xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.td (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26// Register classes for RegCall
27class RC_X86_RegCall {
28  list<Register> GPR_8 = [];
29  list<Register> GPR_16 = [];
30  list<Register> GPR_32 = [];
31  list<Register> GPR_64 = [];
32  list<Register> FP_CALL = [FP0];
33  list<Register> FP_RET = [FP0, FP1];
34  list<Register> XMM = [];
35  list<Register> YMM = [];
36  list<Register> ZMM = [];
37}
38
39// RegCall register classes for 32 bits
40def RC_X86_32_RegCall : RC_X86_RegCall {
41  let GPR_8 = [AL, CL, DL, DIL, SIL];
42  let GPR_16 = [AX, CX, DX, DI, SI];
43  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
44  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
45                      ///< \todo Fix AssignToReg to enable empty lists
46  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
47  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
48  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
49}
50
51class RC_X86_64_RegCall : RC_X86_RegCall {
52  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
53             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
54  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
55             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
56  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
57             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
58}
59
60def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
61  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
62  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
63  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
64  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
65}
66
67def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
68  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
69  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
70  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
71  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
72}
73
74// X86-64 Intel regcall calling convention.
75multiclass X86_RegCall_base<RC_X86_RegCall RC> {
76def CC_#NAME : CallingConv<[
77  // Handles byval parameters.
78    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
79    CCIfByVal<CCPassByVal<4, 4>>,
80
81    // Promote i1/i8/i16/v1i1 arguments to i32.
82    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
83
84    // Promote v8i1/v16i1/v32i1 arguments to i32.
85    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
86
87    // bool, char, int, enum, long, pointer --> GPR
88    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
89
90    // long long, __int64 --> GPR
91    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
92
93    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
94    CCIfType<[v64i1], CCPromoteToType<i64>>,
95    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
96      CCAssignToReg<RC.GPR_64>>>,
97    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
98      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
99
100    // float, double, float128 --> XMM
101    // In the case of SSE disabled --> save to stack
102    CCIfType<[f32, f64, f128],
103      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
104
105    // long double --> FP
106    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
107
108    // __m128, __m128i, __m128d --> XMM
109    // In the case of SSE disabled --> save to stack
110    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
111      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
112
113    // __m256, __m256i, __m256d --> YMM
114    // In the case of SSE disabled --> save to stack
115    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
116      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
117
118    // __m512, __m512i, __m512d --> ZMM
119    // In the case of SSE disabled --> save to stack
120    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
121      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
122
123    // If no register was found -> assign to stack
124
125    // In 64 bit, assign 64/32 bit values to 8 byte stack
126    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
127      CCAssignToStack<8, 8>>>,
128
129    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
130    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
131    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
132
133    // MMX type gets 8 byte slot in stack , while alignment depends on target
134    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
135    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
136
137    // float 128 get stack slots whose size and alignment depends
138    // on the subtarget.
139    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
140
141    // Vectors get 16-byte stack slots that are 16-byte aligned.
142    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
143      CCAssignToStack<16, 16>>,
144
145    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
146    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
147      CCAssignToStack<32, 32>>,
148
149    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
150    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
151      CCAssignToStack<64, 64>>
152]>;
153
154def RetCC_#NAME : CallingConv<[
155    // Promote i1, v1i1, v8i1 arguments to i8.
156    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
157
158    // Promote v16i1 arguments to i16.
159    CCIfType<[v16i1], CCPromoteToType<i16>>,
160
161    // Promote v32i1 arguments to i32.
162    CCIfType<[v32i1], CCPromoteToType<i32>>,
163
164    // bool, char, int, enum, long, pointer --> GPR
165    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
166    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
167    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
168
169    // long long, __int64 --> GPR
170    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
171
172    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
173    CCIfType<[v64i1], CCPromoteToType<i64>>,
174    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
175      CCAssignToReg<RC.GPR_64>>>,
176    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
177      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
178
179    // long double --> FP
180    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
181
182    // float, double, float128 --> XMM
183    CCIfType<[f32, f64, f128],
184      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
185
186    // __m128, __m128i, __m128d --> XMM
187    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
188      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
189
190    // __m256, __m256i, __m256d --> YMM
191    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
192      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
193
194    // __m512, __m512i, __m512d --> ZMM
195    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
196      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
197]>;
198}
199
200//===----------------------------------------------------------------------===//
201// Return Value Calling Conventions
202//===----------------------------------------------------------------------===//
203
204// Return-value conventions common to all X86 CC's.
205def RetCC_X86Common : CallingConv<[
206  // Scalar values are returned in AX first, then DX.  For i8, the ABI
207  // requires the values to be in AL and AH, however this code uses AL and DL
208  // instead. This is because using AH for the second register conflicts with
209  // the way LLVM does multiple return values -- a return of {i16,i8} would end
210  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
211  // for functions that return two i8 values are currently expected to pack the
212  // values into an i16 (which uses AX, and thus AL:AH).
213  //
214  // For code that doesn't care about the ABI, we allow returning more than two
215  // integer values in registers.
216  CCIfType<[v1i1],  CCPromoteToType<i8>>,
217  CCIfType<[i1],  CCPromoteToType<i8>>,
218  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
219  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
220  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
221  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
222
223  // Boolean vectors of AVX-512 are returned in SIMD registers.
224  // The call from AVX to AVX-512 function should work,
225  // since the boolean types in AVX/AVX2 are promoted by default.
226  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
227  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
228  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
229  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
230  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
231  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
232
233  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
234  // can only be used by ABI non-compliant code. If the target doesn't have XMM
235  // registers, it won't have vector types.
236  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
237            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
238
239  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
240  // can only be used by ABI non-compliant code. This vector type is only
241  // supported while using the AVX target feature.
242  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
243            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
244
245  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
246  // can only be used by ABI non-compliant code. This vector type is only
247  // supported while using the AVX-512 target feature.
248  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
249            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
250
251  // MMX vector types are always returned in MM0. If the target doesn't have
252  // MM0, it doesn't support these vector types.
253  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
254
255  // Long double types are always returned in FP0 (even with SSE),
256  // except on Win64.
257  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
258]>;
259
260// X86-32 C return-value convention.
261def RetCC_X86_32_C : CallingConv<[
262  // The X86-32 calling convention returns FP values in FP0, unless marked
263  // with "inreg" (used here to distinguish one kind of reg from another,
264  // weirdly; this is really the sse-regparm calling convention) in which
265  // case they use XMM0, otherwise it is the same as the common X86 calling
266  // conv.
267  CCIfInReg<CCIfSubtarget<"hasSSE2()",
268    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
269  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
270  CCDelegateTo<RetCC_X86Common>
271]>;
272
273// X86-32 FastCC return-value convention.
274def RetCC_X86_32_Fast : CallingConv<[
275  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
276  // SSE2.
277  // This can happen when a float, 2 x float, or 3 x float vector is split by
278  // target lowering, and is returned in 1-3 sse regs.
279  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
280  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
281
282  // For integers, ECX can be used as an extra return register
283  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
284  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
285  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
286
287  // Otherwise, it is the same as the common X86 calling convention.
288  CCDelegateTo<RetCC_X86Common>
289]>;
290
291// Intel_OCL_BI return-value convention.
292def RetCC_Intel_OCL_BI : CallingConv<[
293  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
294  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
295            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
296
297  // 256-bit FP vectors
298  // No more than 4 registers
299  CCIfType<[v8f32, v4f64, v8i32, v4i64],
300            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
301
302  // 512-bit FP vectors
303  CCIfType<[v16f32, v8f64, v16i32, v8i64],
304            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
305
306  // i32, i64 in the standard way
307  CCDelegateTo<RetCC_X86Common>
308]>;
309
310// X86-32 HiPE return-value convention.
311def RetCC_X86_32_HiPE : CallingConv<[
312  // Promote all types to i32
313  CCIfType<[i8, i16], CCPromoteToType<i32>>,
314
315  // Return: HP, P, VAL1, VAL2
316  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
317]>;
318
319// X86-32 Vectorcall return-value convention.
320def RetCC_X86_32_VectorCall : CallingConv<[
321  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
322  CCIfType<[f32, f64, f128],
323            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
324
325  // Return integers in the standard way.
326  CCDelegateTo<RetCC_X86Common>
327]>;
328
329// X86-64 C return-value convention.
330def RetCC_X86_64_C : CallingConv<[
331  // The X86-64 calling convention always returns FP values in XMM0.
332  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
333  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
334  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
335
336  // MMX vector types are always returned in XMM0.
337  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
338
339  // Pointers are always returned in full 64-bit registers.
340  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
341
342  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
343
344  CCDelegateTo<RetCC_X86Common>
345]>;
346
347// X86-Win64 C return-value convention.
348def RetCC_X86_Win64_C : CallingConv<[
349  // The X86-Win64 calling convention always returns __m64 values in RAX.
350  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
351
352  // GCC returns FP values in RAX on Win64.
353  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
354  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
355
356  // Otherwise, everything is the same as 'normal' X86-64 C CC.
357  CCDelegateTo<RetCC_X86_64_C>
358]>;
359
360// X86-64 vectorcall return-value convention.
361def RetCC_X86_64_Vectorcall : CallingConv<[
362  // Vectorcall calling convention always returns FP values in XMMs.
363  CCIfType<[f32, f64, f128],
364    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
365
366  // Otherwise, everything is the same as Windows X86-64 C CC.
367  CCDelegateTo<RetCC_X86_Win64_C>
368]>;
369
370// X86-64 HiPE return-value convention.
371def RetCC_X86_64_HiPE : CallingConv<[
372  // Promote all types to i64
373  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
374
375  // Return: HP, P, VAL1, VAL2
376  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
377]>;
378
379// X86-64 WebKit_JS return-value convention.
380def RetCC_X86_64_WebKit_JS : CallingConv<[
381  // Promote all types to i64
382  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
383
384  // Return: RAX
385  CCIfType<[i64], CCAssignToReg<[RAX]>>
386]>;
387
388def RetCC_X86_64_Swift : CallingConv<[
389
390  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
391
392  // For integers, ECX, R8D can be used as extra return registers.
393  CCIfType<[v1i1],  CCPromoteToType<i8>>,
394  CCIfType<[i1],  CCPromoteToType<i8>>,
395  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
396  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
397  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
398  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
399
400  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
401  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
402  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
403  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
404
405  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
406  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
407  CCDelegateTo<RetCC_X86Common>
408]>;
409
410// X86-64 AnyReg return-value convention. No explicit register is specified for
411// the return-value. The register allocator is allowed and expected to choose
412// any free register.
413//
414// This calling convention is currently only supported by the stackmap and
415// patchpoint intrinsics. All other uses will result in an assert on Debug
416// builds. On Release builds we fallback to the X86 C calling convention.
417def RetCC_X86_64_AnyReg : CallingConv<[
418  CCCustom<"CC_X86_AnyReg_Error">
419]>;
420
421// X86-64 HHVM return-value convention.
422def RetCC_X86_64_HHVM: CallingConv<[
423  // Promote all types to i64
424  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
425
426  // Return: could return in any GP register save RSP and R12.
427  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
428                                 RAX, R10, R11, R13, R14, R15]>>
429]>;
430
431
432defm X86_32_RegCall :
433	 X86_RegCall_base<RC_X86_32_RegCall>;
434defm X86_Win64_RegCall :
435     X86_RegCall_base<RC_X86_64_RegCall_Win>;
436defm X86_SysV64_RegCall :
437     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
438
439// This is the root return-value convention for the X86-32 backend.
440def RetCC_X86_32 : CallingConv<[
441  // If FastCC, use RetCC_X86_32_Fast.
442  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
443  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
444  // CFGuard_Check never returns a value so does not need a RetCC.
445  // If HiPE, use RetCC_X86_32_HiPE.
446  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
447  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
448  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
449
450  // Otherwise, use RetCC_X86_32_C.
451  CCDelegateTo<RetCC_X86_32_C>
452]>;
453
454// This is the root return-value convention for the X86-64 backend.
455def RetCC_X86_64 : CallingConv<[
456  // HiPE uses RetCC_X86_64_HiPE
457  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
458
459  // Handle JavaScript calls.
460  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
461  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
462
463  // Handle Swift calls.
464  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
465
466  // Handle explicit CC selection
467  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
468  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
469
470  // Handle Vectorcall CC
471  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
472
473  // Handle HHVM calls.
474  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
475
476  CCIfCC<"CallingConv::X86_RegCall",
477          CCIfSubtarget<"isTargetWin64()",
478                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
479  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
480
481  // Mingw64 and native Win64 use Win64 CC
482  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
483
484  // Otherwise, drop to normal X86-64 CC
485  CCDelegateTo<RetCC_X86_64_C>
486]>;
487
488// This is the return-value convention used for the entire X86 backend.
489let Entry = 1 in
490def RetCC_X86 : CallingConv<[
491
492  // Check if this is the Intel OpenCL built-ins calling convention
493  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
494
495  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
496  CCDelegateTo<RetCC_X86_32>
497]>;
498
499//===----------------------------------------------------------------------===//
500// X86-64 Argument Calling Conventions
501//===----------------------------------------------------------------------===//
502
503def CC_X86_64_C : CallingConv<[
504  // Handles byval parameters.
505  CCIfByVal<CCPassByVal<8, 8>>,
506
507  // Promote i1/i8/i16/v1i1 arguments to i32.
508  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
509
510  // The 'nest' parameter, if any, is passed in R10.
511  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
512  CCIfNest<CCAssignToReg<[R10]>>,
513
514  // Pass SwiftSelf in a callee saved register.
515  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
516
517  // A SwiftError is passed in R12.
518  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
519
520  // For Swift Calling Convention, pass sret in %rax.
521  CCIfCC<"CallingConv::Swift",
522    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
523
524  // Pointers are always passed in full 64-bit registers.
525  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
526
527  // The first 6 integer arguments are passed in integer registers.
528  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
529  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
530
531  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
532  CCIfType<[x86mmx],
533            CCIfSubtarget<"isTargetDarwin()",
534            CCIfSubtarget<"hasSSE2()",
535            CCPromoteToType<v2i64>>>>,
536
537  // Boolean vectors of AVX-512 are passed in SIMD registers.
538  // The call from AVX to AVX-512 function should work,
539  // since the boolean types in AVX/AVX2 are promoted by default.
540  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
541  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
542  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
543  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
544  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
545  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
546
547  // The first 8 FP/Vector arguments are passed in XMM registers.
548  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
549            CCIfSubtarget<"hasSSE1()",
550            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
551
552  // The first 8 256-bit vector arguments are passed in YMM registers, unless
553  // this is a vararg function.
554  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
555  // fixed arguments to vararg functions are supposed to be passed in
556  // registers.  Actually modeling that would be a lot of work, though.
557  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
558                          CCIfSubtarget<"hasAVX()",
559                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
560                                         YMM4, YMM5, YMM6, YMM7]>>>>,
561
562  // The first 8 512-bit vector arguments are passed in ZMM registers.
563  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
564            CCIfSubtarget<"hasAVX512()",
565            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
566
567  // Integer/FP values get stored in stack slots that are 8 bytes in size and
568  // 8-byte aligned if there are no more registers to hold them.
569  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
570
571  // Long doubles get stack slots whose size and alignment depends on the
572  // subtarget.
573  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
574
575  // Vectors get 16-byte stack slots that are 16-byte aligned.
576  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
577
578  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
579  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
580           CCAssignToStack<32, 32>>,
581
582  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
583  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
584           CCAssignToStack<64, 64>>
585]>;
586
587// Calling convention for X86-64 HHVM.
588def CC_X86_64_HHVM : CallingConv<[
589  // Use all/any GP registers for args, except RSP.
590  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
591                                 RDI, RSI, RDX, RCX, R8, R9,
592                                 RAX, R10, R11, R13, R14]>>
593]>;
594
595// Calling convention for helper functions in HHVM.
596def CC_X86_64_HHVM_C : CallingConv<[
597  // Pass the first argument in RBP.
598  CCIfType<[i64], CCAssignToReg<[RBP]>>,
599
600  // Otherwise it's the same as the regular C calling convention.
601  CCDelegateTo<CC_X86_64_C>
602]>;
603
604// Calling convention used on Win64
605def CC_X86_Win64_C : CallingConv<[
606  // FIXME: Handle varargs.
607
608  // Byval aggregates are passed by pointer
609  CCIfByVal<CCPassIndirect<i64>>,
610
611  // Promote i1/v1i1 arguments to i8.
612  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
613
614  // The 'nest' parameter, if any, is passed in R10.
615  CCIfNest<CCAssignToReg<[R10]>>,
616
617  // A SwiftError is passed in R12.
618  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
619
620  // The 'CFGuardTarget' parameter, if any, is passed in RAX.
621  CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
622
623  // 128 bit vectors are passed by pointer
624  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
625
626  // 256 bit vectors are passed by pointer
627  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
628
629  // 512 bit vectors are passed by pointer
630  CCIfType<[v64i8, v32i16, v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
631
632  // Long doubles are passed by pointer
633  CCIfType<[f80], CCPassIndirect<i64>>,
634
635  // The first 4 MMX vector arguments are passed in GPRs.
636  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
637
638  // If SSE was disabled, pass FP values smaller than 64-bits as integers in
639  // GPRs or on the stack.
640  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
641  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
642
643  // The first 4 FP/Vector arguments are passed in XMM registers.
644  CCIfType<[f32, f64],
645           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
646                                   [RCX , RDX , R8  , R9  ]>>,
647
648  // The first 4 integer arguments are passed in integer registers.
649  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
650                                          [XMM0, XMM1, XMM2, XMM3]>>,
651  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
652                                          [XMM0, XMM1, XMM2, XMM3]>>,
653  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
654                                          [XMM0, XMM1, XMM2, XMM3]>>,
655
656  // Do not pass the sret argument in RCX, the Win64 thiscall calling
657  // convention requires "this" to be passed in RCX.
658  CCIfCC<"CallingConv::X86_ThisCall",
659    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
660                                                     [XMM1, XMM2, XMM3]>>>>,
661
662  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
663                                          [XMM0, XMM1, XMM2, XMM3]>>,
664
665  // Integer/FP values get stored in stack slots that are 8 bytes in size and
666  // 8-byte aligned if there are no more registers to hold them.
667  CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
668]>;
669
670def CC_X86_Win64_VectorCall : CallingConv<[
671  CCCustom<"CC_X86_64_VectorCall">,
672
673  // Delegate to fastcall to handle integer types.
674  CCDelegateTo<CC_X86_Win64_C>
675]>;
676
677
678def CC_X86_64_GHC : CallingConv<[
679  // Promote i8/i16/i32 arguments to i64.
680  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
681
682  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
683  CCIfType<[i64],
684            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
685
686  // Pass in STG registers: F1, F2, F3, F4, D1, D2
687  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
688            CCIfSubtarget<"hasSSE1()",
689            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
690  // AVX
691  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
692            CCIfSubtarget<"hasAVX()",
693            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
694  // AVX-512
695  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
696            CCIfSubtarget<"hasAVX512()",
697            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
698]>;
699
700def CC_X86_64_HiPE : CallingConv<[
701  // Promote i8/i16/i32 arguments to i64.
702  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
703
704  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
705  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
706
707  // Integer/FP values get stored in stack slots that are 8 bytes in size and
708  // 8-byte aligned if there are no more registers to hold them.
709  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
710]>;
711
712def CC_X86_64_WebKit_JS : CallingConv<[
713  // Promote i8/i16 arguments to i32.
714  CCIfType<[i8, i16], CCPromoteToType<i32>>,
715
716  // Only the first integer argument is passed in register.
717  CCIfType<[i32], CCAssignToReg<[EAX]>>,
718  CCIfType<[i64], CCAssignToReg<[RAX]>>,
719
720  // The remaining integer arguments are passed on the stack. 32bit integer and
721  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
722  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
723  // in 8 byte stack slots.
724  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
725  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
726]>;
727
728// No explicit register is specified for the AnyReg calling convention. The
729// register allocator may assign the arguments to any free register.
730//
731// This calling convention is currently only supported by the stackmap and
732// patchpoint intrinsics. All other uses will result in an assert on Debug
733// builds. On Release builds we fallback to the X86 C calling convention.
734def CC_X86_64_AnyReg : CallingConv<[
735  CCCustom<"CC_X86_AnyReg_Error">
736]>;
737
738//===----------------------------------------------------------------------===//
739// X86 C Calling Convention
740//===----------------------------------------------------------------------===//
741
742/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
743/// values are spilled on the stack.
744def CC_X86_32_Vector_Common : CallingConv<[
745  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
746  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
747
748  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
749  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
750           CCAssignToStack<32, 32>>,
751
752  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
753  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
754           CCAssignToStack<64, 64>>
755]>;
756
757// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
758// vector registers
759def CC_X86_32_Vector_Standard : CallingConv<[
760  // SSE vector arguments are passed in XMM registers.
761  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
762                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
763
764  // AVX 256-bit vector arguments are passed in YMM registers.
765  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
766                CCIfSubtarget<"hasAVX()",
767                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
768
769  // AVX 512-bit vector arguments are passed in ZMM registers.
770  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
771                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
772
773  CCDelegateTo<CC_X86_32_Vector_Common>
774]>;
775
776// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
777// vector registers.
778def CC_X86_32_Vector_Darwin : CallingConv<[
779  // SSE vector arguments are passed in XMM registers.
780  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
781                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
782
783  // AVX 256-bit vector arguments are passed in YMM registers.
784  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
785                CCIfSubtarget<"hasAVX()",
786                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
787
788  // AVX 512-bit vector arguments are passed in ZMM registers.
789  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
790                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
791
792  CCDelegateTo<CC_X86_32_Vector_Common>
793]>;
794
795/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
796/// values are spilled on the stack.
797def CC_X86_32_Common : CallingConv<[
798  // Handles byval/preallocated parameters.
799  CCIfByVal<CCPassByVal<4, 4>>,
800  CCIfPreallocated<CCPassByVal<4, 4>>,
801
802  // The first 3 float or double arguments, if marked 'inreg' and if the call
803  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
804  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
805                CCIfSubtarget<"hasSSE2()",
806                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
807
808  // The first 3 __m64 vector arguments are passed in mmx registers if the
809  // call is not a vararg call.
810  CCIfNotVarArg<CCIfType<[x86mmx],
811                CCAssignToReg<[MM0, MM1, MM2]>>>,
812
813  // Integer/Float values get stored in stack slots that are 4 bytes in
814  // size and 4-byte aligned.
815  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
816
817  // Doubles get 8-byte slots that are 4-byte aligned.
818  CCIfType<[f64], CCAssignToStack<8, 4>>,
819
820  // Long doubles get slots whose size depends on the subtarget.
821  CCIfType<[f80], CCAssignToStack<0, 4>>,
822
823  // Boolean vectors of AVX-512 are passed in SIMD registers.
824  // The call from AVX to AVX-512 function should work,
825  // since the boolean types in AVX/AVX2 are promoted by default.
826  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
827  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
828  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
829  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
830  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
831  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
832
833  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
834  // passed in the parameter area.
835  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
836
837  // Darwin passes vectors in a form that differs from the i386 psABI
838  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
839
840  // Otherwise, drop to 'normal' X86-32 CC
841  CCDelegateTo<CC_X86_32_Vector_Standard>
842]>;
843
844def CC_X86_32_C : CallingConv<[
845  // Promote i1/i8/i16/v1i1 arguments to i32.
846  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
847
848  // The 'nest' parameter, if any, is passed in ECX.
849  CCIfNest<CCAssignToReg<[ECX]>>,
850
851  // The first 3 integer arguments, if marked 'inreg' and if the call is not
852  // a vararg call, are passed in integer registers.
853  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
854
855  // Otherwise, same as everything else.
856  CCDelegateTo<CC_X86_32_Common>
857]>;
858
859def CC_X86_32_MCU : CallingConv<[
860  // Handles byval parameters.  Note that, like FastCC, we can't rely on
861  // the delegation to CC_X86_32_Common because that happens after code that
862  // puts arguments in registers.
863  CCIfByVal<CCPassByVal<4, 4>>,
864
865  // Promote i1/i8/i16/v1i1 arguments to i32.
866  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
867
868  // If the call is not a vararg call, some arguments may be passed
869  // in integer registers.
870  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
871
872  // Otherwise, same as everything else.
873  CCDelegateTo<CC_X86_32_Common>
874]>;
875
876def CC_X86_32_FastCall : CallingConv<[
877  // Promote i1 to i8.
878  CCIfType<[i1], CCPromoteToType<i8>>,
879
880  // The 'nest' parameter, if any, is passed in EAX.
881  CCIfNest<CCAssignToReg<[EAX]>>,
882
883  // The first 2 integer arguments are passed in ECX/EDX
884  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
885  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
886  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
887
888  // Otherwise, same as everything else.
889  CCDelegateTo<CC_X86_32_Common>
890]>;
891
892def CC_X86_Win32_VectorCall : CallingConv<[
893  // Pass floating point in XMMs
894  CCCustom<"CC_X86_32_VectorCall">,
895
896  // Delegate to fastcall to handle integer types.
897  CCDelegateTo<CC_X86_32_FastCall>
898]>;
899
900def CC_X86_32_ThisCall_Common : CallingConv<[
901  // The first integer argument is passed in ECX
902  CCIfType<[i32], CCAssignToReg<[ECX]>>,
903
904  // Otherwise, same as everything else.
905  CCDelegateTo<CC_X86_32_Common>
906]>;
907
908def CC_X86_32_ThisCall_Mingw : CallingConv<[
909  // Promote i1/i8/i16/v1i1 arguments to i32.
910  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
911
912  CCDelegateTo<CC_X86_32_ThisCall_Common>
913]>;
914
915def CC_X86_32_ThisCall_Win : CallingConv<[
916  // Promote i1/i8/i16/v1i1 arguments to i32.
917  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
918
919  // Pass sret arguments indirectly through stack.
920  CCIfSRet<CCAssignToStack<4, 4>>,
921
922  CCDelegateTo<CC_X86_32_ThisCall_Common>
923]>;
924
925def CC_X86_32_ThisCall : CallingConv<[
926  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
927  CCDelegateTo<CC_X86_32_ThisCall_Win>
928]>;
929
930def CC_X86_32_FastCC : CallingConv<[
931  // Handles byval parameters.  Note that we can't rely on the delegation
932  // to CC_X86_32_Common for this because that happens after code that
933  // puts arguments in registers.
934  CCIfByVal<CCPassByVal<4, 4>>,
935
936  // Promote i1/i8/i16/v1i1 arguments to i32.
937  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
938
939  // The 'nest' parameter, if any, is passed in EAX.
940  CCIfNest<CCAssignToReg<[EAX]>>,
941
942  // The first 2 integer arguments are passed in ECX/EDX
943  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
944
945  // The first 3 float or double arguments, if the call is not a vararg
946  // call and if SSE2 is available, are passed in SSE registers.
947  CCIfNotVarArg<CCIfType<[f32,f64],
948                CCIfSubtarget<"hasSSE2()",
949                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
950
951  // Doubles get 8-byte slots that are 8-byte aligned.
952  CCIfType<[f64], CCAssignToStack<8, 8>>,
953
954  // Otherwise, same as everything else.
955  CCDelegateTo<CC_X86_32_Common>
956]>;
957
958def CC_X86_Win32_CFGuard_Check : CallingConv<[
959  // The CFGuard check call takes exactly one integer argument
960  // (i.e. the target function address), which is passed in ECX.
961  CCIfType<[i32], CCAssignToReg<[ECX]>>
962]>;
963
964def CC_X86_32_GHC : CallingConv<[
965  // Promote i8/i16 arguments to i32.
966  CCIfType<[i8, i16], CCPromoteToType<i32>>,
967
968  // Pass in STG registers: Base, Sp, Hp, R1
969  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
970]>;
971
972def CC_X86_32_HiPE : CallingConv<[
973  // Promote i8/i16 arguments to i32.
974  CCIfType<[i8, i16], CCPromoteToType<i32>>,
975
976  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
977  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
978
979  // Integer/Float values get stored in stack slots that are 4 bytes in
980  // size and 4-byte aligned.
981  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
982]>;
983
984// X86-64 Intel OpenCL built-ins calling convention.
985def CC_Intel_OCL_BI : CallingConv<[
986
987  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
988  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
989
990  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
991  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
992
993  CCIfType<[i32], CCAssignToStack<4, 4>>,
994
995  // The SSE vector arguments are passed in XMM registers.
996  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
997           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
998
999  // The 256-bit vector arguments are passed in YMM registers.
1000  CCIfType<[v8f32, v4f64, v8i32, v4i64],
1001           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
1002
1003  // The 512-bit vector arguments are passed in ZMM registers.
1004  CCIfType<[v16f32, v8f64, v16i32, v8i64],
1005           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
1006
1007  // Pass masks in mask registers
1008  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
1009
1010  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1011  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
1012  CCDelegateTo<CC_X86_32_C>
1013]>;
1014
1015//===----------------------------------------------------------------------===//
1016// X86 Root Argument Calling Conventions
1017//===----------------------------------------------------------------------===//
1018
1019// This is the root argument convention for the X86-32 backend.
1020def CC_X86_32 : CallingConv<[
1021  // X86_INTR calling convention is valid in MCU target and should override the
1022  // MCU calling convention. Thus, this should be checked before isTargetMCU().
1023  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1024  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1025  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1026  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1027  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1028  CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
1029  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1030  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
1031  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1032  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1033  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1034
1035  // Otherwise, drop to normal X86-32 CC
1036  CCDelegateTo<CC_X86_32_C>
1037]>;
1038
1039// This is the root argument convention for the X86-64 backend.
1040def CC_X86_64 : CallingConv<[
1041  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1042  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1043  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1044  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1045  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1046  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1047  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1048  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
1049  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
1050  CCIfCC<"CallingConv::X86_RegCall",
1051    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1052  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1053  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1054
1055  // Mingw64 and native Win64 use Win64 CC
1056  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1057
1058  // Otherwise, drop to normal X86-64 CC
1059  CCDelegateTo<CC_X86_64_C>
1060]>;
1061
1062// This is the argument convention used for the entire X86 backend.
1063let Entry = 1 in
1064def CC_X86 : CallingConv<[
1065  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1066  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1067  CCDelegateTo<CC_X86_32>
1068]>;
1069
1070//===----------------------------------------------------------------------===//
1071// Callee-saved Registers.
1072//===----------------------------------------------------------------------===//
1073
1074def CSR_NoRegs : CalleeSavedRegs<(add)>;
1075
1076def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1077def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1078
1079def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1080
1081def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1082def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1083
1084def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1085
1086def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1087                                     (sequence "XMM%u", 6, 15))>;
1088
1089def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1090
1091// The function used by Darwin to obtain the address of a thread-local variable
1092// uses rdi to pass a single parameter and rax for the return value. All other
1093// GPRs are preserved.
1094def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1095                                             R8, R9, R10, R11)>;
1096
1097// CSRs that are handled by prologue, epilogue.
1098def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1099
1100// CSRs that are handled explicitly via copies.
1101def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1102
1103// All GPRs - except r11
1104def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1105                                              R8, R9, R10)>;
1106
1107// All registers - except r11
1108def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1109                                                 (sequence "XMM%u", 0, 15))>;
1110def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1111                                                 (sequence "YMM%u", 0, 15))>;
1112
1113def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1114                                           R11, R12, R13, R14, R15, RBP,
1115                                           (sequence "XMM%u", 0, 15))>;
1116
1117def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1118                                              EDI)>;
1119def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1120                                              (sequence "XMM%u", 0, 7))>;
1121def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1122                                              (sequence "YMM%u", 0, 7))>;
1123def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1124                                                 (sequence "ZMM%u", 0, 7),
1125                                                 (sequence "K%u", 0, 7))>;
1126
1127def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1128def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1129                                                R10, R11, R12, R13, R14, R15, RBP)>;
1130def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1131                                                   (sequence "YMM%u", 0, 15)),
1132                                              (sequence "XMM%u", 0, 15))>;
1133def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1134                                                      (sequence "ZMM%u", 0, 31),
1135                                                      (sequence "K%u", 0, 7)),
1136                                                 (sequence "XMM%u", 0, 15))>;
1137
1138// Standard C + YMM6-15
1139def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1140                                                  R13, R14, R15,
1141                                                  (sequence "YMM%u", 6, 15))>;
1142
1143def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1144                                                     R12, R13, R14, R15,
1145                                                     (sequence "ZMM%u", 6, 21),
1146                                                     K4, K5, K6, K7)>;
1147//Standard C + XMM 8-15
1148def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1149                                                 (sequence "XMM%u", 8, 15))>;
1150
1151//Standard C + YMM 8-15
1152def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1153                                                  (sequence "YMM%u", 8, 15))>;
1154
1155def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
1156                                                  (sequence "ZMM%u", 16, 31),
1157                                                  K4, K5, K6, K7)>;
1158
1159// Only R12 is preserved for PHP calls in HHVM.
1160def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
1161
1162// Register calling convention preserves few GPR and XMM8-15
1163def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1164def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1165                                           (sequence "XMM%u", 4, 7))>;
1166def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
1167def CSR_Win32_CFGuard_Check       : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
1168def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1169                                              (sequence "R%u", 10, 15))>;
1170def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1171                                              (sequence "XMM%u", 8, 15))>;
1172def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1173                                               (sequence "R%u", 12, 15))>;
1174def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1175                                               (sequence "XMM%u", 8, 15))>;
1176