xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.td (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26/// CCIfRegCallv4 - Match if RegCall ABIv4 is respected.
27class CCIfRegCallv4<CCAction A>
28    : CCIf<"State.getMachineFunction().getFunction().getParent()->getModuleFlag(\"RegCallv4\")!=nullptr",
29           A>;
30
31/// CCIfIsVarArgOnWin - Match if isVarArg on Windows 32bits.
32class CCIfIsVarArgOnWin<CCAction A>
33    : CCIf<"State.isVarArg() && "
34           "State.getMachineFunction().getSubtarget().getTargetTriple()."
35           "isWindowsMSVCEnvironment()",
36           A>;
37
38// Register classes for RegCall
39class RC_X86_RegCall {
40  list<Register> GPR_8 = [];
41  list<Register> GPR_16 = [];
42  list<Register> GPR_32 = [];
43  list<Register> GPR_64 = [];
44  list<Register> FP_CALL = [FP0];
45  list<Register> FP_RET = [FP0, FP1];
46  list<Register> XMM = [];
47  list<Register> YMM = [];
48  list<Register> ZMM = [];
49}
50
51// RegCall register classes for 32 bits
52def RC_X86_32_RegCall : RC_X86_RegCall {
53  let GPR_8 = [AL, CL, DL, DIL, SIL];
54  let GPR_16 = [AX, CX, DX, DI, SI];
55  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
56  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
57                      ///< \todo Fix AssignToReg to enable empty lists
58  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
59  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
60  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
61}
62
63// RegCall register classes for 32 bits if it respect regcall ABI v.4
64// Change in __regcall ABI v.4: don't use EAX as a spare register is
65// needed to code virtual call thunk,
66def RC_X86_32_RegCallv4_Win : RC_X86_RegCall {
67  let GPR_8 = [CL, DL, DIL, SIL];
68  let GPR_16 = [CX, DX, DI, SI];
69  let GPR_32 = [ECX, EDX, EDI, ESI];
70  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
71                      ///< \todo Fix AssignToReg to enable empty lists
72  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
73  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
74  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
75}
76
77class RC_X86_64_RegCall : RC_X86_RegCall {
78  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
79             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
80  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
81             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
82  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
83             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
84}
85
86def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
87  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
88  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
89  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
90  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
91}
92
93// On Windows 64 we don't want to use R13 - it is reserved for
94// largely aligned stack.
95// Change in __regcall ABI v.4: additionally don't use R10 as a
96// a spare register is needed to code virtual call thunk.
97//
98def RC_X86_64_RegCallv4_Win : RC_X86_64_RegCall {
99  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R11B, R12B, R14B, R15B];
100  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R11W, R12W, R14W, R15W];
101  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R11D, R12D, R14D, R15D];
102  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R11, R12, R14, R15];
103}
104
105def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
106  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
107  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
108  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
109  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
110}
111
112// X86-64 Intel regcall calling convention.
113multiclass X86_RegCall_base<RC_X86_RegCall RC> {
114def CC_#NAME : CallingConv<[
115  // Handles byval parameters.
116    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
117    CCIfByVal<CCPassByVal<4, 4>>,
118
119    // Promote i1/i8/i16/v1i1 arguments to i32.
120    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
121
122    // Promote v8i1/v16i1/v32i1 arguments to i32.
123    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
124
125    // bool, char, int, enum, long, pointer --> GPR
126    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
127
128    // long long, __int64 --> GPR
129    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
130
131    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
132    CCIfType<[v64i1], CCPromoteToType<i64>>,
133    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
134      CCAssignToReg<RC.GPR_64>>>,
135    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
136      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
137
138    // float, double, float128 --> XMM
139    // In the case of SSE disabled --> save to stack
140    CCIfType<[f32, f64, f128],
141      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
142
143    // long double --> FP
144    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
145
146    // __m128, __m128i, __m128d --> XMM
147    // In the case of SSE disabled --> save to stack
148    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
149      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
150
151    // __m256, __m256i, __m256d --> YMM
152    // In the case of SSE disabled --> save to stack
153    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
154      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
155
156    // __m512, __m512i, __m512d --> ZMM
157    // In the case of SSE disabled --> save to stack
158    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
159      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
160
161    // If no register was found -> assign to stack
162
163    // In 64 bit, assign 64/32 bit values to 8 byte stack
164    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
165      CCAssignToStack<8, 8>>>,
166
167    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
168    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
169    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
170
171    // MMX type gets 8 byte slot in stack , while alignment depends on target
172    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
173    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
174
175    // float 128 get stack slots whose size and alignment depends
176    // on the subtarget.
177    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
178
179    // Vectors get 16-byte stack slots that are 16-byte aligned.
180    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
181      CCAssignToStack<16, 16>>,
182
183    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
184    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
185      CCAssignToStack<32, 32>>,
186
187    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
188    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
189      CCAssignToStack<64, 64>>
190]>;
191
192def RetCC_#NAME : CallingConv<[
193    // Promote i1, v1i1, v8i1 arguments to i8.
194    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
195
196    // Promote v16i1 arguments to i16.
197    CCIfType<[v16i1], CCPromoteToType<i16>>,
198
199    // Promote v32i1 arguments to i32.
200    CCIfType<[v32i1], CCPromoteToType<i32>>,
201
202    // bool, char, int, enum, long, pointer --> GPR
203    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
204    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
205    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
206
207    // long long, __int64 --> GPR
208    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
209
210    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
211    CCIfType<[v64i1], CCPromoteToType<i64>>,
212    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
213      CCAssignToReg<RC.GPR_64>>>,
214    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
215      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
216
217    // long double --> FP
218    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
219
220    // float, double, float128 --> XMM
221    CCIfType<[f32, f64, f128],
222      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
223
224    // __m128, __m128i, __m128d --> XMM
225    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
226      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
227
228    // __m256, __m256i, __m256d --> YMM
229    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
230      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
231
232    // __m512, __m512i, __m512d --> ZMM
233    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
234      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
235]>;
236}
237
238//===----------------------------------------------------------------------===//
239// Return Value Calling Conventions
240//===----------------------------------------------------------------------===//
241
242// Return-value conventions common to all X86 CC's.
243def RetCC_X86Common : CallingConv<[
244  // Scalar values are returned in AX first, then DX.  For i8, the ABI
245  // requires the values to be in AL and AH, however this code uses AL and DL
246  // instead. This is because using AH for the second register conflicts with
247  // the way LLVM does multiple return values -- a return of {i16,i8} would end
248  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
249  // for functions that return two i8 values are currently expected to pack the
250  // values into an i16 (which uses AX, and thus AL:AH).
251  //
252  // For code that doesn't care about the ABI, we allow returning more than two
253  // integer values in registers.
254  CCIfType<[v1i1],  CCPromoteToType<i8>>,
255  CCIfType<[i1],  CCPromoteToType<i8>>,
256  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
257  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
258  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
259  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
260
261  // Boolean vectors of AVX-512 are returned in SIMD registers.
262  // The call from AVX to AVX-512 function should work,
263  // since the boolean types in AVX/AVX2 are promoted by default.
264  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
265  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
266  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
267  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
268  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
269  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
270
271  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
272  // can only be used by ABI non-compliant code. If the target doesn't have XMM
273  // registers, it won't have vector types.
274  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
275            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
276
277  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
278  // can only be used by ABI non-compliant code. This vector type is only
279  // supported while using the AVX target feature.
280  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
281            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
282
283  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
284  // can only be used by ABI non-compliant code. This vector type is only
285  // supported while using the AVX-512 target feature.
286  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
287            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
288
289  // MMX vector types are always returned in MM0. If the target doesn't have
290  // MM0, it doesn't support these vector types.
291  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
292
293  // Long double types are always returned in FP0 (even with SSE),
294  // except on Win64.
295  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
296]>;
297
298// X86-32 C return-value convention.
299def RetCC_X86_32_C : CallingConv<[
300  // The X86-32 calling convention returns FP values in FP0, unless marked
301  // with "inreg" (used here to distinguish one kind of reg from another,
302  // weirdly; this is really the sse-regparm calling convention) in which
303  // case they use XMM0, otherwise it is the same as the common X86 calling
304  // conv.
305  CCIfInReg<CCIfSubtarget<"hasSSE2()",
306    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
307  CCIfSubtarget<"hasX87()",
308    CCIfType<[f32, f64], CCAssignToReg<[FP0, FP1]>>>,
309  CCIfNotSubtarget<"hasX87()",
310    CCIfType<[f32], CCAssignToReg<[EAX, EDX, ECX]>>>,
311  CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>,
312  CCDelegateTo<RetCC_X86Common>
313]>;
314
315// X86-32 FastCC return-value convention.
316def RetCC_X86_32_Fast : CallingConv<[
317  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
318  // SSE2.
319  // This can happen when a float, 2 x float, or 3 x float vector is split by
320  // target lowering, and is returned in 1-3 sse regs.
321  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
322  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
323
324  // For integers, ECX can be used as an extra return register
325  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
326  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
327  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
328
329  // Otherwise, it is the same as the common X86 calling convention.
330  CCDelegateTo<RetCC_X86Common>
331]>;
332
333// Intel_OCL_BI return-value convention.
334def RetCC_Intel_OCL_BI : CallingConv<[
335  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
336  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
337            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
338
339  // 256-bit FP vectors
340  // No more than 4 registers
341  CCIfType<[v8f32, v4f64, v8i32, v4i64],
342            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
343
344  // 512-bit FP vectors
345  CCIfType<[v16f32, v8f64, v16i32, v8i64],
346            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
347
348  // i32, i64 in the standard way
349  CCDelegateTo<RetCC_X86Common>
350]>;
351
352// X86-32 HiPE return-value convention.
353def RetCC_X86_32_HiPE : CallingConv<[
354  // Promote all types to i32
355  CCIfType<[i8, i16], CCPromoteToType<i32>>,
356
357  // Return: HP, P, VAL1, VAL2
358  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
359]>;
360
361// X86-32 Vectorcall return-value convention.
362def RetCC_X86_32_VectorCall : CallingConv<[
363  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
364  CCIfType<[f32, f64, f128],
365            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
366
367  // Return integers in the standard way.
368  CCDelegateTo<RetCC_X86Common>
369]>;
370
371// X86-64 C return-value convention.
372def RetCC_X86_64_C : CallingConv<[
373  // The X86-64 calling convention always returns FP values in XMM0.
374  CCIfType<[f16], CCAssignToReg<[XMM0, XMM1]>>,
375  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
376  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
377  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
378
379  // MMX vector types are always returned in XMM0.
380  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
381
382  // Pointers are always returned in full 64-bit registers.
383  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
384
385  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
386
387  CCDelegateTo<RetCC_X86Common>
388]>;
389
390// X86-Win64 C return-value convention.
391def RetCC_X86_Win64_C : CallingConv<[
392  // The X86-Win64 calling convention always returns __m64 values in RAX.
393  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
394
395  // GCC returns FP values in RAX on Win64.
396  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
397  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
398
399  // Otherwise, everything is the same as 'normal' X86-64 C CC.
400  CCDelegateTo<RetCC_X86_64_C>
401]>;
402
403// X86-64 vectorcall return-value convention.
404def RetCC_X86_64_Vectorcall : CallingConv<[
405  // Vectorcall calling convention always returns FP values in XMMs.
406  CCIfType<[f32, f64, f128],
407    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
408
409  // Otherwise, everything is the same as Windows X86-64 C CC.
410  CCDelegateTo<RetCC_X86_Win64_C>
411]>;
412
413// X86-64 HiPE return-value convention.
414def RetCC_X86_64_HiPE : CallingConv<[
415  // Promote all types to i64
416  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
417
418  // Return: HP, P, VAL1, VAL2
419  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
420]>;
421
422def RetCC_X86_64_Swift : CallingConv<[
423
424  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
425
426  // For integers, ECX, R8D can be used as extra return registers.
427  CCIfType<[v1i1],  CCPromoteToType<i8>>,
428  CCIfType<[i1],  CCPromoteToType<i8>>,
429  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
430  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
431  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
432  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
433
434  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
435  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
436  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
437  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
438
439  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
440  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
441  CCDelegateTo<RetCC_X86Common>
442]>;
443
444// X86-64 AnyReg return-value convention. No explicit register is specified for
445// the return-value. The register allocator is allowed and expected to choose
446// any free register.
447//
448// This calling convention is currently only supported by the stackmap and
449// patchpoint intrinsics. All other uses will result in an assert on Debug
450// builds. On Release builds we fallback to the X86 C calling convention.
451def RetCC_X86_64_AnyReg : CallingConv<[
452  CCCustom<"CC_X86_AnyReg_Error">
453]>;
454
455
456defm X86_32_RegCall :
457	 X86_RegCall_base<RC_X86_32_RegCall>;
458defm X86_32_RegCallv4_Win :
459	 X86_RegCall_base<RC_X86_32_RegCallv4_Win>;
460defm X86_Win64_RegCall :
461     X86_RegCall_base<RC_X86_64_RegCall_Win>;
462defm X86_Win64_RegCallv4 :
463     X86_RegCall_base<RC_X86_64_RegCallv4_Win>;
464defm X86_SysV64_RegCall :
465     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
466
467// This is the root return-value convention for the X86-32 backend.
468def RetCC_X86_32 : CallingConv<[
469  // If FastCC, use RetCC_X86_32_Fast.
470  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
471  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
472  // CFGuard_Check never returns a value so does not need a RetCC.
473  // If HiPE, use RetCC_X86_32_HiPE.
474  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
475  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
476  CCIfCC<"CallingConv::X86_RegCall",
477    CCIfSubtarget<"isTargetWin32()", CCIfRegCallv4<CCDelegateTo<RetCC_X86_32_RegCallv4_Win>>>>,
478  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
479
480  // Otherwise, use RetCC_X86_32_C.
481  CCDelegateTo<RetCC_X86_32_C>
482]>;
483
484// This is the root return-value convention for the X86-64 backend.
485def RetCC_X86_64 : CallingConv<[
486  // HiPE uses RetCC_X86_64_HiPE
487  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
488
489  // Handle AnyReg calls.
490  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
491
492  // Handle Swift calls.
493  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
494  CCIfCC<"CallingConv::SwiftTail", CCDelegateTo<RetCC_X86_64_Swift>>,
495
496  // Handle explicit CC selection
497  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
498  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
499
500  // Handle Vectorcall CC
501  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
502
503  CCIfCC<"CallingConv::X86_RegCall",
504    CCIfSubtarget<"isTargetWin64()", CCIfRegCallv4<CCDelegateTo<RetCC_X86_Win64_RegCallv4>>>>,
505
506  CCIfCC<"CallingConv::X86_RegCall",
507          CCIfSubtarget<"isTargetWin64()",
508                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
509  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
510
511  // Mingw64 and native Win64 use Win64 CC
512  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
513
514  // Otherwise, drop to normal X86-64 CC
515  CCDelegateTo<RetCC_X86_64_C>
516]>;
517
518// This is the return-value convention used for the entire X86 backend.
519let Entry = 1 in
520def RetCC_X86 : CallingConv<[
521
522  // Check if this is the Intel OpenCL built-ins calling convention
523  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
524
525  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
526  CCDelegateTo<RetCC_X86_32>
527]>;
528
529//===----------------------------------------------------------------------===//
530// X86-64 Argument Calling Conventions
531//===----------------------------------------------------------------------===//
532
533def CC_X86_64_C : CallingConv<[
534  // Handles byval parameters.
535  CCIfByVal<CCPassByVal<8, 8>>,
536
537  // Promote i1/i8/i16/v1i1 arguments to i32.
538  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
539
540  // The 'nest' parameter, if any, is passed in R10.
541  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
542  CCIfNest<CCAssignToReg<[R10]>>,
543
544  // Pass SwiftSelf in a callee saved register.
545  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
546
547  // A SwiftError is passed in R12.
548  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
549
550  // Pass SwiftAsync in an otherwise callee saved register so that calls to
551  // normal functions don't need to save it somewhere.
552  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
553
554  // For Swift Calling Conventions, pass sret in %rax.
555  CCIfCC<"CallingConv::Swift",
556    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
557  CCIfCC<"CallingConv::SwiftTail",
558    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
559
560  // Pointers are always passed in full 64-bit registers.
561  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
562
563  // The first 6 integer arguments are passed in integer registers.
564  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
565
566  // i128 can be either passed in two i64 registers, or on the stack, but
567  // not split across register and stack. As such, do not allow using R9
568  // for a split i64.
569  CCIfType<[i64],
570           CCIfSplit<CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>>,
571  CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [R9]>>>,
572
573  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
574
575  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
576  CCIfType<[x86mmx],
577            CCIfSubtarget<"isTargetDarwin()",
578            CCIfSubtarget<"hasSSE2()",
579            CCPromoteToType<v2i64>>>>,
580
581  // Boolean vectors of AVX-512 are passed in SIMD registers.
582  // The call from AVX to AVX-512 function should work,
583  // since the boolean types in AVX/AVX2 are promoted by default.
584  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
585  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
586  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
587  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
588  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
589  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
590
591  // The first 8 FP/Vector arguments are passed in XMM registers.
592  CCIfType<[f16, f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
593            CCIfSubtarget<"hasSSE1()",
594            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
595
596  // The first 8 256-bit vector arguments are passed in YMM registers, unless
597  // this is a vararg function.
598  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
599  // fixed arguments to vararg functions are supposed to be passed in
600  // registers.  Actually modeling that would be a lot of work, though.
601  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
602                          CCIfSubtarget<"hasAVX()",
603                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
604                                         YMM4, YMM5, YMM6, YMM7]>>>>,
605
606  // The first 8 512-bit vector arguments are passed in ZMM registers.
607  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
608            CCIfSubtarget<"hasAVX512()",
609            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
610
611  // Integer/FP values get stored in stack slots that are 8 bytes in size and
612  // 8-byte aligned if there are no more registers to hold them.
613  CCIfType<[i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>,
614
615  // Long doubles get stack slots whose size and alignment depends on the
616  // subtarget.
617  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
618
619  // Vectors get 16-byte stack slots that are 16-byte aligned.
620  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToStack<16, 16>>,
621
622  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
623  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
624           CCAssignToStack<32, 32>>,
625
626  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
627  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
628           CCAssignToStack<64, 64>>
629]>;
630
631// Calling convention used on Win64
632def CC_X86_Win64_C : CallingConv<[
633  // FIXME: Handle varargs.
634
635  // Byval aggregates are passed by pointer
636  CCIfByVal<CCPassIndirect<i64>>,
637
638  // Promote i1/v1i1 arguments to i8.
639  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
640
641  // The 'nest' parameter, if any, is passed in R10.
642  CCIfNest<CCAssignToReg<[R10]>>,
643
644  // A SwiftError is passed in R12.
645  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
646
647  // Pass SwiftSelf in a callee saved register.
648  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
649
650  // Pass SwiftAsync in an otherwise callee saved register so that calls to
651  // normal functions don't need to save it somewhere.
652  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
653
654  // The 'CFGuardTarget' parameter, if any, is passed in RAX.
655  CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
656
657  // 128 bit vectors are passed by pointer
658  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCPassIndirect<i64>>,
659
660  // 256 bit vectors are passed by pointer
661  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCPassIndirect<i64>>,
662
663  // 512 bit vectors are passed by pointer
664  CCIfType<[v64i8, v32i16, v16i32, v32f16, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
665
666  // Long doubles are passed by pointer
667  CCIfType<[f80], CCPassIndirect<i64>>,
668
669  // The first 4 MMX vector arguments are passed in GPRs.
670  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
671
672  // If SSE was disabled, pass FP values smaller than 64-bits as integers in
673  // GPRs or on the stack.
674  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
675  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
676
677  // The first 4 FP/Vector arguments are passed in XMM registers.
678  CCIfType<[f16, f32, f64],
679           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
680                                   [RCX , RDX , R8  , R9  ]>>,
681
682  // The first 4 integer arguments are passed in integer registers.
683  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
684                                          [XMM0, XMM1, XMM2, XMM3]>>,
685  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
686                                          [XMM0, XMM1, XMM2, XMM3]>>,
687  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
688                                          [XMM0, XMM1, XMM2, XMM3]>>,
689
690  // Do not pass the sret argument in RCX, the Win64 thiscall calling
691  // convention requires "this" to be passed in RCX.
692  CCIfCC<"CallingConv::X86_ThisCall",
693    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
694                                                     [XMM1, XMM2, XMM3]>>>>,
695
696  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
697                                          [XMM0, XMM1, XMM2, XMM3]>>,
698
699  // Integer/FP values get stored in stack slots that are 8 bytes in size and
700  // 8-byte aligned if there are no more registers to hold them.
701  CCIfType<[i8, i16, i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>
702]>;
703
704def CC_X86_Win64_VectorCall : CallingConv<[
705  CCCustom<"CC_X86_64_VectorCall">,
706
707  // Delegate to fastcall to handle integer types.
708  CCDelegateTo<CC_X86_Win64_C>
709]>;
710
711
712def CC_X86_64_GHC : CallingConv<[
713  // Promote i8/i16/i32 arguments to i64.
714  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
715
716  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
717  CCIfType<[i64],
718            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
719
720  // Pass in STG registers: F1, F2, F3, F4, D1, D2
721  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
722            CCIfSubtarget<"hasSSE1()",
723            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
724  // AVX
725  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
726            CCIfSubtarget<"hasAVX()",
727            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
728  // AVX-512
729  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
730            CCIfSubtarget<"hasAVX512()",
731            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
732]>;
733
734def CC_X86_64_HiPE : CallingConv<[
735  // Promote i8/i16/i32 arguments to i64.
736  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
737
738  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
739  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
740
741  // Integer/FP values get stored in stack slots that are 8 bytes in size and
742  // 8-byte aligned if there are no more registers to hold them.
743  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
744]>;
745
746// No explicit register is specified for the AnyReg calling convention. The
747// register allocator may assign the arguments to any free register.
748//
749// This calling convention is currently only supported by the stackmap and
750// patchpoint intrinsics. All other uses will result in an assert on Debug
751// builds. On Release builds we fallback to the X86 C calling convention.
752def CC_X86_64_AnyReg : CallingConv<[
753  CCCustom<"CC_X86_AnyReg_Error">
754]>;
755
756//===----------------------------------------------------------------------===//
757// X86 C Calling Convention
758//===----------------------------------------------------------------------===//
759
760/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
761/// values are spilled on the stack.
762def CC_X86_32_Vector_Common : CallingConv<[
763  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
764  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
765           CCAssignToStack<16, 16>>,
766
767  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
768  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
769           CCAssignToStack<32, 32>>,
770
771  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
772  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
773           CCAssignToStack<64, 64>>
774]>;
775
776/// CC_X86_Win32_Vector - In X86 Win32 calling conventions, extra vector
777/// values are spilled on the stack.
778def CC_X86_Win32_Vector : CallingConv<[
779  // Other SSE vectors get 16-byte stack slots that are 4-byte aligned.
780  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
781           CCAssignToStack<16, 4>>,
782
783  // 256-bit AVX vectors get 32-byte stack slots that are 4-byte aligned.
784  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
785           CCAssignToStack<32, 4>>,
786
787  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 4-byte aligned.
788  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
789           CCAssignToStack<64, 4>>
790]>;
791
792// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
793// vector registers
794def CC_X86_32_Vector_Standard : CallingConv<[
795  // SSE vector arguments are passed in XMM registers.
796  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
797                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
798
799  // AVX 256-bit vector arguments are passed in YMM registers.
800  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
801                CCIfSubtarget<"hasAVX()",
802                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
803
804  // AVX 512-bit vector arguments are passed in ZMM registers.
805  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
806                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
807
808  CCIfIsVarArgOnWin<CCDelegateTo<CC_X86_Win32_Vector>>,
809  CCDelegateTo<CC_X86_32_Vector_Common>
810]>;
811
812// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
813// vector registers.
814def CC_X86_32_Vector_Darwin : CallingConv<[
815  // SSE vector arguments are passed in XMM registers.
816  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
817                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
818
819  // AVX 256-bit vector arguments are passed in YMM registers.
820  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
821                CCIfSubtarget<"hasAVX()",
822                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
823
824  // AVX 512-bit vector arguments are passed in ZMM registers.
825  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
826                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
827
828  CCDelegateTo<CC_X86_32_Vector_Common>
829]>;
830
831/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
832/// values are spilled on the stack.
833def CC_X86_32_Common : CallingConv<[
834  // Handles byval/preallocated parameters.
835  CCIfByVal<CCPassByVal<4, 4>>,
836  CCIfPreallocated<CCPassByVal<4, 4>>,
837
838  // The first 3 float or double arguments, if marked 'inreg' and if the call
839  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
840  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
841                CCIfSubtarget<"hasSSE2()",
842                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
843
844  CCIfNotVarArg<CCIfInReg<CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
845
846  // The first 3 __m64 vector arguments are passed in mmx registers if the
847  // call is not a vararg call.
848  CCIfNotVarArg<CCIfType<[x86mmx],
849                CCAssignToReg<[MM0, MM1, MM2]>>>,
850
851  CCIfType<[f16], CCAssignToStack<4, 4>>,
852
853  // Integer/Float values get stored in stack slots that are 4 bytes in
854  // size and 4-byte aligned.
855  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
856
857  // Doubles get 8-byte slots that are 4-byte aligned.
858  CCIfType<[f64], CCAssignToStack<8, 4>>,
859
860  // Long doubles get slots whose size and alignment depends on the subtarget.
861  CCIfType<[f80], CCAssignToStack<0, 0>>,
862
863  // Boolean vectors of AVX-512 are passed in SIMD registers.
864  // The call from AVX to AVX-512 function should work,
865  // since the boolean types in AVX/AVX2 are promoted by default.
866  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
867  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
868  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
869  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
870  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
871  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
872
873  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
874  // passed in the parameter area.
875  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
876
877  // Darwin passes vectors in a form that differs from the i386 psABI
878  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
879
880  // Otherwise, drop to 'normal' X86-32 CC
881  CCDelegateTo<CC_X86_32_Vector_Standard>
882]>;
883
884def CC_X86_32_C : CallingConv<[
885  // Promote i1/i8/i16/v1i1 arguments to i32.
886  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
887
888  // The 'nest' parameter, if any, is passed in ECX.
889  CCIfNest<CCAssignToReg<[ECX]>>,
890
891  // On swifttailcc pass swiftself in ECX.
892  CCIfCC<"CallingConv::SwiftTail",
893         CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[ECX]>>>>,
894
895  // The first 3 integer arguments, if marked 'inreg' and if the call is not
896  // a vararg call, are passed in integer registers.
897  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
898
899  // Otherwise, same as everything else.
900  CCDelegateTo<CC_X86_32_Common>
901]>;
902
903def CC_X86_32_MCU : CallingConv<[
904  // Handles byval parameters.  Note that, like FastCC, we can't rely on
905  // the delegation to CC_X86_32_Common because that happens after code that
906  // puts arguments in registers.
907  CCIfByVal<CCPassByVal<4, 4>>,
908
909  // Promote i1/i8/i16/v1i1 arguments to i32.
910  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
911
912  // If the call is not a vararg call, some arguments may be passed
913  // in integer registers.
914  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
915
916  // Otherwise, same as everything else.
917  CCDelegateTo<CC_X86_32_Common>
918]>;
919
920def CC_X86_32_FastCall : CallingConv<[
921  // Promote i1 to i8.
922  CCIfType<[i1], CCPromoteToType<i8>>,
923
924  // The 'nest' parameter, if any, is passed in EAX.
925  CCIfNest<CCAssignToReg<[EAX]>>,
926
927  // The first 2 integer arguments are passed in ECX/EDX
928  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
929  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
930  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
931
932  // Otherwise, same as everything else.
933  CCDelegateTo<CC_X86_32_Common>
934]>;
935
936def CC_X86_Win32_VectorCall : CallingConv<[
937  // Pass floating point in XMMs
938  CCCustom<"CC_X86_32_VectorCall">,
939
940  // Delegate to fastcall to handle integer types.
941  CCDelegateTo<CC_X86_32_FastCall>
942]>;
943
944def CC_X86_32_ThisCall_Common : CallingConv<[
945  // The first integer argument is passed in ECX
946  CCIfType<[i32], CCAssignToReg<[ECX]>>,
947
948  // Otherwise, same as everything else.
949  CCDelegateTo<CC_X86_32_Common>
950]>;
951
952def CC_X86_32_ThisCall_Mingw : CallingConv<[
953  // Promote i1/i8/i16/v1i1 arguments to i32.
954  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
955
956  CCDelegateTo<CC_X86_32_ThisCall_Common>
957]>;
958
959def CC_X86_32_ThisCall_Win : CallingConv<[
960  // Promote i1/i8/i16/v1i1 arguments to i32.
961  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
962
963  // Pass sret arguments indirectly through stack.
964  CCIfSRet<CCAssignToStack<4, 4>>,
965
966  CCDelegateTo<CC_X86_32_ThisCall_Common>
967]>;
968
969def CC_X86_32_ThisCall : CallingConv<[
970  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
971  CCDelegateTo<CC_X86_32_ThisCall_Win>
972]>;
973
974def CC_X86_32_FastCC : CallingConv<[
975  // Handles byval parameters.  Note that we can't rely on the delegation
976  // to CC_X86_32_Common for this because that happens after code that
977  // puts arguments in registers.
978  CCIfByVal<CCPassByVal<4, 4>>,
979
980  // Promote i1/i8/i16/v1i1 arguments to i32.
981  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
982
983  // The 'nest' parameter, if any, is passed in EAX.
984  CCIfNest<CCAssignToReg<[EAX]>>,
985
986  // The first 2 integer arguments are passed in ECX/EDX
987  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
988
989  // The first 3 float or double arguments, if the call is not a vararg
990  // call and if SSE2 is available, are passed in SSE registers.
991  CCIfNotVarArg<CCIfType<[f32,f64],
992                CCIfSubtarget<"hasSSE2()",
993                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
994
995  // Doubles get 8-byte slots that are 8-byte aligned.
996  CCIfType<[f64], CCAssignToStack<8, 8>>,
997
998  // Otherwise, same as everything else.
999  CCDelegateTo<CC_X86_32_Common>
1000]>;
1001
1002def CC_X86_Win32_CFGuard_Check : CallingConv<[
1003  // The CFGuard check call takes exactly one integer argument
1004  // (i.e. the target function address), which is passed in ECX.
1005  CCIfType<[i32], CCAssignToReg<[ECX]>>
1006]>;
1007
1008def CC_X86_32_GHC : CallingConv<[
1009  // Promote i8/i16 arguments to i32.
1010  CCIfType<[i8, i16], CCPromoteToType<i32>>,
1011
1012  // Pass in STG registers: Base, Sp, Hp, R1
1013  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
1014]>;
1015
1016def CC_X86_32_HiPE : CallingConv<[
1017  // Promote i8/i16 arguments to i32.
1018  CCIfType<[i8, i16], CCPromoteToType<i32>>,
1019
1020  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
1021  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
1022
1023  // Integer/Float values get stored in stack slots that are 4 bytes in
1024  // size and 4-byte aligned.
1025  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
1026]>;
1027
1028// X86-64 Intel OpenCL built-ins calling convention.
1029def CC_Intel_OCL_BI : CallingConv<[
1030
1031  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
1032  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
1033
1034  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
1035  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
1036
1037  CCIfType<[i32], CCAssignToStack<4, 4>>,
1038
1039  // The SSE vector arguments are passed in XMM registers.
1040  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
1041           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
1042
1043  // The 256-bit vector arguments are passed in YMM registers.
1044  CCIfType<[v8f32, v4f64, v8i32, v4i64],
1045           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
1046
1047  // The 512-bit vector arguments are passed in ZMM registers.
1048  CCIfType<[v16f32, v8f64, v16i32, v8i64],
1049           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
1050
1051  // Pass masks in mask registers
1052  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
1053
1054  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1055  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
1056  CCDelegateTo<CC_X86_32_C>
1057]>;
1058
1059def CC_X86_64_Preserve_None : CallingConv<[
1060  // We don't preserve general registers, so all of them can be used to pass
1061  // arguments except
1062  //   - RBP        frame pointer
1063  //   - R10        'nest' parameter
1064  //   - RBX        base pointer
1065  //   - R16 - R31  these are not available everywhere
1066  // Use non-volatile registers first, so functions using this convention can
1067  // call "normal" functions without saving and restoring incoming values:
1068  CCIfType<[i32], CCAssignToReg<[R12D, R13D, R14D, R15D, EDI, ESI,
1069                                 EDX, ECX, R8D, R9D, R11D, EAX]>>,
1070
1071  CCIfType<[i64], CCAssignToReg<[R12, R13, R14, R15, RDI, RSI,
1072                                 RDX, RCX, R8, R9, R11, RAX]>>,
1073
1074  // Otherwise it's the same as the regular C calling convention.
1075  CCDelegateTo<CC_X86_64_C>
1076]>;
1077
1078//===----------------------------------------------------------------------===//
1079// X86 Root Argument Calling Conventions
1080//===----------------------------------------------------------------------===//
1081
1082// This is the root argument convention for the X86-32 backend.
1083def CC_X86_32 : CallingConv<[
1084  // X86_INTR calling convention is valid in MCU target and should override the
1085  // MCU calling convention. Thus, this should be checked before isTargetMCU().
1086  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1087  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1088  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1089  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1090  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1091  CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
1092  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1093  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
1094  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1095  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1096  CCIfCC<"CallingConv::X86_RegCall",
1097    CCIfSubtarget<"isTargetWin32()", CCIfRegCallv4<CCDelegateTo<CC_X86_32_RegCallv4_Win>>>>,
1098  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1099
1100  // Otherwise, drop to normal X86-32 CC
1101  CCDelegateTo<CC_X86_32_C>
1102]>;
1103
1104// This is the root argument convention for the X86-64 backend.
1105def CC_X86_64 : CallingConv<[
1106  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1107  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1108  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1109  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1110  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1111  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1112  CCIfCC<"CallingConv::X86_RegCall",
1113    CCIfSubtarget<"isTargetWin64()", CCIfRegCallv4<CCDelegateTo<CC_X86_Win64_RegCallv4>>>>,
1114  CCIfCC<"CallingConv::X86_RegCall",
1115    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1116  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1117  CCIfCC<"CallingConv::PreserveNone", CCDelegateTo<CC_X86_64_Preserve_None>>,
1118  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1119
1120  // Mingw64 and native Win64 use Win64 CC
1121  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1122
1123  // Otherwise, drop to normal X86-64 CC
1124  CCDelegateTo<CC_X86_64_C>
1125]>;
1126
1127// This is the argument convention used for the entire X86 backend.
1128let Entry = 1 in
1129def CC_X86 : CallingConv<[
1130  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1131  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1132  CCDelegateTo<CC_X86_32>
1133]>;
1134
1135//===----------------------------------------------------------------------===//
1136// Callee-saved Registers.
1137//===----------------------------------------------------------------------===//
1138
1139def CSR_NoRegs : CalleeSavedRegs<(add)>;
1140
1141def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1142def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1143
1144def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1145def CSR_64_SwiftTail : CalleeSavedRegs<(sub CSR_64, R13, R14)>;
1146
1147def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1148def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1149
1150def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1151
1152def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1153                                     (sequence "XMM%u", 6, 15))>;
1154
1155def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1156def CSR_Win64_SwiftTail : CalleeSavedRegs<(sub CSR_Win64, R13, R14)>;
1157
1158// The function used by Darwin to obtain the address of a thread-local variable
1159// uses rdi to pass a single parameter and rax for the return value. All other
1160// GPRs are preserved.
1161def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1162                                             R8, R9, R10, R11)>;
1163
1164// CSRs that are handled by prologue, epilogue.
1165def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1166
1167// CSRs that are handled explicitly via copies.
1168def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1169
1170// All GPRs - except r11 and return registers.
1171def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1172                                              R8, R9, R10)>;
1173
1174def CSR_Win64_RT_MostRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1175                                                 (sequence "XMM%u", 6, 15))>;
1176
1177// All registers - except r11 and return registers.
1178def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1179                                                 (sequence "XMM%u", 0, 15))>;
1180def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1181                                                 (sequence "YMM%u", 0, 15))>;
1182
1183def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1184                                           R11, R12, R13, R14, R15, RBP,
1185                                           (sequence "XMM%u", 0, 15))>;
1186
1187def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1188                                              EDI)>;
1189def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1190                                              (sequence "XMM%u", 0, 7))>;
1191def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1192                                              (sequence "YMM%u", 0, 7))>;
1193def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1194                                                 (sequence "ZMM%u", 0, 7),
1195                                                 (sequence "K%u", 0, 7))>;
1196
1197def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1198def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1199                                                R10, R11, R12, R13, R14, R15, RBP)>;
1200def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1201                                                   (sequence "YMM%u", 0, 15)),
1202                                              (sequence "XMM%u", 0, 15))>;
1203def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1204                                                      (sequence "ZMM%u", 0, 31),
1205                                                      (sequence "K%u", 0, 7)),
1206                                                 (sequence "XMM%u", 0, 15))>;
1207def CSR_64_NoneRegs    : CalleeSavedRegs<(add RBP)>;
1208
1209// Standard C + YMM6-15
1210def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1211                                                  R13, R14, R15,
1212                                                  (sequence "YMM%u", 6, 15))>;
1213
1214def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1215                                                     R12, R13, R14, R15,
1216                                                     (sequence "ZMM%u", 6, 21),
1217                                                     K4, K5, K6, K7)>;
1218//Standard C + XMM 8-15
1219def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1220                                                 (sequence "XMM%u", 8, 15))>;
1221
1222//Standard C + YMM 8-15
1223def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1224                                                  (sequence "YMM%u", 8, 15))>;
1225
1226def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
1227                                                  (sequence "ZMM%u", 16, 31),
1228                                                  K4, K5, K6, K7)>;
1229
1230// Register calling convention preserves few GPR and XMM8-15
1231def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1232def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1233                                           (sequence "XMM%u", 4, 7))>;
1234def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
1235def CSR_Win32_CFGuard_Check       : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
1236def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1237                                              (sequence "R%u", 10, 15))>;
1238def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1239                                              (sequence "XMM%u", 8, 15))>;
1240def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1241                                               (sequence "R%u", 12, 15))>;
1242def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1243                                               (sequence "XMM%u", 8, 15))>;
1244