // Add the false and sink blocks as its successors.
690   MBB->addSuccessor(FalseMBB);
691   MBB->addSuccessor(SinkMBB);
692 
693   // Create the conditional branch instruction.
694   BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
695 
696   // Add the sink block to the false block successors.
697   FalseMBB->addSuccessor(SinkMBB);
698 
699   MachineInstrBuilder MIB;
700   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
701   MachineBasicBlock::iterator MIItEnd =
702       std::next(MachineBasicBlock::iterator(LastCMOV));
703   MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
704   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
705 
706   // First we need to insert an explicit load on the false path for any memory
707   // operand. We also need to potentially do register rewriting here, but it is
708   // simpler as the memory operands are always on the false path so we can
709   // simply take that input, whatever it is.
710   DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
711   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
712     auto &MI = *MIIt++;
713     // Skip any CMOVs in this group which don't load from memory.
714     if (!MI.mayLoad()) {
715       // Remember the false-side register input.
716       Register FalseReg =
717           MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg();
718       // Walk back through any intermediate cmovs referenced.
719       while (true) {
720         auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
721         if (FRIt == FalseBBRegRewriteTable.end())
722           break;
723         FalseReg = FRIt->second;
724       }
725       FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
726       continue;
727     }
728 
729     // The condition must be the *opposite* of the one we've decided to branch
730     // on as the branch will go *around* the load and the load should happen
731     // when the CMOV condition is false.
732     assert(X86::getCondFromCMov(MI) == OppCC &&
733            "Can only handle memory-operand cmov instructions with a condition "
734            "opposite to the selected branch direction.");
735 
736     // The goal is to rewrite the cmov from:
737     //
738     //   MBB:
739     //     %A = CMOVcc %B (tied), (mem)
740     //
741     // to
742     //
743     //   MBB:
744     //     %A = CMOVcc %B (tied), %C
745     //   FalseMBB:
746     //     %C = MOV (mem)
747     //
748     // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
749     //
750     //   MBB:
751     //     JMP!cc SinkMBB
752     //   FalseMBB:
753     //     %C = MOV (mem)
754     //   SinkMBB:
755     //     %A = PHI [ %C, FalseMBB ], [ %B, MBB]
756 
757     // Get a fresh register to use as the destination of the MOV.
758     const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
759     Register TmpReg = MRI->createVirtualRegister(RC);
760 
761     SmallVector<MachineInstr *, 4> NewMIs;
762     bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
763                                              /*UnfoldLoad*/ true,
764                                              /*UnfoldStore*/ false, NewMIs);
765     (void)Unfolded;
766     assert(Unfolded && "Should never fail to unfold a loading cmov!");
767 
768     // Move the new CMOV to just before the old one and reset any impacted
769     // iterator.
770     auto *NewCMOV = NewMIs.pop_back_val();
771     assert(X86::getCondFromCMov(*NewCMOV) == OppCC &&
772            "Last new instruction isn't the expected CMOV!");
773     LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
774     MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
775     if (&*MIItBegin == &MI)
776       MIItBegin = MachineBasicBlock::iterator(NewCMOV);
777 
778     // Sink whatever instructions were needed to produce the unfolded operand
779     // into the false block.
780     for (auto *NewMI : NewMIs) {
781       LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
782       FalseMBB->insert(FalseInsertionPoint, NewMI);
783       // Re-map any operands that are from other cmovs to the inputs for this block.
784       for (auto &MOp : NewMI->uses()) {
785         if (!MOp.isReg())
786           continue;
787         auto It = FalseBBRegRewriteTable.find(MOp.getReg());
788         if (It == FalseBBRegRewriteTable.end())
789           continue;
790 
791         MOp.setReg(It->second);
792         // This might have been a kill when it referenced the cmov result, but
793         // it won't necessarily be once rewritten.
794         // FIXME: We could potentially improve this by tracking whether the
795         // operand to the cmov was also a kill, and then skipping the PHI node
796         // construction below.
797         MOp.setIsKill(false);
798       }
799     }
800     MBB->erase(MachineBasicBlock::iterator(MI),
801                std::next(MachineBasicBlock::iterator(MI)));
802 
803     // Add this PHI to the rewrite table.
804     FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
805   }
806 
807   // As we are creating the PHIs, we have to be careful if there is more than
808   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
809   // PHIs have to reference the individual true/false inputs from earlier PHIs.
810   // That also means that PHI construction must work forward from earlier to
811   // later, and that the code must maintain a mapping from earlier PHI's
812   // destination registers, and the registers that went into the PHI.
813   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
814 
815   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
816     Register DestReg = MIIt->getOperand(0).getReg();
817     Register Op1Reg = MIIt->getOperand(1).getReg();
818     Register Op2Reg = MIIt->getOperand(2).getReg();
819 
820     // If this CMOV we are processing is the opposite condition from the jump we
821     // generated, then we have to swap the operands for the PHI that is going to
822     // be generated.
823     if (X86::getCondFromCMov(*MIIt) == OppCC)
824       std::swap(Op1Reg, Op2Reg);
825 
826     auto Op1Itr = RegRewriteTable.find(Op1Reg);
827     if (Op1Itr != RegRewriteTable.end())
828       Op1Reg = Op1Itr->second.first;
829 
830     auto Op2Itr = RegRewriteTable.find(Op2Reg);
831     if (Op2Itr != RegRewriteTable.end())
832       Op2Reg = Op2Itr->second.second;
833 
834     //  SinkMBB:
835     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
836     //  ...
837     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
838               .addReg(Op1Reg)
839               .addMBB(FalseMBB)
840               .addReg(Op2Reg)
841               .addMBB(MBB);
842     (void)MIB;
843     LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
844     LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
845 
846     // Add this PHI to the rewrite table.
847     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
848   }
849 
850   // Now remove the CMOV(s).
851   MBB->erase(MIItBegin, MIItEnd);
852 
853   // Add new basic blocks to MachineLoopInfo.
854   if (MachineLoop *L = MLI->getLoopFor(MBB)) {
855     L->addBasicBlockToLoop(FalseMBB, MLI->getBase());
856     L->addBasicBlockToLoop(SinkMBB, MLI->getBase());
857   }
858 }
859 
860 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
861                       false, false)
862 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
863 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
864                     false, false)
865 
866 FunctionPass *llvm::createX86CmovConverterPass() {
867   return new X86CmovConverterPass();
868 }
869