xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.td (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26/// CCIfIsVarArgOnWin - Match if isVarArg on Windows 32bits.
27class CCIfIsVarArgOnWin<CCAction A>
28    : CCIf<"State.isVarArg() && "
29           "State.getMachineFunction().getSubtarget().getTargetTriple()."
30           "isWindowsMSVCEnvironment()",
31           A>;
32
33// Register classes for RegCall
34class RC_X86_RegCall {
35  list<Register> GPR_8 = [];
36  list<Register> GPR_16 = [];
37  list<Register> GPR_32 = [];
38  list<Register> GPR_64 = [];
39  list<Register> FP_CALL = [FP0];
40  list<Register> FP_RET = [FP0, FP1];
41  list<Register> XMM = [];
42  list<Register> YMM = [];
43  list<Register> ZMM = [];
44}
45
46// RegCall register classes for 32 bits
47def RC_X86_32_RegCall : RC_X86_RegCall {
48  let GPR_8 = [AL, CL, DL, DIL, SIL];
49  let GPR_16 = [AX, CX, DX, DI, SI];
50  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
51  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
52                      ///< \todo Fix AssignToReg to enable empty lists
53  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
54  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
55  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
56}
57
58class RC_X86_64_RegCall : RC_X86_RegCall {
59  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
60             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
61  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
62             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
63  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
64             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
65}
66
67def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
68  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
69  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
70  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
71  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
72}
73
74def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
75  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
76  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
77  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
78  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
79}
80
81// X86-64 Intel regcall calling convention.
82multiclass X86_RegCall_base<RC_X86_RegCall RC> {
83def CC_#NAME : CallingConv<[
84  // Handles byval parameters.
85    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
86    CCIfByVal<CCPassByVal<4, 4>>,
87
88    // Promote i1/i8/i16/v1i1 arguments to i32.
89    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
90
91    // Promote v8i1/v16i1/v32i1 arguments to i32.
92    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
93
94    // bool, char, int, enum, long, pointer --> GPR
95    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
96
97    // long long, __int64 --> GPR
98    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
99
100    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
101    CCIfType<[v64i1], CCPromoteToType<i64>>,
102    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
103      CCAssignToReg<RC.GPR_64>>>,
104    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
105      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
106
107    // float, double, float128 --> XMM
108    // In the case of SSE disabled --> save to stack
109    CCIfType<[f32, f64, f128],
110      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
111
112    // long double --> FP
113    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
114
115    // __m128, __m128i, __m128d --> XMM
116    // In the case of SSE disabled --> save to stack
117    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
118      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
119
120    // __m256, __m256i, __m256d --> YMM
121    // In the case of SSE disabled --> save to stack
122    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
123      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
124
125    // __m512, __m512i, __m512d --> ZMM
126    // In the case of SSE disabled --> save to stack
127    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
128      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
129
130    // If no register was found -> assign to stack
131
132    // In 64 bit, assign 64/32 bit values to 8 byte stack
133    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
134      CCAssignToStack<8, 8>>>,
135
136    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
137    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
138    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
139
140    // MMX type gets 8 byte slot in stack , while alignment depends on target
141    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
142    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
143
144    // float 128 get stack slots whose size and alignment depends
145    // on the subtarget.
146    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
147
148    // Vectors get 16-byte stack slots that are 16-byte aligned.
149    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
150      CCAssignToStack<16, 16>>,
151
152    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
153    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
154      CCAssignToStack<32, 32>>,
155
156    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
157    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
158      CCAssignToStack<64, 64>>
159]>;
160
161def RetCC_#NAME : CallingConv<[
162    // Promote i1, v1i1, v8i1 arguments to i8.
163    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
164
165    // Promote v16i1 arguments to i16.
166    CCIfType<[v16i1], CCPromoteToType<i16>>,
167
168    // Promote v32i1 arguments to i32.
169    CCIfType<[v32i1], CCPromoteToType<i32>>,
170
171    // bool, char, int, enum, long, pointer --> GPR
172    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
173    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
174    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
175
176    // long long, __int64 --> GPR
177    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
178
179    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
180    CCIfType<[v64i1], CCPromoteToType<i64>>,
181    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
182      CCAssignToReg<RC.GPR_64>>>,
183    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
184      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
185
186    // long double --> FP
187    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
188
189    // float, double, float128 --> XMM
190    CCIfType<[f32, f64, f128],
191      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
192
193    // __m128, __m128i, __m128d --> XMM
194    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
195      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
196
197    // __m256, __m256i, __m256d --> YMM
198    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
199      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
200
201    // __m512, __m512i, __m512d --> ZMM
202    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
203      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
204]>;
205}
206
207//===----------------------------------------------------------------------===//
208// Return Value Calling Conventions
209//===----------------------------------------------------------------------===//
210
211// Return-value conventions common to all X86 CC's.
212def RetCC_X86Common : CallingConv<[
213  // Scalar values are returned in AX first, then DX.  For i8, the ABI
214  // requires the values to be in AL and AH, however this code uses AL and DL
215  // instead. This is because using AH for the second register conflicts with
216  // the way LLVM does multiple return values -- a return of {i16,i8} would end
217  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
218  // for functions that return two i8 values are currently expected to pack the
219  // values into an i16 (which uses AX, and thus AL:AH).
220  //
221  // For code that doesn't care about the ABI, we allow returning more than two
222  // integer values in registers.
223  CCIfType<[v1i1],  CCPromoteToType<i8>>,
224  CCIfType<[i1],  CCPromoteToType<i8>>,
225  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
226  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
227  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
228  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
229
230  // Boolean vectors of AVX-512 are returned in SIMD registers.
231  // The call from AVX to AVX-512 function should work,
232  // since the boolean types in AVX/AVX2 are promoted by default.
233  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
234  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
235  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
236  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
237  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
238  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
239
240  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
241  // can only be used by ABI non-compliant code. If the target doesn't have XMM
242  // registers, it won't have vector types.
243  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
244            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
245
246  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
247  // can only be used by ABI non-compliant code. This vector type is only
248  // supported while using the AVX target feature.
249  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
250            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
251
252  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
253  // can only be used by ABI non-compliant code. This vector type is only
254  // supported while using the AVX-512 target feature.
255  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
256            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
257
258  // MMX vector types are always returned in MM0. If the target doesn't have
259  // MM0, it doesn't support these vector types.
260  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
261
262  // Long double types are always returned in FP0 (even with SSE),
263  // except on Win64.
264  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
265]>;
266
267// X86-32 C return-value convention.
268def RetCC_X86_32_C : CallingConv<[
269  // The X86-32 calling convention returns FP values in FP0, unless marked
270  // with "inreg" (used here to distinguish one kind of reg from another,
271  // weirdly; this is really the sse-regparm calling convention) in which
272  // case they use XMM0, otherwise it is the same as the common X86 calling
273  // conv.
274  CCIfInReg<CCIfSubtarget<"hasSSE2()",
275    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
276  CCIfSubtarget<"hasX87()",
277    CCIfType<[f32, f64], CCAssignToReg<[FP0, FP1]>>>,
278  CCIfNotSubtarget<"hasX87()",
279    CCIfType<[f32], CCAssignToReg<[EAX, EDX, ECX]>>>,
280  CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>,
281  CCDelegateTo<RetCC_X86Common>
282]>;
283
284// X86-32 FastCC return-value convention.
285def RetCC_X86_32_Fast : CallingConv<[
286  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
287  // SSE2.
288  // This can happen when a float, 2 x float, or 3 x float vector is split by
289  // target lowering, and is returned in 1-3 sse regs.
290  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
291  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
292
293  // For integers, ECX can be used as an extra return register
294  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
295  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
296  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
297
298  // Otherwise, it is the same as the common X86 calling convention.
299  CCDelegateTo<RetCC_X86Common>
300]>;
301
302// Intel_OCL_BI return-value convention.
303def RetCC_Intel_OCL_BI : CallingConv<[
304  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
305  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
306            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
307
308  // 256-bit FP vectors
309  // No more than 4 registers
310  CCIfType<[v8f32, v4f64, v8i32, v4i64],
311            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
312
313  // 512-bit FP vectors
314  CCIfType<[v16f32, v8f64, v16i32, v8i64],
315            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
316
317  // i32, i64 in the standard way
318  CCDelegateTo<RetCC_X86Common>
319]>;
320
321// X86-32 HiPE return-value convention.
322def RetCC_X86_32_HiPE : CallingConv<[
323  // Promote all types to i32
324  CCIfType<[i8, i16], CCPromoteToType<i32>>,
325
326  // Return: HP, P, VAL1, VAL2
327  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
328]>;
329
330// X86-32 Vectorcall return-value convention.
331def RetCC_X86_32_VectorCall : CallingConv<[
332  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
333  CCIfType<[f32, f64, f128],
334            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
335
336  // Return integers in the standard way.
337  CCDelegateTo<RetCC_X86Common>
338]>;
339
340// X86-64 C return-value convention.
341def RetCC_X86_64_C : CallingConv<[
342  // The X86-64 calling convention always returns FP values in XMM0.
343  CCIfType<[f16], CCAssignToReg<[XMM0, XMM1]>>,
344  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
345  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
346  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
347
348  // MMX vector types are always returned in XMM0.
349  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
350
351  // Pointers are always returned in full 64-bit registers.
352  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
353
354  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
355
356  CCDelegateTo<RetCC_X86Common>
357]>;
358
359// X86-Win64 C return-value convention.
360def RetCC_X86_Win64_C : CallingConv<[
361  // The X86-Win64 calling convention always returns __m64 values in RAX.
362  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
363
364  // GCC returns FP values in RAX on Win64.
365  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
366  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
367
368  // Otherwise, everything is the same as 'normal' X86-64 C CC.
369  CCDelegateTo<RetCC_X86_64_C>
370]>;
371
372// X86-64 vectorcall return-value convention.
373def RetCC_X86_64_Vectorcall : CallingConv<[
374  // Vectorcall calling convention always returns FP values in XMMs.
375  CCIfType<[f32, f64, f128],
376    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
377
378  // Otherwise, everything is the same as Windows X86-64 C CC.
379  CCDelegateTo<RetCC_X86_Win64_C>
380]>;
381
382// X86-64 HiPE return-value convention.
383def RetCC_X86_64_HiPE : CallingConv<[
384  // Promote all types to i64
385  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
386
387  // Return: HP, P, VAL1, VAL2
388  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
389]>;
390
391// X86-64 WebKit_JS return-value convention.
392def RetCC_X86_64_WebKit_JS : CallingConv<[
393  // Promote all types to i64
394  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
395
396  // Return: RAX
397  CCIfType<[i64], CCAssignToReg<[RAX]>>
398]>;
399
400def RetCC_X86_64_Swift : CallingConv<[
401
402  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
403
404  // For integers, ECX, R8D can be used as extra return registers.
405  CCIfType<[v1i1],  CCPromoteToType<i8>>,
406  CCIfType<[i1],  CCPromoteToType<i8>>,
407  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
408  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
409  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
410  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
411
412  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
413  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
414  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
415  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
416
417  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
418  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
419  CCDelegateTo<RetCC_X86Common>
420]>;
421
422// X86-64 AnyReg return-value convention. No explicit register is specified for
423// the return-value. The register allocator is allowed and expected to choose
424// any free register.
425//
426// This calling convention is currently only supported by the stackmap and
427// patchpoint intrinsics. All other uses will result in an assert on Debug
428// builds. On Release builds we fallback to the X86 C calling convention.
429def RetCC_X86_64_AnyReg : CallingConv<[
430  CCCustom<"CC_X86_AnyReg_Error">
431]>;
432
433// X86-64 HHVM return-value convention.
434def RetCC_X86_64_HHVM: CallingConv<[
435  // Promote all types to i64
436  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
437
438  // Return: could return in any GP register save RSP and R12.
439  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
440                                 RAX, R10, R11, R13, R14, R15]>>
441]>;
442
443
444defm X86_32_RegCall :
445	 X86_RegCall_base<RC_X86_32_RegCall>;
446defm X86_Win64_RegCall :
447     X86_RegCall_base<RC_X86_64_RegCall_Win>;
448defm X86_SysV64_RegCall :
449     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
450
451// This is the root return-value convention for the X86-32 backend.
452def RetCC_X86_32 : CallingConv<[
453  // If FastCC, use RetCC_X86_32_Fast.
454  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
455  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
456  // CFGuard_Check never returns a value so does not need a RetCC.
457  // If HiPE, use RetCC_X86_32_HiPE.
458  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
459  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
460  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
461
462  // Otherwise, use RetCC_X86_32_C.
463  CCDelegateTo<RetCC_X86_32_C>
464]>;
465
466// This is the root return-value convention for the X86-64 backend.
467def RetCC_X86_64 : CallingConv<[
468  // HiPE uses RetCC_X86_64_HiPE
469  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
470
471  // Handle JavaScript calls.
472  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
473  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
474
475  // Handle Swift calls.
476  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
477  CCIfCC<"CallingConv::SwiftTail", CCDelegateTo<RetCC_X86_64_Swift>>,
478
479  // Handle explicit CC selection
480  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
481  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
482
483  // Handle Vectorcall CC
484  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
485
486  // Handle HHVM calls.
487  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
488
489  CCIfCC<"CallingConv::X86_RegCall",
490          CCIfSubtarget<"isTargetWin64()",
491                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
492  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
493
494  // Mingw64 and native Win64 use Win64 CC
495  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
496
497  // Otherwise, drop to normal X86-64 CC
498  CCDelegateTo<RetCC_X86_64_C>
499]>;
500
501// This is the return-value convention used for the entire X86 backend.
502let Entry = 1 in
503def RetCC_X86 : CallingConv<[
504
505  // Check if this is the Intel OpenCL built-ins calling convention
506  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
507
508  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
509  CCDelegateTo<RetCC_X86_32>
510]>;
511
512//===----------------------------------------------------------------------===//
513// X86-64 Argument Calling Conventions
514//===----------------------------------------------------------------------===//
515
516def CC_X86_64_C : CallingConv<[
517  // Handles byval parameters.
518  CCIfByVal<CCPassByVal<8, 8>>,
519
520  // Promote i1/i8/i16/v1i1 arguments to i32.
521  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
522
523  // The 'nest' parameter, if any, is passed in R10.
524  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
525  CCIfNest<CCAssignToReg<[R10]>>,
526
527  // Pass SwiftSelf in a callee saved register.
528  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
529
530  // A SwiftError is passed in R12.
531  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
532
533  // Pass SwiftAsync in an otherwise callee saved register so that calls to
534  // normal functions don't need to save it somewhere.
535  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
536
537  // For Swift Calling Conventions, pass sret in %rax.
538  CCIfCC<"CallingConv::Swift",
539    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
540  CCIfCC<"CallingConv::SwiftTail",
541    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
542
543  // Pointers are always passed in full 64-bit registers.
544  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
545
546  // The first 6 integer arguments are passed in integer registers.
547  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
548  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
549
550  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
551  CCIfType<[x86mmx],
552            CCIfSubtarget<"isTargetDarwin()",
553            CCIfSubtarget<"hasSSE2()",
554            CCPromoteToType<v2i64>>>>,
555
556  // Boolean vectors of AVX-512 are passed in SIMD registers.
557  // The call from AVX to AVX-512 function should work,
558  // since the boolean types in AVX/AVX2 are promoted by default.
559  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
560  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
561  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
562  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
563  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
564  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
565
566  // The first 8 FP/Vector arguments are passed in XMM registers.
567  CCIfType<[f16, f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
568            CCIfSubtarget<"hasSSE1()",
569            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
570
571  // The first 8 256-bit vector arguments are passed in YMM registers, unless
572  // this is a vararg function.
573  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
574  // fixed arguments to vararg functions are supposed to be passed in
575  // registers.  Actually modeling that would be a lot of work, though.
576  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
577                          CCIfSubtarget<"hasAVX()",
578                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
579                                         YMM4, YMM5, YMM6, YMM7]>>>>,
580
581  // The first 8 512-bit vector arguments are passed in ZMM registers.
582  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
583            CCIfSubtarget<"hasAVX512()",
584            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
585
586  // Integer/FP values get stored in stack slots that are 8 bytes in size and
587  // 8-byte aligned if there are no more registers to hold them.
588  CCIfType<[i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>,
589
590  // Long doubles get stack slots whose size and alignment depends on the
591  // subtarget.
592  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
593
594  // Vectors get 16-byte stack slots that are 16-byte aligned.
595  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToStack<16, 16>>,
596
597  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
598  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
599           CCAssignToStack<32, 32>>,
600
601  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
602  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
603           CCAssignToStack<64, 64>>
604]>;
605
606// Calling convention for X86-64 HHVM.
607def CC_X86_64_HHVM : CallingConv<[
608  // Use all/any GP registers for args, except RSP.
609  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
610                                 RDI, RSI, RDX, RCX, R8, R9,
611                                 RAX, R10, R11, R13, R14]>>
612]>;
613
614// Calling convention for helper functions in HHVM.
615def CC_X86_64_HHVM_C : CallingConv<[
616  // Pass the first argument in RBP.
617  CCIfType<[i64], CCAssignToReg<[RBP]>>,
618
619  // Otherwise it's the same as the regular C calling convention.
620  CCDelegateTo<CC_X86_64_C>
621]>;
622
623// Calling convention used on Win64
624def CC_X86_Win64_C : CallingConv<[
625  // FIXME: Handle varargs.
626
627  // Byval aggregates are passed by pointer
628  CCIfByVal<CCPassIndirect<i64>>,
629
630  // Promote i1/v1i1 arguments to i8.
631  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
632
633  // The 'nest' parameter, if any, is passed in R10.
634  CCIfNest<CCAssignToReg<[R10]>>,
635
636  // A SwiftError is passed in R12.
637  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
638
639  // Pass SwiftSelf in a callee saved register.
640  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
641
642  // Pass SwiftAsync in an otherwise callee saved register so that calls to
643  // normal functions don't need to save it somewhere.
644  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
645
646  // The 'CFGuardTarget' parameter, if any, is passed in RAX.
647  CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
648
649  // 128 bit vectors are passed by pointer
650  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCPassIndirect<i64>>,
651
652  // 256 bit vectors are passed by pointer
653  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCPassIndirect<i64>>,
654
655  // 512 bit vectors are passed by pointer
656  CCIfType<[v64i8, v32i16, v16i32, v32f16, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
657
658  // Long doubles are passed by pointer
659  CCIfType<[f80], CCPassIndirect<i64>>,
660
661  // The first 4 MMX vector arguments are passed in GPRs.
662  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
663
664  // If SSE was disabled, pass FP values smaller than 64-bits as integers in
665  // GPRs or on the stack.
666  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
667  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
668
669  // The first 4 FP/Vector arguments are passed in XMM registers.
670  CCIfType<[f16, f32, f64],
671           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
672                                   [RCX , RDX , R8  , R9  ]>>,
673
674  // The first 4 integer arguments are passed in integer registers.
675  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
676                                          [XMM0, XMM1, XMM2, XMM3]>>,
677  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
678                                          [XMM0, XMM1, XMM2, XMM3]>>,
679  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
680                                          [XMM0, XMM1, XMM2, XMM3]>>,
681
682  // Do not pass the sret argument in RCX, the Win64 thiscall calling
683  // convention requires "this" to be passed in RCX.
684  CCIfCC<"CallingConv::X86_ThisCall",
685    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
686                                                     [XMM1, XMM2, XMM3]>>>>,
687
688  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
689                                          [XMM0, XMM1, XMM2, XMM3]>>,
690
691  // Integer/FP values get stored in stack slots that are 8 bytes in size and
692  // 8-byte aligned if there are no more registers to hold them.
693  CCIfType<[i8, i16, i32, i64, f16, f32, f64], CCAssignToStack<8, 8>>
694]>;
695
696def CC_X86_Win64_VectorCall : CallingConv<[
697  CCCustom<"CC_X86_64_VectorCall">,
698
699  // Delegate to fastcall to handle integer types.
700  CCDelegateTo<CC_X86_Win64_C>
701]>;
702
703
704def CC_X86_64_GHC : CallingConv<[
705  // Promote i8/i16/i32 arguments to i64.
706  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
707
708  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
709  CCIfType<[i64],
710            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
711
712  // Pass in STG registers: F1, F2, F3, F4, D1, D2
713  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
714            CCIfSubtarget<"hasSSE1()",
715            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
716  // AVX
717  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
718            CCIfSubtarget<"hasAVX()",
719            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
720  // AVX-512
721  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
722            CCIfSubtarget<"hasAVX512()",
723            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
724]>;
725
726def CC_X86_64_HiPE : CallingConv<[
727  // Promote i8/i16/i32 arguments to i64.
728  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
729
730  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
731  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
732
733  // Integer/FP values get stored in stack slots that are 8 bytes in size and
734  // 8-byte aligned if there are no more registers to hold them.
735  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
736]>;
737
738def CC_X86_64_WebKit_JS : CallingConv<[
739  // Promote i8/i16 arguments to i32.
740  CCIfType<[i8, i16], CCPromoteToType<i32>>,
741
742  // Only the first integer argument is passed in register.
743  CCIfType<[i32], CCAssignToReg<[EAX]>>,
744  CCIfType<[i64], CCAssignToReg<[RAX]>>,
745
746  // The remaining integer arguments are passed on the stack. 32bit integer and
747  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
748  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
749  // in 8 byte stack slots.
750  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
751  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
752]>;
753
754// No explicit register is specified for the AnyReg calling convention. The
755// register allocator may assign the arguments to any free register.
756//
757// This calling convention is currently only supported by the stackmap and
758// patchpoint intrinsics. All other uses will result in an assert on Debug
759// builds. On Release builds we fallback to the X86 C calling convention.
760def CC_X86_64_AnyReg : CallingConv<[
761  CCCustom<"CC_X86_AnyReg_Error">
762]>;
763
764//===----------------------------------------------------------------------===//
765// X86 C Calling Convention
766//===----------------------------------------------------------------------===//
767
768/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
769/// values are spilled on the stack.
770def CC_X86_32_Vector_Common : CallingConv<[
771  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
772  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
773           CCAssignToStack<16, 16>>,
774
775  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
776  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
777           CCAssignToStack<32, 32>>,
778
779  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
780  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
781           CCAssignToStack<64, 64>>
782]>;
783
784/// CC_X86_Win32_Vector - In X86 Win32 calling conventions, extra vector
785/// values are spilled on the stack.
786def CC_X86_Win32_Vector : CallingConv<[
787  // Other SSE vectors get 16-byte stack slots that are 4-byte aligned.
788  CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
789           CCAssignToStack<16, 4>>,
790
791  // 256-bit AVX vectors get 32-byte stack slots that are 4-byte aligned.
792  CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
793           CCAssignToStack<32, 4>>,
794
795  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 4-byte aligned.
796  CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
797           CCAssignToStack<64, 4>>
798]>;
799
800// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
801// vector registers
802def CC_X86_32_Vector_Standard : CallingConv<[
803  // SSE vector arguments are passed in XMM registers.
804  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
805                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
806
807  // AVX 256-bit vector arguments are passed in YMM registers.
808  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
809                CCIfSubtarget<"hasAVX()",
810                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
811
812  // AVX 512-bit vector arguments are passed in ZMM registers.
813  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
814                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
815
816  CCIfIsVarArgOnWin<CCDelegateTo<CC_X86_Win32_Vector>>,
817  CCDelegateTo<CC_X86_32_Vector_Common>
818]>;
819
820// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
821// vector registers.
822def CC_X86_32_Vector_Darwin : CallingConv<[
823  // SSE vector arguments are passed in XMM registers.
824  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64],
825                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
826
827  // AVX 256-bit vector arguments are passed in YMM registers.
828  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64],
829                CCIfSubtarget<"hasAVX()",
830                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
831
832  // AVX 512-bit vector arguments are passed in ZMM registers.
833  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v32f16, v16f32, v8f64],
834                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
835
836  CCDelegateTo<CC_X86_32_Vector_Common>
837]>;
838
839/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
840/// values are spilled on the stack.
841def CC_X86_32_Common : CallingConv<[
842  // Handles byval/preallocated parameters.
843  CCIfByVal<CCPassByVal<4, 4>>,
844  CCIfPreallocated<CCPassByVal<4, 4>>,
845
846  // The first 3 float or double arguments, if marked 'inreg' and if the call
847  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
848  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
849                CCIfSubtarget<"hasSSE2()",
850                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
851
852  CCIfNotVarArg<CCIfInReg<CCIfType<[f16], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
853
854  // The first 3 __m64 vector arguments are passed in mmx registers if the
855  // call is not a vararg call.
856  CCIfNotVarArg<CCIfType<[x86mmx],
857                CCAssignToReg<[MM0, MM1, MM2]>>>,
858
859  CCIfType<[f16], CCAssignToStack<4, 4>>,
860
861  // Integer/Float values get stored in stack slots that are 4 bytes in
862  // size and 4-byte aligned.
863  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
864
865  // Doubles get 8-byte slots that are 4-byte aligned.
866  CCIfType<[f64], CCAssignToStack<8, 4>>,
867
868  // Long doubles get slots whose size and alignment depends on the subtarget.
869  CCIfType<[f80], CCAssignToStack<0, 0>>,
870
871  // Boolean vectors of AVX-512 are passed in SIMD registers.
872  // The call from AVX to AVX-512 function should work,
873  // since the boolean types in AVX/AVX2 are promoted by default.
874  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
875  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
876  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
877  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
878  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
879  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
880
881  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
882  // passed in the parameter area.
883  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
884
885  // Darwin passes vectors in a form that differs from the i386 psABI
886  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
887
888  // Otherwise, drop to 'normal' X86-32 CC
889  CCDelegateTo<CC_X86_32_Vector_Standard>
890]>;
891
892def CC_X86_32_C : CallingConv<[
893  // Promote i1/i8/i16/v1i1 arguments to i32.
894  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
895
896  // The 'nest' parameter, if any, is passed in ECX.
897  CCIfNest<CCAssignToReg<[ECX]>>,
898
899  // On swifttailcc pass swiftself in ECX.
900  CCIfCC<"CallingConv::SwiftTail",
901         CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[ECX]>>>>,
902
903  // The first 3 integer arguments, if marked 'inreg' and if the call is not
904  // a vararg call, are passed in integer registers.
905  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
906
907  // Otherwise, same as everything else.
908  CCDelegateTo<CC_X86_32_Common>
909]>;
910
911def CC_X86_32_MCU : CallingConv<[
912  // Handles byval parameters.  Note that, like FastCC, we can't rely on
913  // the delegation to CC_X86_32_Common because that happens after code that
914  // puts arguments in registers.
915  CCIfByVal<CCPassByVal<4, 4>>,
916
917  // Promote i1/i8/i16/v1i1 arguments to i32.
918  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
919
920  // If the call is not a vararg call, some arguments may be passed
921  // in integer registers.
922  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
923
924  // Otherwise, same as everything else.
925  CCDelegateTo<CC_X86_32_Common>
926]>;
927
928def CC_X86_32_FastCall : CallingConv<[
929  // Promote i1 to i8.
930  CCIfType<[i1], CCPromoteToType<i8>>,
931
932  // The 'nest' parameter, if any, is passed in EAX.
933  CCIfNest<CCAssignToReg<[EAX]>>,
934
935  // The first 2 integer arguments are passed in ECX/EDX
936  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
937  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
938  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
939
940  // Otherwise, same as everything else.
941  CCDelegateTo<CC_X86_32_Common>
942]>;
943
944def CC_X86_Win32_VectorCall : CallingConv<[
945  // Pass floating point in XMMs
946  CCCustom<"CC_X86_32_VectorCall">,
947
948  // Delegate to fastcall to handle integer types.
949  CCDelegateTo<CC_X86_32_FastCall>
950]>;
951
952def CC_X86_32_ThisCall_Common : CallingConv<[
953  // The first integer argument is passed in ECX
954  CCIfType<[i32], CCAssignToReg<[ECX]>>,
955
956  // Otherwise, same as everything else.
957  CCDelegateTo<CC_X86_32_Common>
958]>;
959
960def CC_X86_32_ThisCall_Mingw : CallingConv<[
961  // Promote i1/i8/i16/v1i1 arguments to i32.
962  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
963
964  CCDelegateTo<CC_X86_32_ThisCall_Common>
965]>;
966
967def CC_X86_32_ThisCall_Win : CallingConv<[
968  // Promote i1/i8/i16/v1i1 arguments to i32.
969  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
970
971  // Pass sret arguments indirectly through stack.
972  CCIfSRet<CCAssignToStack<4, 4>>,
973
974  CCDelegateTo<CC_X86_32_ThisCall_Common>
975]>;
976
977def CC_X86_32_ThisCall : CallingConv<[
978  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
979  CCDelegateTo<CC_X86_32_ThisCall_Win>
980]>;
981
982def CC_X86_32_FastCC : CallingConv<[
983  // Handles byval parameters.  Note that we can't rely on the delegation
984  // to CC_X86_32_Common for this because that happens after code that
985  // puts arguments in registers.
986  CCIfByVal<CCPassByVal<4, 4>>,
987
988  // Promote i1/i8/i16/v1i1 arguments to i32.
989  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
990
991  // The 'nest' parameter, if any, is passed in EAX.
992  CCIfNest<CCAssignToReg<[EAX]>>,
993
994  // The first 2 integer arguments are passed in ECX/EDX
995  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
996
997  // The first 3 float or double arguments, if the call is not a vararg
998  // call and if SSE2 is available, are passed in SSE registers.
999  CCIfNotVarArg<CCIfType<[f32,f64],
1000                CCIfSubtarget<"hasSSE2()",
1001                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
1002
1003  // Doubles get 8-byte slots that are 8-byte aligned.
1004  CCIfType<[f64], CCAssignToStack<8, 8>>,
1005
1006  // Otherwise, same as everything else.
1007  CCDelegateTo<CC_X86_32_Common>
1008]>;
1009
1010def CC_X86_Win32_CFGuard_Check : CallingConv<[
1011  // The CFGuard check call takes exactly one integer argument
1012  // (i.e. the target function address), which is passed in ECX.
1013  CCIfType<[i32], CCAssignToReg<[ECX]>>
1014]>;
1015
1016def CC_X86_32_GHC : CallingConv<[
1017  // Promote i8/i16 arguments to i32.
1018  CCIfType<[i8, i16], CCPromoteToType<i32>>,
1019
1020  // Pass in STG registers: Base, Sp, Hp, R1
1021  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
1022]>;
1023
1024def CC_X86_32_HiPE : CallingConv<[
1025  // Promote i8/i16 arguments to i32.
1026  CCIfType<[i8, i16], CCPromoteToType<i32>>,
1027
1028  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
1029  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
1030
1031  // Integer/Float values get stored in stack slots that are 4 bytes in
1032  // size and 4-byte aligned.
1033  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
1034]>;
1035
1036// X86-64 Intel OpenCL built-ins calling convention.
1037def CC_Intel_OCL_BI : CallingConv<[
1038
1039  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
1040  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
1041
1042  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
1043  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
1044
1045  CCIfType<[i32], CCAssignToStack<4, 4>>,
1046
1047  // The SSE vector arguments are passed in XMM registers.
1048  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
1049           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
1050
1051  // The 256-bit vector arguments are passed in YMM registers.
1052  CCIfType<[v8f32, v4f64, v8i32, v4i64],
1053           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
1054
1055  // The 512-bit vector arguments are passed in ZMM registers.
1056  CCIfType<[v16f32, v8f64, v16i32, v8i64],
1057           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
1058
1059  // Pass masks in mask registers
1060  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
1061
1062  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1063  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
1064  CCDelegateTo<CC_X86_32_C>
1065]>;
1066
1067//===----------------------------------------------------------------------===//
1068// X86 Root Argument Calling Conventions
1069//===----------------------------------------------------------------------===//
1070
1071// This is the root argument convention for the X86-32 backend.
1072def CC_X86_32 : CallingConv<[
1073  // X86_INTR calling convention is valid in MCU target and should override the
1074  // MCU calling convention. Thus, this should be checked before isTargetMCU().
1075  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1076  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1077  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1078  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1079  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1080  CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
1081  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1082  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
1083  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1084  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1085  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1086
1087  // Otherwise, drop to normal X86-32 CC
1088  CCDelegateTo<CC_X86_32_C>
1089]>;
1090
1091// This is the root argument convention for the X86-64 backend.
1092def CC_X86_64 : CallingConv<[
1093  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1094  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1095  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1096  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1097  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1098  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1099  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1100  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
1101  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
1102  CCIfCC<"CallingConv::X86_RegCall",
1103    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1104  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1105  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1106
1107  // Mingw64 and native Win64 use Win64 CC
1108  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1109
1110  // Otherwise, drop to normal X86-64 CC
1111  CCDelegateTo<CC_X86_64_C>
1112]>;
1113
1114// This is the argument convention used for the entire X86 backend.
1115let Entry = 1 in
1116def CC_X86 : CallingConv<[
1117  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1118  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1119  CCDelegateTo<CC_X86_32>
1120]>;
1121
1122//===----------------------------------------------------------------------===//
1123// Callee-saved Registers.
1124//===----------------------------------------------------------------------===//
1125
1126def CSR_NoRegs : CalleeSavedRegs<(add)>;
1127
1128def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1129def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1130
1131def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1132def CSR_64_SwiftTail : CalleeSavedRegs<(sub CSR_64, R13, R14)>;
1133
1134def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1135def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1136
1137def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1138
1139def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1140                                     (sequence "XMM%u", 6, 15))>;
1141
1142def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1143def CSR_Win64_SwiftTail : CalleeSavedRegs<(sub CSR_Win64, R13, R14)>;
1144
1145// The function used by Darwin to obtain the address of a thread-local variable
1146// uses rdi to pass a single parameter and rax for the return value. All other
1147// GPRs are preserved.
1148def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1149                                             R8, R9, R10, R11)>;
1150
1151// CSRs that are handled by prologue, epilogue.
1152def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1153
1154// CSRs that are handled explicitly via copies.
1155def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1156
1157// All GPRs - except r11
1158def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1159                                              R8, R9, R10)>;
1160
1161// All registers - except r11
1162def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1163                                                 (sequence "XMM%u", 0, 15))>;
1164def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1165                                                 (sequence "YMM%u", 0, 15))>;
1166
1167def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1168                                           R11, R12, R13, R14, R15, RBP,
1169                                           (sequence "XMM%u", 0, 15))>;
1170
1171def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1172                                              EDI)>;
1173def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1174                                              (sequence "XMM%u", 0, 7))>;
1175def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1176                                              (sequence "YMM%u", 0, 7))>;
1177def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1178                                                 (sequence "ZMM%u", 0, 7),
1179                                                 (sequence "K%u", 0, 7))>;
1180
1181def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1182def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1183                                                R10, R11, R12, R13, R14, R15, RBP)>;
1184def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1185                                                   (sequence "YMM%u", 0, 15)),
1186                                              (sequence "XMM%u", 0, 15))>;
1187def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1188                                                      (sequence "ZMM%u", 0, 31),
1189                                                      (sequence "K%u", 0, 7)),
1190                                                 (sequence "XMM%u", 0, 15))>;
1191
1192// Standard C + YMM6-15
1193def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1194                                                  R13, R14, R15,
1195                                                  (sequence "YMM%u", 6, 15))>;
1196
1197def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1198                                                     R12, R13, R14, R15,
1199                                                     (sequence "ZMM%u", 6, 21),
1200                                                     K4, K5, K6, K7)>;
1201//Standard C + XMM 8-15
1202def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1203                                                 (sequence "XMM%u", 8, 15))>;
1204
1205//Standard C + YMM 8-15
1206def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1207                                                  (sequence "YMM%u", 8, 15))>;
1208
1209def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
1210                                                  (sequence "ZMM%u", 16, 31),
1211                                                  K4, K5, K6, K7)>;
1212
1213// Only R12 is preserved for PHP calls in HHVM.
1214def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
1215
1216// Register calling convention preserves few GPR and XMM8-15
1217def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1218def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1219                                           (sequence "XMM%u", 4, 7))>;
1220def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
1221def CSR_Win32_CFGuard_Check       : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
1222def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1223                                              (sequence "R%u", 10, 15))>;
1224def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1225                                              (sequence "XMM%u", 8, 15))>;
1226def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1227                                               (sequence "R%u", 12, 15))>;
1228def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1229                                               (sequence "XMM%u", 8, 15))>;
1230