xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.td (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26// Register classes for RegCall
27class RC_X86_RegCall {
28  list<Register> GPR_8 = [];
29  list<Register> GPR_16 = [];
30  list<Register> GPR_32 = [];
31  list<Register> GPR_64 = [];
32  list<Register> FP_CALL = [FP0];
33  list<Register> FP_RET = [FP0, FP1];
34  list<Register> XMM = [];
35  list<Register> YMM = [];
36  list<Register> ZMM = [];
37}
38
39// RegCall register classes for 32 bits
40def RC_X86_32_RegCall : RC_X86_RegCall {
41  let GPR_8 = [AL, CL, DL, DIL, SIL];
42  let GPR_16 = [AX, CX, DX, DI, SI];
43  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
44  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
45                      ///< \todo Fix AssignToReg to enable empty lists
46  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
47  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
48  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
49}
50
51class RC_X86_64_RegCall : RC_X86_RegCall {
52  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
53             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
54  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
55             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
56  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
57             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
58}
59
60def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
61  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
62  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
63  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
64  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
65}
66
67def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
68  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
69  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
70  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
71  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
72}
73
74// X86-64 Intel regcall calling convention.
75multiclass X86_RegCall_base<RC_X86_RegCall RC> {
76def CC_#NAME : CallingConv<[
77  // Handles byval parameters.
78    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
79    CCIfByVal<CCPassByVal<4, 4>>,
80
81    // Promote i1/i8/i16/v1i1 arguments to i32.
82    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
83
84    // Promote v8i1/v16i1/v32i1 arguments to i32.
85    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
86
87    // bool, char, int, enum, long, pointer --> GPR
88    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
89
90    // long long, __int64 --> GPR
91    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
92
93    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
94    CCIfType<[v64i1], CCPromoteToType<i64>>,
95    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
96      CCAssignToReg<RC.GPR_64>>>,
97    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
98      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
99
100    // float, double, float128 --> XMM
101    // In the case of SSE disabled --> save to stack
102    CCIfType<[f32, f64, f128],
103      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
104
105    // long double --> FP
106    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
107
108    // __m128, __m128i, __m128d --> XMM
109    // In the case of SSE disabled --> save to stack
110    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
111      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
112
113    // __m256, __m256i, __m256d --> YMM
114    // In the case of SSE disabled --> save to stack
115    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
116      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
117
118    // __m512, __m512i, __m512d --> ZMM
119    // In the case of SSE disabled --> save to stack
120    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
121      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
122
123    // If no register was found -> assign to stack
124
125    // In 64 bit, assign 64/32 bit values to 8 byte stack
126    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
127      CCAssignToStack<8, 8>>>,
128
129    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
130    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
131    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
132
133    // MMX type gets 8 byte slot in stack , while alignment depends on target
134    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
135    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
136
137    // float 128 get stack slots whose size and alignment depends
138    // on the subtarget.
139    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
140
141    // Vectors get 16-byte stack slots that are 16-byte aligned.
142    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
143      CCAssignToStack<16, 16>>,
144
145    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
146    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
147      CCAssignToStack<32, 32>>,
148
149    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
150    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
151      CCAssignToStack<64, 64>>
152]>;
153
154def RetCC_#NAME : CallingConv<[
155    // Promote i1, v1i1, v8i1 arguments to i8.
156    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
157
158    // Promote v16i1 arguments to i16.
159    CCIfType<[v16i1], CCPromoteToType<i16>>,
160
161    // Promote v32i1 arguments to i32.
162    CCIfType<[v32i1], CCPromoteToType<i32>>,
163
164    // bool, char, int, enum, long, pointer --> GPR
165    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
166    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
167    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
168
169    // long long, __int64 --> GPR
170    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
171
172    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
173    CCIfType<[v64i1], CCPromoteToType<i64>>,
174    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
175      CCAssignToReg<RC.GPR_64>>>,
176    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
177      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
178
179    // long double --> FP
180    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
181
182    // float, double, float128 --> XMM
183    CCIfType<[f32, f64, f128],
184      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
185
186    // __m128, __m128i, __m128d --> XMM
187    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
188      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
189
190    // __m256, __m256i, __m256d --> YMM
191    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
192      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
193
194    // __m512, __m512i, __m512d --> ZMM
195    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
196      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
197]>;
198}
199
200//===----------------------------------------------------------------------===//
201// Return Value Calling Conventions
202//===----------------------------------------------------------------------===//
203
204// Return-value conventions common to all X86 CC's.
205def RetCC_X86Common : CallingConv<[
206  // Scalar values are returned in AX first, then DX.  For i8, the ABI
207  // requires the values to be in AL and AH, however this code uses AL and DL
208  // instead. This is because using AH for the second register conflicts with
209  // the way LLVM does multiple return values -- a return of {i16,i8} would end
210  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
211  // for functions that return two i8 values are currently expected to pack the
212  // values into an i16 (which uses AX, and thus AL:AH).
213  //
214  // For code that doesn't care about the ABI, we allow returning more than two
215  // integer values in registers.
216  CCIfType<[v1i1],  CCPromoteToType<i8>>,
217  CCIfType<[i1],  CCPromoteToType<i8>>,
218  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
219  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
220  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
221  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
222
223  // Boolean vectors of AVX-512 are returned in SIMD registers.
224  // The call from AVX to AVX-512 function should work,
225  // since the boolean types in AVX/AVX2 are promoted by default.
226  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
227  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
228  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
229  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
230  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
231  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
232
233  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
234  // can only be used by ABI non-compliant code. If the target doesn't have XMM
235  // registers, it won't have vector types.
236  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
237            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
238
239  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
240  // can only be used by ABI non-compliant code. This vector type is only
241  // supported while using the AVX target feature.
242  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
243            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
244
245  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
246  // can only be used by ABI non-compliant code. This vector type is only
247  // supported while using the AVX-512 target feature.
248  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
249            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
250
251  // MMX vector types are always returned in MM0. If the target doesn't have
252  // MM0, it doesn't support these vector types.
253  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
254
255  // Long double types are always returned in FP0 (even with SSE),
256  // except on Win64.
257  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
258]>;
259
260// X86-32 C return-value convention.
261def RetCC_X86_32_C : CallingConv<[
262  // The X86-32 calling convention returns FP values in FP0, unless marked
263  // with "inreg" (used here to distinguish one kind of reg from another,
264  // weirdly; this is really the sse-regparm calling convention) in which
265  // case they use XMM0, otherwise it is the same as the common X86 calling
266  // conv.
267  CCIfInReg<CCIfSubtarget<"hasSSE2()",
268    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
269  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
270  CCDelegateTo<RetCC_X86Common>
271]>;
272
273// X86-32 FastCC return-value convention.
274def RetCC_X86_32_Fast : CallingConv<[
275  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
276  // SSE2.
277  // This can happen when a float, 2 x float, or 3 x float vector is split by
278  // target lowering, and is returned in 1-3 sse regs.
279  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
280  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
281
282  // For integers, ECX can be used as an extra return register
283  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
284  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
285  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
286
287  // Otherwise, it is the same as the common X86 calling convention.
288  CCDelegateTo<RetCC_X86Common>
289]>;
290
291// Intel_OCL_BI return-value convention.
292def RetCC_Intel_OCL_BI : CallingConv<[
293  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
294  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
295            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
296
297  // 256-bit FP vectors
298  // No more than 4 registers
299  CCIfType<[v8f32, v4f64, v8i32, v4i64],
300            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
301
302  // 512-bit FP vectors
303  CCIfType<[v16f32, v8f64, v16i32, v8i64],
304            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
305
306  // i32, i64 in the standard way
307  CCDelegateTo<RetCC_X86Common>
308]>;
309
310// X86-32 HiPE return-value convention.
311def RetCC_X86_32_HiPE : CallingConv<[
312  // Promote all types to i32
313  CCIfType<[i8, i16], CCPromoteToType<i32>>,
314
315  // Return: HP, P, VAL1, VAL2
316  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
317]>;
318
319// X86-32 Vectorcall return-value convention.
320def RetCC_X86_32_VectorCall : CallingConv<[
321  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
322  CCIfType<[f32, f64, f128],
323            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
324
325  // Return integers in the standard way.
326  CCDelegateTo<RetCC_X86Common>
327]>;
328
329// X86-64 C return-value convention.
330def RetCC_X86_64_C : CallingConv<[
331  // The X86-64 calling convention always returns FP values in XMM0.
332  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
333  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
334  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
335
336  // MMX vector types are always returned in XMM0.
337  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
338
339  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
340
341  CCDelegateTo<RetCC_X86Common>
342]>;
343
344// X86-Win64 C return-value convention.
345def RetCC_X86_Win64_C : CallingConv<[
346  // The X86-Win64 calling convention always returns __m64 values in RAX.
347  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
348
349  // GCC returns FP values in RAX on Win64.
350  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
351  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
352
353  // Otherwise, everything is the same as 'normal' X86-64 C CC.
354  CCDelegateTo<RetCC_X86_64_C>
355]>;
356
357// X86-64 vectorcall return-value convention.
358def RetCC_X86_64_Vectorcall : CallingConv<[
359  // Vectorcall calling convention always returns FP values in XMMs.
360  CCIfType<[f32, f64, f128],
361    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
362
363  // Otherwise, everything is the same as Windows X86-64 C CC.
364  CCDelegateTo<RetCC_X86_Win64_C>
365]>;
366
367// X86-64 HiPE return-value convention.
368def RetCC_X86_64_HiPE : CallingConv<[
369  // Promote all types to i64
370  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
371
372  // Return: HP, P, VAL1, VAL2
373  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
374]>;
375
376// X86-64 WebKit_JS return-value convention.
377def RetCC_X86_64_WebKit_JS : CallingConv<[
378  // Promote all types to i64
379  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
380
381  // Return: RAX
382  CCIfType<[i64], CCAssignToReg<[RAX]>>
383]>;
384
385def RetCC_X86_64_Swift : CallingConv<[
386
387  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
388
389  // For integers, ECX, R8D can be used as extra return registers.
390  CCIfType<[v1i1],  CCPromoteToType<i8>>,
391  CCIfType<[i1],  CCPromoteToType<i8>>,
392  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
393  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
394  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
395  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
396
397  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
398  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
399  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
400  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
401
402  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
403  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
404  CCDelegateTo<RetCC_X86Common>
405]>;
406
407// X86-64 AnyReg return-value convention. No explicit register is specified for
408// the return-value. The register allocator is allowed and expected to choose
409// any free register.
410//
411// This calling convention is currently only supported by the stackmap and
412// patchpoint intrinsics. All other uses will result in an assert on Debug
413// builds. On Release builds we fallback to the X86 C calling convention.
414def RetCC_X86_64_AnyReg : CallingConv<[
415  CCCustom<"CC_X86_AnyReg_Error">
416]>;
417
418// X86-64 HHVM return-value convention.
419def RetCC_X86_64_HHVM: CallingConv<[
420  // Promote all types to i64
421  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
422
423  // Return: could return in any GP register save RSP and R12.
424  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
425                                 RAX, R10, R11, R13, R14, R15]>>
426]>;
427
428
429defm X86_32_RegCall :
430	 X86_RegCall_base<RC_X86_32_RegCall>;
431defm X86_Win64_RegCall :
432     X86_RegCall_base<RC_X86_64_RegCall_Win>;
433defm X86_SysV64_RegCall :
434     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
435
436// This is the root return-value convention for the X86-32 backend.
437def RetCC_X86_32 : CallingConv<[
438  // If FastCC, use RetCC_X86_32_Fast.
439  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
440  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
441  // CFGuard_Check never returns a value so does not need a RetCC.
442  // If HiPE, use RetCC_X86_32_HiPE.
443  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
444  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
445  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
446
447  // Otherwise, use RetCC_X86_32_C.
448  CCDelegateTo<RetCC_X86_32_C>
449]>;
450
451// This is the root return-value convention for the X86-64 backend.
452def RetCC_X86_64 : CallingConv<[
453  // HiPE uses RetCC_X86_64_HiPE
454  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
455
456  // Handle JavaScript calls.
457  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
458  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
459
460  // Handle Swift calls.
461  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
462
463  // Handle explicit CC selection
464  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
465  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
466
467  // Handle Vectorcall CC
468  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
469
470  // Handle HHVM calls.
471  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
472
473  CCIfCC<"CallingConv::X86_RegCall",
474          CCIfSubtarget<"isTargetWin64()",
475                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
476  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
477
478  // Mingw64 and native Win64 use Win64 CC
479  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
480
481  // Otherwise, drop to normal X86-64 CC
482  CCDelegateTo<RetCC_X86_64_C>
483]>;
484
485// This is the return-value convention used for the entire X86 backend.
486let Entry = 1 in
487def RetCC_X86 : CallingConv<[
488
489  // Check if this is the Intel OpenCL built-ins calling convention
490  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
491
492  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
493  CCDelegateTo<RetCC_X86_32>
494]>;
495
496//===----------------------------------------------------------------------===//
497// X86-64 Argument Calling Conventions
498//===----------------------------------------------------------------------===//
499
500def CC_X86_64_C : CallingConv<[
501  // Handles byval parameters.
502  CCIfByVal<CCPassByVal<8, 8>>,
503
504  // Promote i1/i8/i16/v1i1 arguments to i32.
505  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
506
507  // The 'nest' parameter, if any, is passed in R10.
508  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
509  CCIfNest<CCAssignToReg<[R10]>>,
510
511  // Pass SwiftSelf in a callee saved register.
512  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
513
514  // A SwiftError is passed in R12.
515  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
516
517  // For Swift Calling Convention, pass sret in %rax.
518  CCIfCC<"CallingConv::Swift",
519    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
520
521  // The first 6 integer arguments are passed in integer registers.
522  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
523  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
524
525  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
526  CCIfType<[x86mmx],
527            CCIfSubtarget<"isTargetDarwin()",
528            CCIfSubtarget<"hasSSE2()",
529            CCPromoteToType<v2i64>>>>,
530
531  // Boolean vectors of AVX-512 are passed in SIMD registers.
532  // The call from AVX to AVX-512 function should work,
533  // since the boolean types in AVX/AVX2 are promoted by default.
534  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
535  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
536  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
537  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
538  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
539  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
540
541  // The first 8 FP/Vector arguments are passed in XMM registers.
542  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
543            CCIfSubtarget<"hasSSE1()",
544            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
545
546  // The first 8 256-bit vector arguments are passed in YMM registers, unless
547  // this is a vararg function.
548  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
549  // fixed arguments to vararg functions are supposed to be passed in
550  // registers.  Actually modeling that would be a lot of work, though.
551  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
552                          CCIfSubtarget<"hasAVX()",
553                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
554                                         YMM4, YMM5, YMM6, YMM7]>>>>,
555
556  // The first 8 512-bit vector arguments are passed in ZMM registers.
557  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
558            CCIfSubtarget<"hasAVX512()",
559            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
560
561  // Integer/FP values get stored in stack slots that are 8 bytes in size and
562  // 8-byte aligned if there are no more registers to hold them.
563  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
564
565  // Long doubles get stack slots whose size and alignment depends on the
566  // subtarget.
567  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
568
569  // Vectors get 16-byte stack slots that are 16-byte aligned.
570  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
571
572  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
573  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
574           CCAssignToStack<32, 32>>,
575
576  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
577  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
578           CCAssignToStack<64, 64>>
579]>;
580
581// Calling convention for X86-64 HHVM.
582def CC_X86_64_HHVM : CallingConv<[
583  // Use all/any GP registers for args, except RSP.
584  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
585                                 RDI, RSI, RDX, RCX, R8, R9,
586                                 RAX, R10, R11, R13, R14]>>
587]>;
588
589// Calling convention for helper functions in HHVM.
590def CC_X86_64_HHVM_C : CallingConv<[
591  // Pass the first argument in RBP.
592  CCIfType<[i64], CCAssignToReg<[RBP]>>,
593
594  // Otherwise it's the same as the regular C calling convention.
595  CCDelegateTo<CC_X86_64_C>
596]>;
597
598// Calling convention used on Win64
599def CC_X86_Win64_C : CallingConv<[
600  // FIXME: Handle varargs.
601
602  // Byval aggregates are passed by pointer
603  CCIfByVal<CCPassIndirect<i64>>,
604
605  // Promote i1/v1i1 arguments to i8.
606  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
607
608  // The 'nest' parameter, if any, is passed in R10.
609  CCIfNest<CCAssignToReg<[R10]>>,
610
611  // A SwiftError is passed in R12.
612  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
613
614  // The 'CFGuardTarget' parameter, if any, is passed in RAX.
615  CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
616
617  // 128 bit vectors are passed by pointer
618  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
619
620  // 256 bit vectors are passed by pointer
621  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
622
623  // 512 bit vectors are passed by pointer
624  CCIfType<[v64i8, v32i16, v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
625
626  // Long doubles are passed by pointer
627  CCIfType<[f80], CCPassIndirect<i64>>,
628
629  // The first 4 MMX vector arguments are passed in GPRs.
630  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
631
632  // If SSE was disabled, pass FP values smaller than 64-bits as integers in
633  // GPRs or on the stack.
634  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
635  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
636
637  // The first 4 FP/Vector arguments are passed in XMM registers.
638  CCIfType<[f32, f64],
639           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
640                                   [RCX , RDX , R8  , R9  ]>>,
641
642  // The first 4 integer arguments are passed in integer registers.
643  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
644                                          [XMM0, XMM1, XMM2, XMM3]>>,
645  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
646                                          [XMM0, XMM1, XMM2, XMM3]>>,
647  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
648                                          [XMM0, XMM1, XMM2, XMM3]>>,
649
650  // Do not pass the sret argument in RCX, the Win64 thiscall calling
651  // convention requires "this" to be passed in RCX.
652  CCIfCC<"CallingConv::X86_ThisCall",
653    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
654                                                     [XMM1, XMM2, XMM3]>>>>,
655
656  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
657                                          [XMM0, XMM1, XMM2, XMM3]>>,
658
659  // Integer/FP values get stored in stack slots that are 8 bytes in size and
660  // 8-byte aligned if there are no more registers to hold them.
661  CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
662]>;
663
664def CC_X86_Win64_VectorCall : CallingConv<[
665  CCCustom<"CC_X86_64_VectorCall">,
666
667  // Delegate to fastcall to handle integer types.
668  CCDelegateTo<CC_X86_Win64_C>
669]>;
670
671
672def CC_X86_64_GHC : CallingConv<[
673  // Promote i8/i16/i32 arguments to i64.
674  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
675
676  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
677  CCIfType<[i64],
678            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
679
680  // Pass in STG registers: F1, F2, F3, F4, D1, D2
681  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
682            CCIfSubtarget<"hasSSE1()",
683            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
684  // AVX
685  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
686            CCIfSubtarget<"hasAVX()",
687            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
688  // AVX-512
689  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
690            CCIfSubtarget<"hasAVX512()",
691            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
692]>;
693
694def CC_X86_64_HiPE : CallingConv<[
695  // Promote i8/i16/i32 arguments to i64.
696  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
697
698  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
699  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
700
701  // Integer/FP values get stored in stack slots that are 8 bytes in size and
702  // 8-byte aligned if there are no more registers to hold them.
703  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
704]>;
705
706def CC_X86_64_WebKit_JS : CallingConv<[
707  // Promote i8/i16 arguments to i32.
708  CCIfType<[i8, i16], CCPromoteToType<i32>>,
709
710  // Only the first integer argument is passed in register.
711  CCIfType<[i32], CCAssignToReg<[EAX]>>,
712  CCIfType<[i64], CCAssignToReg<[RAX]>>,
713
714  // The remaining integer arguments are passed on the stack. 32bit integer and
715  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
716  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
717  // in 8 byte stack slots.
718  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
719  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
720]>;
721
722// No explicit register is specified for the AnyReg calling convention. The
723// register allocator may assign the arguments to any free register.
724//
725// This calling convention is currently only supported by the stackmap and
726// patchpoint intrinsics. All other uses will result in an assert on Debug
727// builds. On Release builds we fallback to the X86 C calling convention.
728def CC_X86_64_AnyReg : CallingConv<[
729  CCCustom<"CC_X86_AnyReg_Error">
730]>;
731
732//===----------------------------------------------------------------------===//
733// X86 C Calling Convention
734//===----------------------------------------------------------------------===//
735
736/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
737/// values are spilled on the stack.
738def CC_X86_32_Vector_Common : CallingConv<[
739  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
740  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
741
742  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
743  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
744           CCAssignToStack<32, 32>>,
745
746  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
747  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
748           CCAssignToStack<64, 64>>
749]>;
750
751// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
752// vector registers
753def CC_X86_32_Vector_Standard : CallingConv<[
754  // SSE vector arguments are passed in XMM registers.
755  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
756                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
757
758  // AVX 256-bit vector arguments are passed in YMM registers.
759  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
760                CCIfSubtarget<"hasAVX()",
761                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
762
763  // AVX 512-bit vector arguments are passed in ZMM registers.
764  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
765                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
766
767  CCDelegateTo<CC_X86_32_Vector_Common>
768]>;
769
770// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
771// vector registers.
772def CC_X86_32_Vector_Darwin : CallingConv<[
773  // SSE vector arguments are passed in XMM registers.
774  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
775                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
776
777  // AVX 256-bit vector arguments are passed in YMM registers.
778  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
779                CCIfSubtarget<"hasAVX()",
780                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
781
782  // AVX 512-bit vector arguments are passed in ZMM registers.
783  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
784                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
785
786  CCDelegateTo<CC_X86_32_Vector_Common>
787]>;
788
789/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
790/// values are spilled on the stack.
791def CC_X86_32_Common : CallingConv<[
792  // Handles byval/preallocated parameters.
793  CCIfByVal<CCPassByVal<4, 4>>,
794  CCIfPreallocated<CCPassByVal<4, 4>>,
795
796  // The first 3 float or double arguments, if marked 'inreg' and if the call
797  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
798  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
799                CCIfSubtarget<"hasSSE2()",
800                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
801
802  // The first 3 __m64 vector arguments are passed in mmx registers if the
803  // call is not a vararg call.
804  CCIfNotVarArg<CCIfType<[x86mmx],
805                CCAssignToReg<[MM0, MM1, MM2]>>>,
806
807  // Integer/Float values get stored in stack slots that are 4 bytes in
808  // size and 4-byte aligned.
809  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
810
811  // Doubles get 8-byte slots that are 4-byte aligned.
812  CCIfType<[f64], CCAssignToStack<8, 4>>,
813
814  // Long doubles get slots whose size depends on the subtarget.
815  CCIfType<[f80], CCAssignToStack<0, 4>>,
816
817  // Boolean vectors of AVX-512 are passed in SIMD registers.
818  // The call from AVX to AVX-512 function should work,
819  // since the boolean types in AVX/AVX2 are promoted by default.
820  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
821  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
822  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
823  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
824  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
825  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
826
827  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
828  // passed in the parameter area.
829  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
830
831  // Darwin passes vectors in a form that differs from the i386 psABI
832  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
833
834  // Otherwise, drop to 'normal' X86-32 CC
835  CCDelegateTo<CC_X86_32_Vector_Standard>
836]>;
837
838def CC_X86_32_C : CallingConv<[
839  // Promote i1/i8/i16/v1i1 arguments to i32.
840  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
841
842  // The 'nest' parameter, if any, is passed in ECX.
843  CCIfNest<CCAssignToReg<[ECX]>>,
844
845  // The first 3 integer arguments, if marked 'inreg' and if the call is not
846  // a vararg call, are passed in integer registers.
847  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
848
849  // Otherwise, same as everything else.
850  CCDelegateTo<CC_X86_32_Common>
851]>;
852
853def CC_X86_32_MCU : CallingConv<[
854  // Handles byval parameters.  Note that, like FastCC, we can't rely on
855  // the delegation to CC_X86_32_Common because that happens after code that
856  // puts arguments in registers.
857  CCIfByVal<CCPassByVal<4, 4>>,
858
859  // Promote i1/i8/i16/v1i1 arguments to i32.
860  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
861
862  // If the call is not a vararg call, some arguments may be passed
863  // in integer registers.
864  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
865
866  // Otherwise, same as everything else.
867  CCDelegateTo<CC_X86_32_Common>
868]>;
869
870def CC_X86_32_FastCall : CallingConv<[
871  // Promote i1 to i8.
872  CCIfType<[i1], CCPromoteToType<i8>>,
873
874  // The 'nest' parameter, if any, is passed in EAX.
875  CCIfNest<CCAssignToReg<[EAX]>>,
876
877  // The first 2 integer arguments are passed in ECX/EDX
878  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
879  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
880  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
881
882  // Otherwise, same as everything else.
883  CCDelegateTo<CC_X86_32_Common>
884]>;
885
886def CC_X86_Win32_VectorCall : CallingConv<[
887  // Pass floating point in XMMs
888  CCCustom<"CC_X86_32_VectorCall">,
889
890  // Delegate to fastcall to handle integer types.
891  CCDelegateTo<CC_X86_32_FastCall>
892]>;
893
894def CC_X86_32_ThisCall_Common : CallingConv<[
895  // The first integer argument is passed in ECX
896  CCIfType<[i32], CCAssignToReg<[ECX]>>,
897
898  // Otherwise, same as everything else.
899  CCDelegateTo<CC_X86_32_Common>
900]>;
901
902def CC_X86_32_ThisCall_Mingw : CallingConv<[
903  // Promote i1/i8/i16/v1i1 arguments to i32.
904  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
905
906  CCDelegateTo<CC_X86_32_ThisCall_Common>
907]>;
908
909def CC_X86_32_ThisCall_Win : CallingConv<[
910  // Promote i1/i8/i16/v1i1 arguments to i32.
911  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
912
913  // Pass sret arguments indirectly through stack.
914  CCIfSRet<CCAssignToStack<4, 4>>,
915
916  CCDelegateTo<CC_X86_32_ThisCall_Common>
917]>;
918
919def CC_X86_32_ThisCall : CallingConv<[
920  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
921  CCDelegateTo<CC_X86_32_ThisCall_Win>
922]>;
923
924def CC_X86_32_FastCC : CallingConv<[
925  // Handles byval parameters.  Note that we can't rely on the delegation
926  // to CC_X86_32_Common for this because that happens after code that
927  // puts arguments in registers.
928  CCIfByVal<CCPassByVal<4, 4>>,
929
930  // Promote i1/i8/i16/v1i1 arguments to i32.
931  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
932
933  // The 'nest' parameter, if any, is passed in EAX.
934  CCIfNest<CCAssignToReg<[EAX]>>,
935
936  // The first 2 integer arguments are passed in ECX/EDX
937  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
938
939  // The first 3 float or double arguments, if the call is not a vararg
940  // call and if SSE2 is available, are passed in SSE registers.
941  CCIfNotVarArg<CCIfType<[f32,f64],
942                CCIfSubtarget<"hasSSE2()",
943                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
944
945  // Doubles get 8-byte slots that are 8-byte aligned.
946  CCIfType<[f64], CCAssignToStack<8, 8>>,
947
948  // Otherwise, same as everything else.
949  CCDelegateTo<CC_X86_32_Common>
950]>;
951
952def CC_X86_Win32_CFGuard_Check : CallingConv<[
953  // The CFGuard check call takes exactly one integer argument
954  // (i.e. the target function address), which is passed in ECX.
955  CCIfType<[i32], CCAssignToReg<[ECX]>>
956]>;
957
958def CC_X86_32_GHC : CallingConv<[
959  // Promote i8/i16 arguments to i32.
960  CCIfType<[i8, i16], CCPromoteToType<i32>>,
961
962  // Pass in STG registers: Base, Sp, Hp, R1
963  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
964]>;
965
966def CC_X86_32_HiPE : CallingConv<[
967  // Promote i8/i16 arguments to i32.
968  CCIfType<[i8, i16], CCPromoteToType<i32>>,
969
970  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
971  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
972
973  // Integer/Float values get stored in stack slots that are 4 bytes in
974  // size and 4-byte aligned.
975  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
976]>;
977
978// X86-64 Intel OpenCL built-ins calling convention.
979def CC_Intel_OCL_BI : CallingConv<[
980
981  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
982  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
983
984  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
985  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
986
987  CCIfType<[i32], CCAssignToStack<4, 4>>,
988
989  // The SSE vector arguments are passed in XMM registers.
990  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
991           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
992
993  // The 256-bit vector arguments are passed in YMM registers.
994  CCIfType<[v8f32, v4f64, v8i32, v4i64],
995           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
996
997  // The 512-bit vector arguments are passed in ZMM registers.
998  CCIfType<[v16f32, v8f64, v16i32, v8i64],
999           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
1000
1001  // Pass masks in mask registers
1002  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
1003
1004  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1005  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
1006  CCDelegateTo<CC_X86_32_C>
1007]>;
1008
1009//===----------------------------------------------------------------------===//
1010// X86 Root Argument Calling Conventions
1011//===----------------------------------------------------------------------===//
1012
1013// This is the root argument convention for the X86-32 backend.
1014def CC_X86_32 : CallingConv<[
1015  // X86_INTR calling convention is valid in MCU target and should override the
1016  // MCU calling convention. Thus, this should be checked before isTargetMCU().
1017  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1018  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1019  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1020  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1021  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1022  CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
1023  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1024  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
1025  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1026  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1027  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1028
1029  // Otherwise, drop to normal X86-32 CC
1030  CCDelegateTo<CC_X86_32_C>
1031]>;
1032
1033// This is the root argument convention for the X86-64 backend.
1034def CC_X86_64 : CallingConv<[
1035  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1036  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1037  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1038  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1039  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1040  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1041  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1042  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
1043  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
1044  CCIfCC<"CallingConv::X86_RegCall",
1045    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1046  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1047  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1048
1049  // Mingw64 and native Win64 use Win64 CC
1050  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1051
1052  // Otherwise, drop to normal X86-64 CC
1053  CCDelegateTo<CC_X86_64_C>
1054]>;
1055
1056// This is the argument convention used for the entire X86 backend.
1057let Entry = 1 in
1058def CC_X86 : CallingConv<[
1059  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1060  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1061  CCDelegateTo<CC_X86_32>
1062]>;
1063
1064//===----------------------------------------------------------------------===//
1065// Callee-saved Registers.
1066//===----------------------------------------------------------------------===//
1067
1068def CSR_NoRegs : CalleeSavedRegs<(add)>;
1069
1070def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1071def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1072
1073def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1074
1075def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1076def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1077
1078def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1079
1080def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1081                                     (sequence "XMM%u", 6, 15))>;
1082
1083def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1084
1085// The function used by Darwin to obtain the address of a thread-local variable
1086// uses rdi to pass a single parameter and rax for the return value. All other
1087// GPRs are preserved.
1088def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1089                                             R8, R9, R10, R11)>;
1090
1091// CSRs that are handled by prologue, epilogue.
1092def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1093
1094// CSRs that are handled explicitly via copies.
1095def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1096
1097// All GPRs - except r11
1098def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1099                                              R8, R9, R10, RSP)>;
1100
1101// All registers - except r11
1102def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1103                                                 (sequence "XMM%u", 0, 15))>;
1104def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1105                                                 (sequence "YMM%u", 0, 15))>;
1106
1107def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1108                                           R11, R12, R13, R14, R15, RBP,
1109                                           (sequence "XMM%u", 0, 15))>;
1110
1111def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1112                                              EDI)>;
1113def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1114                                              (sequence "XMM%u", 0, 7))>;
1115def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1116                                              (sequence "YMM%u", 0, 7))>;
1117def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1118                                                 (sequence "ZMM%u", 0, 7),
1119                                                 (sequence "K%u", 0, 7))>;
1120
1121def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1122def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1123                                                R10, R11, R12, R13, R14, R15, RBP)>;
1124def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1125                                                   (sequence "YMM%u", 0, 15)),
1126                                              (sequence "XMM%u", 0, 15))>;
1127def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1128                                                      (sequence "ZMM%u", 0, 31),
1129                                                      (sequence "K%u", 0, 7)),
1130                                                 (sequence "XMM%u", 0, 15))>;
1131
1132// Standard C + YMM6-15
1133def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1134                                                  R13, R14, R15,
1135                                                  (sequence "YMM%u", 6, 15))>;
1136
1137def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1138                                                     R12, R13, R14, R15,
1139                                                     (sequence "ZMM%u", 6, 21),
1140                                                     K4, K5, K6, K7)>;
1141//Standard C + XMM 8-15
1142def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1143                                                 (sequence "XMM%u", 8, 15))>;
1144
1145//Standard C + YMM 8-15
1146def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1147                                                  (sequence "YMM%u", 8, 15))>;
1148
1149def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
1150                                                  (sequence "ZMM%u", 16, 31),
1151                                                  K4, K5, K6, K7)>;
1152
1153// Only R12 is preserved for PHP calls in HHVM.
1154def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
1155
1156// Register calling convention preserves few GPR and XMM8-15
1157def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
1158def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1159                                           (sequence "XMM%u", 4, 7))>;
1160def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
1161def CSR_Win32_CFGuard_Check       : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
1162def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1163                                              (sequence "R%u", 10, 15))>;
1164def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1165                                              (sequence "XMM%u", 8, 15))>;
1166def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
1167                                               (sequence "R%u", 12, 15))>;
1168def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1169                                               (sequence "XMM%u", 8, 15))>;
1170
1171