xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.td (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26// Register classes for RegCall
27class RC_X86_RegCall {
28  list<Register> GPR_8 = [];
29  list<Register> GPR_16 = [];
30  list<Register> GPR_32 = [];
31  list<Register> GPR_64 = [];
32  list<Register> FP_CALL = [FP0];
33  list<Register> FP_RET = [FP0, FP1];
34  list<Register> XMM = [];
35  list<Register> YMM = [];
36  list<Register> ZMM = [];
37}
38
39// RegCall register classes for 32 bits
40def RC_X86_32_RegCall : RC_X86_RegCall {
41  let GPR_8 = [AL, CL, DL, DIL, SIL];
42  let GPR_16 = [AX, CX, DX, DI, SI];
43  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
44  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
45                      ///< \todo Fix AssignToReg to enable empty lists
46  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
47  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
48  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
49}
50
51class RC_X86_64_RegCall : RC_X86_RegCall {
52  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
53             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
54  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
55             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
56  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
57             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
58}
59
60def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
61  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
62  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
63  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
64  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
65}
66
67def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
68  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
69  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
70  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
71  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
72}
73
74// X86-64 Intel regcall calling convention.
75multiclass X86_RegCall_base<RC_X86_RegCall RC> {
76def CC_#NAME : CallingConv<[
77  // Handles byval parameters.
78    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
79    CCIfByVal<CCPassByVal<4, 4>>,
80
81    // Promote i1/i8/i16/v1i1 arguments to i32.
82    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
83
84    // Promote v8i1/v16i1/v32i1 arguments to i32.
85    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
86
87    // bool, char, int, enum, long, pointer --> GPR
88    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
89
90    // long long, __int64 --> GPR
91    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
92
93    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
94    CCIfType<[v64i1], CCPromoteToType<i64>>,
95    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
96      CCAssignToReg<RC.GPR_64>>>,
97    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
98      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
99
100    // float, double, float128 --> XMM
101    // In the case of SSE disabled --> save to stack
102    CCIfType<[f32, f64, f128],
103      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
104
105    // long double --> FP
106    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
107
108    // __m128, __m128i, __m128d --> XMM
109    // In the case of SSE disabled --> save to stack
110    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
111      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
112
113    // __m256, __m256i, __m256d --> YMM
114    // In the case of SSE disabled --> save to stack
115    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
116      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
117
118    // __m512, __m512i, __m512d --> ZMM
119    // In the case of SSE disabled --> save to stack
120    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
121      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
122
123    // If no register was found -> assign to stack
124
125    // In 64 bit, assign 64/32 bit values to 8 byte stack
126    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
127      CCAssignToStack<8, 8>>>,
128
129    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
130    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
131    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
132
133    // MMX type gets 8 byte slot in stack , while alignment depends on target
134    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
135    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
136
137    // float 128 get stack slots whose size and alignment depends
138    // on the subtarget.
139    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
140
141    // Vectors get 16-byte stack slots that are 16-byte aligned.
142    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
143      CCAssignToStack<16, 16>>,
144
145    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
146    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
147      CCAssignToStack<32, 32>>,
148
149    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
150    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
151      CCAssignToStack<64, 64>>
152]>;
153
154def RetCC_#NAME : CallingConv<[
155    // Promote i1, v1i1, v8i1 arguments to i8.
156    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
157
158    // Promote v16i1 arguments to i16.
159    CCIfType<[v16i1], CCPromoteToType<i16>>,
160
161    // Promote v32i1 arguments to i32.
162    CCIfType<[v32i1], CCPromoteToType<i32>>,
163
164    // bool, char, int, enum, long, pointer --> GPR
165    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
166    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
167    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
168
169    // long long, __int64 --> GPR
170    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
171
172    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
173    CCIfType<[v64i1], CCPromoteToType<i64>>,
174    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
175      CCAssignToReg<RC.GPR_64>>>,
176    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
177      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
178
179    // long double --> FP
180    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
181
182    // float, double, float128 --> XMM
183    CCIfType<[f32, f64, f128],
184      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
185
186    // __m128, __m128i, __m128d --> XMM
187    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
188      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
189
190    // __m256, __m256i, __m256d --> YMM
191    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
192      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
193
194    // __m512, __m512i, __m512d --> ZMM
195    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
196      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
197]>;
198}
199
200//===----------------------------------------------------------------------===//
201// Return Value Calling Conventions
202//===----------------------------------------------------------------------===//
203
204// Return-value conventions common to all X86 CC's.
205def RetCC_X86Common : CallingConv<[
206  // Scalar values are returned in AX first, then DX.  For i8, the ABI
207  // requires the values to be in AL and AH, however this code uses AL and DL
208  // instead. This is because using AH for the second register conflicts with
209  // the way LLVM does multiple return values -- a return of {i16,i8} would end
210  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
211  // for functions that return two i8 values are currently expected to pack the
212  // values into an i16 (which uses AX, and thus AL:AH).
213  //
214  // For code that doesn't care about the ABI, we allow returning more than two
215  // integer values in registers.
216  CCIfType<[v1i1],  CCPromoteToType<i8>>,
217  CCIfType<[i1],  CCPromoteToType<i8>>,
218  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
219  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
220  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
221  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
222
223  // Boolean vectors of AVX-512 are returned in SIMD registers.
224  // The call from AVX to AVX-512 function should work,
225  // since the boolean types in AVX/AVX2 are promoted by default.
226  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
227  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
228  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
229  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
230  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
231  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
232
233  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
234  // can only be used by ABI non-compliant code. If the target doesn't have XMM
235  // registers, it won't have vector types.
236  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
237            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
238
239  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
240  // can only be used by ABI non-compliant code. This vector type is only
241  // supported while using the AVX target feature.
242  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
243            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
244
245  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
246  // can only be used by ABI non-compliant code. This vector type is only
247  // supported while using the AVX-512 target feature.
248  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
249            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
250
251  // MMX vector types are always returned in MM0. If the target doesn't have
252  // MM0, it doesn't support these vector types.
253  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
254
255  // Long double types are always returned in FP0 (even with SSE),
256  // except on Win64.
257  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
258]>;
259
260// X86-32 C return-value convention.
261def RetCC_X86_32_C : CallingConv<[
262  // The X86-32 calling convention returns FP values in FP0, unless marked
263  // with "inreg" (used here to distinguish one kind of reg from another,
264  // weirdly; this is really the sse-regparm calling convention) in which
265  // case they use XMM0, otherwise it is the same as the common X86 calling
266  // conv.
267  CCIfInReg<CCIfSubtarget<"hasSSE2()",
268    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
269  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
270  CCDelegateTo<RetCC_X86Common>
271]>;
272
273// X86-32 FastCC return-value convention.
274def RetCC_X86_32_Fast : CallingConv<[
275  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
276  // SSE2.
277  // This can happen when a float, 2 x float, or 3 x float vector is split by
278  // target lowering, and is returned in 1-3 sse regs.
279  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
280  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
281
282  // For integers, ECX can be used as an extra return register
283  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
284  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
285  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
286
287  // Otherwise, it is the same as the common X86 calling convention.
288  CCDelegateTo<RetCC_X86Common>
289]>;
290
291// Intel_OCL_BI return-value convention.
292def RetCC_Intel_OCL_BI : CallingConv<[
293  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
294  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
295            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
296
297  // 256-bit FP vectors
298  // No more than 4 registers
299  CCIfType<[v8f32, v4f64, v8i32, v4i64],
300            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
301
302  // 512-bit FP vectors
303  CCIfType<[v16f32, v8f64, v16i32, v8i64],
304            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
305
306  // i32, i64 in the standard way
307  CCDelegateTo<RetCC_X86Common>
308]>;
309
310// X86-32 HiPE return-value convention.
311def RetCC_X86_32_HiPE : CallingConv<[
312  // Promote all types to i32
313  CCIfType<[i8, i16], CCPromoteToType<i32>>,
314
315  // Return: HP, P, VAL1, VAL2
316  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
317]>;
318
319// X86-32 Vectorcall return-value convention.
320def RetCC_X86_32_VectorCall : CallingConv<[
321  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
322  CCIfType<[f32, f64, f128],
323            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
324
325  // Return integers in the standard way.
326  CCDelegateTo<RetCC_X86Common>
327]>;
328
329// X86-64 C return-value convention.
330def RetCC_X86_64_C : CallingConv<[
331  // The X86-64 calling convention always returns FP values in XMM0.
332  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
333  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
334  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
335
336  // MMX vector types are always returned in XMM0.
337  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
338
339  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
340
341  CCDelegateTo<RetCC_X86Common>
342]>;
343
344// X86-Win64 C return-value convention.
345def RetCC_X86_Win64_C : CallingConv<[
346  // The X86-Win64 calling convention always returns __m64 values in RAX.
347  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
348
349  // Otherwise, everything is the same as 'normal' X86-64 C CC.
350  CCDelegateTo<RetCC_X86_64_C>
351]>;
352
353// X86-64 vectorcall return-value convention.
354def RetCC_X86_64_Vectorcall : CallingConv<[
355  // Vectorcall calling convention always returns FP values in XMMs.
356  CCIfType<[f32, f64, f128],
357    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
358
359  // Otherwise, everything is the same as Windows X86-64 C CC.
360  CCDelegateTo<RetCC_X86_Win64_C>
361]>;
362
363// X86-64 HiPE return-value convention.
364def RetCC_X86_64_HiPE : CallingConv<[
365  // Promote all types to i64
366  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
367
368  // Return: HP, P, VAL1, VAL2
369  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
370]>;
371
372// X86-64 WebKit_JS return-value convention.
373def RetCC_X86_64_WebKit_JS : CallingConv<[
374  // Promote all types to i64
375  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
376
377  // Return: RAX
378  CCIfType<[i64], CCAssignToReg<[RAX]>>
379]>;
380
381def RetCC_X86_64_Swift : CallingConv<[
382
383  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
384
385  // For integers, ECX, R8D can be used as extra return registers.
386  CCIfType<[v1i1],  CCPromoteToType<i8>>,
387  CCIfType<[i1],  CCPromoteToType<i8>>,
388  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
389  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
390  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
391  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
392
393  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
394  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
395  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
396  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
397
398  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
399  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
400  CCDelegateTo<RetCC_X86Common>
401]>;
402
403// X86-64 AnyReg return-value convention. No explicit register is specified for
404// the return-value. The register allocator is allowed and expected to choose
405// any free register.
406//
407// This calling convention is currently only supported by the stackmap and
408// patchpoint intrinsics. All other uses will result in an assert on Debug
409// builds. On Release builds we fallback to the X86 C calling convention.
410def RetCC_X86_64_AnyReg : CallingConv<[
411  CCCustom<"CC_X86_AnyReg_Error">
412]>;
413
414// X86-64 HHVM return-value convention.
415def RetCC_X86_64_HHVM: CallingConv<[
416  // Promote all types to i64
417  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
418
419  // Return: could return in any GP register save RSP and R12.
420  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
421                                 RAX, R10, R11, R13, R14, R15]>>
422]>;
423
424
425defm X86_32_RegCall :
426	 X86_RegCall_base<RC_X86_32_RegCall>;
427defm X86_Win64_RegCall :
428     X86_RegCall_base<RC_X86_64_RegCall_Win>;
429defm X86_SysV64_RegCall :
430     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
431
432// This is the root return-value convention for the X86-32 backend.
433def RetCC_X86_32 : CallingConv<[
434  // If FastCC, use RetCC_X86_32_Fast.
435  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
436  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
437  // If HiPE, use RetCC_X86_32_HiPE.
438  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
439  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
440  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
441
442  // Otherwise, use RetCC_X86_32_C.
443  CCDelegateTo<RetCC_X86_32_C>
444]>;
445
446// This is the root return-value convention for the X86-64 backend.
447def RetCC_X86_64 : CallingConv<[
448  // HiPE uses RetCC_X86_64_HiPE
449  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
450
451  // Handle JavaScript calls.
452  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
453  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
454
455  // Handle Swift calls.
456  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
457
458  // Handle explicit CC selection
459  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
460  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
461
462  // Handle Vectorcall CC
463  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
464
465  // Handle HHVM calls.
466  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
467
468  CCIfCC<"CallingConv::X86_RegCall",
469          CCIfSubtarget<"isTargetWin64()",
470                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
471  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
472
473  // Mingw64 and native Win64 use Win64 CC
474  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
475
476  // Otherwise, drop to normal X86-64 CC
477  CCDelegateTo<RetCC_X86_64_C>
478]>;
479
480// This is the return-value convention used for the entire X86 backend.
481let Entry = 1 in
482def RetCC_X86 : CallingConv<[
483
484  // Check if this is the Intel OpenCL built-ins calling convention
485  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
486
487  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
488  CCDelegateTo<RetCC_X86_32>
489]>;
490
491//===----------------------------------------------------------------------===//
492// X86-64 Argument Calling Conventions
493//===----------------------------------------------------------------------===//
494
495def CC_X86_64_C : CallingConv<[
496  // Handles byval parameters.
497  CCIfByVal<CCPassByVal<8, 8>>,
498
499  // Promote i1/i8/i16/v1i1 arguments to i32.
500  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
501
502  // The 'nest' parameter, if any, is passed in R10.
503  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
504  CCIfNest<CCAssignToReg<[R10]>>,
505
506  // Pass SwiftSelf in a callee saved register.
507  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
508
509  // A SwiftError is passed in R12.
510  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
511
512  // For Swift Calling Convention, pass sret in %rax.
513  CCIfCC<"CallingConv::Swift",
514    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
515
516  // The first 6 integer arguments are passed in integer registers.
517  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
518  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
519
520  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
521  CCIfType<[x86mmx],
522            CCIfSubtarget<"isTargetDarwin()",
523            CCIfSubtarget<"hasSSE2()",
524            CCPromoteToType<v2i64>>>>,
525
526  // Boolean vectors of AVX-512 are passed in SIMD registers.
527  // The call from AVX to AVX-512 function should work,
528  // since the boolean types in AVX/AVX2 are promoted by default.
529  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
530  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
531  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
532  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
533  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
534  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
535
536  // The first 8 FP/Vector arguments are passed in XMM registers.
537  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
538            CCIfSubtarget<"hasSSE1()",
539            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
540
541  // The first 8 256-bit vector arguments are passed in YMM registers, unless
542  // this is a vararg function.
543  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
544  // fixed arguments to vararg functions are supposed to be passed in
545  // registers.  Actually modeling that would be a lot of work, though.
546  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
547                          CCIfSubtarget<"hasAVX()",
548                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
549                                         YMM4, YMM5, YMM6, YMM7]>>>>,
550
551  // The first 8 512-bit vector arguments are passed in ZMM registers.
552  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
553            CCIfSubtarget<"hasAVX512()",
554            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
555
556  // Integer/FP values get stored in stack slots that are 8 bytes in size and
557  // 8-byte aligned if there are no more registers to hold them.
558  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
559
560  // Long doubles get stack slots whose size and alignment depends on the
561  // subtarget.
562  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
563
564  // Vectors get 16-byte stack slots that are 16-byte aligned.
565  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
566
567  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
568  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
569           CCAssignToStack<32, 32>>,
570
571  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
572  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
573           CCAssignToStack<64, 64>>
574]>;
575
576// Calling convention for X86-64 HHVM.
577def CC_X86_64_HHVM : CallingConv<[
578  // Use all/any GP registers for args, except RSP.
579  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
580                                 RDI, RSI, RDX, RCX, R8, R9,
581                                 RAX, R10, R11, R13, R14]>>
582]>;
583
584// Calling convention for helper functions in HHVM.
585def CC_X86_64_HHVM_C : CallingConv<[
586  // Pass the first argument in RBP.
587  CCIfType<[i64], CCAssignToReg<[RBP]>>,
588
589  // Otherwise it's the same as the regular C calling convention.
590  CCDelegateTo<CC_X86_64_C>
591]>;
592
593// Calling convention used on Win64
594def CC_X86_Win64_C : CallingConv<[
595  // FIXME: Handle varargs.
596
597  // Byval aggregates are passed by pointer
598  CCIfByVal<CCPassIndirect<i64>>,
599
600  // Promote i1/v1i1 arguments to i8.
601  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
602
603  // The 'nest' parameter, if any, is passed in R10.
604  CCIfNest<CCAssignToReg<[R10]>>,
605
606  // A SwiftError is passed in R12.
607  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
608
609  // 128 bit vectors are passed by pointer
610  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
611
612
613  // 256 bit vectors are passed by pointer
614  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
615
616  // 512 bit vectors are passed by pointer
617  CCIfType<[v64i8, v32i16, v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
618
619  // Long doubles are passed by pointer
620  CCIfType<[f80], CCPassIndirect<i64>>,
621
622  // The first 4 MMX vector arguments are passed in GPRs.
623  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
624
625  // The first 4 integer arguments are passed in integer registers.
626  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
627                                          [XMM0, XMM1, XMM2, XMM3]>>,
628  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
629                                          [XMM0, XMM1, XMM2, XMM3]>>,
630  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
631                                          [XMM0, XMM1, XMM2, XMM3]>>,
632
633  // Do not pass the sret argument in RCX, the Win64 thiscall calling
634  // convention requires "this" to be passed in RCX.
635  CCIfCC<"CallingConv::X86_ThisCall",
636    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
637                                                     [XMM1, XMM2, XMM3]>>>>,
638
639  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
640                                          [XMM0, XMM1, XMM2, XMM3]>>,
641
642  // The first 4 FP/Vector arguments are passed in XMM registers.
643  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
644           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
645                                   [RCX , RDX , R8  , R9  ]>>,
646
647  // Integer/FP values get stored in stack slots that are 8 bytes in size and
648  // 8-byte aligned if there are no more registers to hold them.
649  CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
650]>;
651
652def CC_X86_Win64_VectorCall : CallingConv<[
653  CCCustom<"CC_X86_64_VectorCall">,
654
655  // Delegate to fastcall to handle integer types.
656  CCDelegateTo<CC_X86_Win64_C>
657]>;
658
659
660def CC_X86_64_GHC : CallingConv<[
661  // Promote i8/i16/i32 arguments to i64.
662  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
663
664  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
665  CCIfType<[i64],
666            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
667
668  // Pass in STG registers: F1, F2, F3, F4, D1, D2
669  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
670            CCIfSubtarget<"hasSSE1()",
671            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
672  // AVX
673  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
674            CCIfSubtarget<"hasAVX()",
675            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
676  // AVX-512
677  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
678            CCIfSubtarget<"hasAVX512()",
679            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
680]>;
681
682def CC_X86_64_HiPE : CallingConv<[
683  // Promote i8/i16/i32 arguments to i64.
684  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
685
686  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
687  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
688
689  // Integer/FP values get stored in stack slots that are 8 bytes in size and
690  // 8-byte aligned if there are no more registers to hold them.
691  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
692]>;
693
694def CC_X86_64_WebKit_JS : CallingConv<[
695  // Promote i8/i16 arguments to i32.
696  CCIfType<[i8, i16], CCPromoteToType<i32>>,
697
698  // Only the first integer argument is passed in register.
699  CCIfType<[i32], CCAssignToReg<[EAX]>>,
700  CCIfType<[i64], CCAssignToReg<[RAX]>>,
701
702  // The remaining integer arguments are passed on the stack. 32bit integer and
703  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
704  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
705  // in 8 byte stack slots.
706  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
707  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
708]>;
709
710// No explicit register is specified for the AnyReg calling convention. The
711// register allocator may assign the arguments to any free register.
712//
713// This calling convention is currently only supported by the stackmap and
714// patchpoint intrinsics. All other uses will result in an assert on Debug
715// builds. On Release builds we fallback to the X86 C calling convention.
716def CC_X86_64_AnyReg : CallingConv<[
717  CCCustom<"CC_X86_AnyReg_Error">
718]>;
719
720//===----------------------------------------------------------------------===//
721// X86 C Calling Convention
722//===----------------------------------------------------------------------===//
723
724/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
725/// values are spilled on the stack.
726def CC_X86_32_Vector_Common : CallingConv<[
727  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
728  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
729
730  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
731  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
732           CCAssignToStack<32, 32>>,
733
734  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
735  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
736           CCAssignToStack<64, 64>>
737]>;
738
739// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
740// vector registers
741def CC_X86_32_Vector_Standard : CallingConv<[
742  // SSE vector arguments are passed in XMM registers.
743  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
744                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
745
746  // AVX 256-bit vector arguments are passed in YMM registers.
747  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
748                CCIfSubtarget<"hasAVX()",
749                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
750
751  // AVX 512-bit vector arguments are passed in ZMM registers.
752  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
753                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
754
755  CCDelegateTo<CC_X86_32_Vector_Common>
756]>;
757
758// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
759// vector registers.
760def CC_X86_32_Vector_Darwin : CallingConv<[
761  // SSE vector arguments are passed in XMM registers.
762  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
763                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
764
765  // AVX 256-bit vector arguments are passed in YMM registers.
766  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
767                CCIfSubtarget<"hasAVX()",
768                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
769
770  // AVX 512-bit vector arguments are passed in ZMM registers.
771  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
772                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
773
774  CCDelegateTo<CC_X86_32_Vector_Common>
775]>;
776
777/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
778/// values are spilled on the stack.
779def CC_X86_32_Common : CallingConv<[
780  // Handles byval parameters.
781  CCIfByVal<CCPassByVal<4, 4>>,
782
783  // The first 3 float or double arguments, if marked 'inreg' and if the call
784  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
785  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
786                CCIfSubtarget<"hasSSE2()",
787                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
788
789  // The first 3 __m64 vector arguments are passed in mmx registers if the
790  // call is not a vararg call.
791  CCIfNotVarArg<CCIfType<[x86mmx],
792                CCAssignToReg<[MM0, MM1, MM2]>>>,
793
794  // Integer/Float values get stored in stack slots that are 4 bytes in
795  // size and 4-byte aligned.
796  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
797
798  // Doubles get 8-byte slots that are 4-byte aligned.
799  CCIfType<[f64], CCAssignToStack<8, 4>>,
800
801  // Long doubles get slots whose size depends on the subtarget.
802  CCIfType<[f80], CCAssignToStack<0, 4>>,
803
804  // Boolean vectors of AVX-512 are passed in SIMD registers.
805  // The call from AVX to AVX-512 function should work,
806  // since the boolean types in AVX/AVX2 are promoted by default.
807  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
808  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
809  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
810  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
811  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
812  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
813
814  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
815  // passed in the parameter area.
816  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
817
818  // Darwin passes vectors in a form that differs from the i386 psABI
819  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
820
821  // Otherwise, drop to 'normal' X86-32 CC
822  CCDelegateTo<CC_X86_32_Vector_Standard>
823]>;
824
825def CC_X86_32_C : CallingConv<[
826  // Promote i1/i8/i16/v1i1 arguments to i32.
827  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
828
829  // The 'nest' parameter, if any, is passed in ECX.
830  CCIfNest<CCAssignToReg<[ECX]>>,
831
832  // The first 3 integer arguments, if marked 'inreg' and if the call is not
833  // a vararg call, are passed in integer registers.
834  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
835
836  // Otherwise, same as everything else.
837  CCDelegateTo<CC_X86_32_Common>
838]>;
839
840def CC_X86_32_MCU : CallingConv<[
841  // Handles byval parameters.  Note that, like FastCC, we can't rely on
842  // the delegation to CC_X86_32_Common because that happens after code that
843  // puts arguments in registers.
844  CCIfByVal<CCPassByVal<4, 4>>,
845
846  // Promote i1/i8/i16/v1i1 arguments to i32.
847  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
848
849  // If the call is not a vararg call, some arguments may be passed
850  // in integer registers.
851  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
852
853  // Otherwise, same as everything else.
854  CCDelegateTo<CC_X86_32_Common>
855]>;
856
857def CC_X86_32_FastCall : CallingConv<[
858  // Promote i1 to i8.
859  CCIfType<[i1], CCPromoteToType<i8>>,
860
861  // The 'nest' parameter, if any, is passed in EAX.
862  CCIfNest<CCAssignToReg<[EAX]>>,
863
864  // The first 2 integer arguments are passed in ECX/EDX
865  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
866  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
867  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
868
869  // Otherwise, same as everything else.
870  CCDelegateTo<CC_X86_32_Common>
871]>;
872
873def CC_X86_Win32_VectorCall : CallingConv<[
874  // Pass floating point in XMMs
875  CCCustom<"CC_X86_32_VectorCall">,
876
877  // Delegate to fastcall to handle integer types.
878  CCDelegateTo<CC_X86_32_FastCall>
879]>;
880
881def CC_X86_32_ThisCall_Common : CallingConv<[
882  // The first integer argument is passed in ECX
883  CCIfType<[i32], CCAssignToReg<[ECX]>>,
884
885  // Otherwise, same as everything else.
886  CCDelegateTo<CC_X86_32_Common>
887]>;
888
889def CC_X86_32_ThisCall_Mingw : CallingConv<[
890  // Promote i1/i8/i16/v1i1 arguments to i32.
891  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
892
893  CCDelegateTo<CC_X86_32_ThisCall_Common>
894]>;
895
896def CC_X86_32_ThisCall_Win : CallingConv<[
897  // Promote i1/i8/i16/v1i1 arguments to i32.
898  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
899
900  // Pass sret arguments indirectly through stack.
901  CCIfSRet<CCAssignToStack<4, 4>>,
902
903  CCDelegateTo<CC_X86_32_ThisCall_Common>
904]>;
905
906def CC_X86_32_ThisCall : CallingConv<[
907  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
908  CCDelegateTo<CC_X86_32_ThisCall_Win>
909]>;
910
911def CC_X86_32_FastCC : CallingConv<[
912  // Handles byval parameters.  Note that we can't rely on the delegation
913  // to CC_X86_32_Common for this because that happens after code that
914  // puts arguments in registers.
915  CCIfByVal<CCPassByVal<4, 4>>,
916
917  // Promote i1/i8/i16/v1i1 arguments to i32.
918  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
919
920  // The 'nest' parameter, if any, is passed in EAX.
921  CCIfNest<CCAssignToReg<[EAX]>>,
922
923  // The first 2 integer arguments are passed in ECX/EDX
924  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
925
926  // The first 3 float or double arguments, if the call is not a vararg
927  // call and if SSE2 is available, are passed in SSE registers.
928  CCIfNotVarArg<CCIfType<[f32,f64],
929                CCIfSubtarget<"hasSSE2()",
930                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
931
932  // Doubles get 8-byte slots that are 8-byte aligned.
933  CCIfType<[f64], CCAssignToStack<8, 8>>,
934
935  // Otherwise, same as everything else.
936  CCDelegateTo<CC_X86_32_Common>
937]>;
938
939def CC_X86_32_GHC : CallingConv<[
940  // Promote i8/i16 arguments to i32.
941  CCIfType<[i8, i16], CCPromoteToType<i32>>,
942
943  // Pass in STG registers: Base, Sp, Hp, R1
944  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
945]>;
946
947def CC_X86_32_HiPE : CallingConv<[
948  // Promote i8/i16 arguments to i32.
949  CCIfType<[i8, i16], CCPromoteToType<i32>>,
950
951  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
952  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
953
954  // Integer/Float values get stored in stack slots that are 4 bytes in
955  // size and 4-byte aligned.
956  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
957]>;
958
959// X86-64 Intel OpenCL built-ins calling convention.
960def CC_Intel_OCL_BI : CallingConv<[
961
962  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
963  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
964
965  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
966  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
967
968  CCIfType<[i32], CCAssignToStack<4, 4>>,
969
970  // The SSE vector arguments are passed in XMM registers.
971  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
972           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
973
974  // The 256-bit vector arguments are passed in YMM registers.
975  CCIfType<[v8f32, v4f64, v8i32, v4i64],
976           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
977
978  // The 512-bit vector arguments are passed in ZMM registers.
979  CCIfType<[v16f32, v8f64, v16i32, v8i64],
980           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
981
982  // Pass masks in mask registers
983  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
984
985  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
986  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
987  CCDelegateTo<CC_X86_32_C>
988]>;
989
990//===----------------------------------------------------------------------===//
991// X86 Root Argument Calling Conventions
992//===----------------------------------------------------------------------===//
993
994// This is the root argument convention for the X86-32 backend.
995def CC_X86_32 : CallingConv<[
996  // X86_INTR calling convention is valid in MCU target and should override the
997  // MCU calling convention. Thus, this should be checked before isTargetMCU().
998  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
999  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1000  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1001  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1002  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1003  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1004  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
1005  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1006  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1007  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1008
1009  // Otherwise, drop to normal X86-32 CC
1010  CCDelegateTo<CC_X86_32_C>
1011]>;
1012
1013// This is the root argument convention for the X86-64 backend.
1014def CC_X86_64 : CallingConv<[
1015  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1016  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1017  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1018  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1019  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1020  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1021  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1022  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
1023  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
1024  CCIfCC<"CallingConv::X86_RegCall",
1025    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1026  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1027  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1028
1029  // Mingw64 and native Win64 use Win64 CC
1030  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1031
1032  // Otherwise, drop to normal X86-64 CC
1033  CCDelegateTo<CC_X86_64_C>
1034]>;
1035
1036// This is the argument convention used for the entire X86 backend.
1037let Entry = 1 in
1038def CC_X86 : CallingConv<[
1039  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1040  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1041  CCDelegateTo<CC_X86_32>
1042]>;
1043
1044//===----------------------------------------------------------------------===//
1045// Callee-saved Registers.
1046//===----------------------------------------------------------------------===//
1047
1048def CSR_NoRegs : CalleeSavedRegs<(add)>;
1049
1050def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1051def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1052
1053def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1054
1055def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1056def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1057
1058def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1059
1060def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1061                                     (sequence "XMM%u", 6, 15))>;
1062
1063def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1064
1065// The function used by Darwin to obtain the address of a thread-local variable
1066// uses rdi to pass a single parameter and rax for the return value. All other
1067// GPRs are preserved.
1068def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1069                                             R8, R9, R10, R11)>;
1070
1071// CSRs that are handled by prologue, epilogue.
1072def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1073
1074// CSRs that are handled explicitly via copies.
1075def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1076
1077// All GPRs - except r11
1078def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1079                                              R8, R9, R10, RSP)>;
1080
1081// All registers - except r11
1082def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1083                                                 (sequence "XMM%u", 0, 15))>;
1084def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1085                                                 (sequence "YMM%u", 0, 15))>;
1086
1087def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1088                                           R11, R12, R13, R14, R15, RBP,
1089                                           (sequence "XMM%u", 0, 15))>;
1090
1091def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1092                                              EDI)>;
1093def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1094                                              (sequence "XMM%u", 0, 7))>;
1095def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1096                                              (sequence "YMM%u", 0, 7))>;
1097def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1098                                                 (sequence "ZMM%u", 0, 7),
1099                                                 (sequence "K%u", 0, 7))>;
1100
1101def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1102def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1103                                                R10, R11, R12, R13, R14, R15, RBP)>;
1104def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1105                                                   (sequence "YMM%u", 0, 15)),
1106                                              (sequence "XMM%u", 0, 15))>;
1107def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1108                                                      (sequence "ZMM%u", 0, 31),
1109                                                      (sequence "K%u", 0, 7)),
1110                                                 (sequence "XMM%u", 0, 15))>;
1111
1112// Standard C + YMM6-15
1113def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1114                                                  R13, R14, R15,
1115                                                  (sequence "YMM%u", 6, 15))>;
1116
1117def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1118                                                     R12, R13, R14, R15,
1119                                                     (sequence "ZMM%u", 6, 21),
1120                                                     K4, K5, K6, K7)>;
1121//Standard C + XMM 8-15
1122def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1123                                                 (sequence "XMM%u", 8, 15))>;
1124
1125//Standard C + YMM 8-15
1126def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1127                                                  (sequence "YMM%u", 8, 15))>;
1128
1129def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
1130                                                  (sequence "ZMM%u", 16, 31),
1131                                                  K4, K5, K6, K7)>;
1132
1133// Only R12 is preserved for PHP calls in HHVM.
1134def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
1135
1136// Register calling convention preserves few GPR and XMM8-15
1137def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
1138def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1139                                           (sequence "XMM%u", 4, 7))>;
1140def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1141                                              (sequence "R%u", 10, 15))>;
1142def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1143                                              (sequence "XMM%u", 8, 15))>;
1144def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1145                                               (sequence "R%u", 12, 15))>;
1146def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1147                                               (sequence "XMM%u", 8, 15))>;
1148
1149