xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.td (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This describes the calling conventions for the X86-32 and X86-64
10// architectures.
11//
12//===----------------------------------------------------------------------===//
13
14/// CCIfSubtarget - Match if the current subtarget has a feature F.
15class CCIfSubtarget<string F, CCAction A>
16    : CCIf<!strconcat("static_cast<const X86Subtarget&>"
17                       "(State.getMachineFunction().getSubtarget()).", F),
18           A>;
19
20/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
21class CCIfNotSubtarget<string F, CCAction A>
22    : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
23                       "(State.getMachineFunction().getSubtarget()).", F),
24           A>;
25
26// Register classes for RegCall
27class RC_X86_RegCall {
28  list<Register> GPR_8 = [];
29  list<Register> GPR_16 = [];
30  list<Register> GPR_32 = [];
31  list<Register> GPR_64 = [];
32  list<Register> FP_CALL = [FP0];
33  list<Register> FP_RET = [FP0, FP1];
34  list<Register> XMM = [];
35  list<Register> YMM = [];
36  list<Register> ZMM = [];
37}
38
39// RegCall register classes for 32 bits
40def RC_X86_32_RegCall : RC_X86_RegCall {
41  let GPR_8 = [AL, CL, DL, DIL, SIL];
42  let GPR_16 = [AX, CX, DX, DI, SI];
43  let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
44  let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
45                      ///< \todo Fix AssignToReg to enable empty lists
46  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
47  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
48  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
49}
50
51class RC_X86_64_RegCall : RC_X86_RegCall {
52  let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
53             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
54  let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
55             YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
56  let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
57             ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
58}
59
60def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
61  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
62  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
63  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
64  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
65}
66
67def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
68  let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
69  let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
70  let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
71  let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
72}
73
74// X86-64 Intel regcall calling convention.
75multiclass X86_RegCall_base<RC_X86_RegCall RC> {
76def CC_#NAME : CallingConv<[
77  // Handles byval parameters.
78    CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
79    CCIfByVal<CCPassByVal<4, 4>>,
80
81    // Promote i1/i8/i16/v1i1 arguments to i32.
82    CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
83
84    // Promote v8i1/v16i1/v32i1 arguments to i32.
85    CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
86
87    // bool, char, int, enum, long, pointer --> GPR
88    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
89
90    // long long, __int64 --> GPR
91    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
92
93    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
94    CCIfType<[v64i1], CCPromoteToType<i64>>,
95    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
96      CCAssignToReg<RC.GPR_64>>>,
97    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
98      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
99
100    // float, double, float128 --> XMM
101    // In the case of SSE disabled --> save to stack
102    CCIfType<[f32, f64, f128],
103      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
104
105    // long double --> FP
106    CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
107
108    // __m128, __m128i, __m128d --> XMM
109    // In the case of SSE disabled --> save to stack
110    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
111      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
112
113    // __m256, __m256i, __m256d --> YMM
114    // In the case of SSE disabled --> save to stack
115    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
116      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
117
118    // __m512, __m512i, __m512d --> ZMM
119    // In the case of SSE disabled --> save to stack
120    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
121      CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
122
123    // If no register was found -> assign to stack
124
125    // In 64 bit, assign 64/32 bit values to 8 byte stack
126    CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
127      CCAssignToStack<8, 8>>>,
128
129    // In 32 bit, assign 64/32 bit values to 8/4 byte stack
130    CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
131    CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
132
133    // MMX type gets 8 byte slot in stack , while alignment depends on target
134    CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
135    CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
136
137    // float 128 get stack slots whose size and alignment depends
138    // on the subtarget.
139    CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
140
141    // Vectors get 16-byte stack slots that are 16-byte aligned.
142    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
143      CCAssignToStack<16, 16>>,
144
145    // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
146    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
147      CCAssignToStack<32, 32>>,
148
149    // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
150    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
151      CCAssignToStack<64, 64>>
152]>;
153
154def RetCC_#NAME : CallingConv<[
155    // Promote i1, v1i1, v8i1 arguments to i8.
156    CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
157
158    // Promote v16i1 arguments to i16.
159    CCIfType<[v16i1], CCPromoteToType<i16>>,
160
161    // Promote v32i1 arguments to i32.
162    CCIfType<[v32i1], CCPromoteToType<i32>>,
163
164    // bool, char, int, enum, long, pointer --> GPR
165    CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
166    CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
167    CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
168
169    // long long, __int64 --> GPR
170    CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
171
172    // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
173    CCIfType<[v64i1], CCPromoteToType<i64>>,
174    CCIfSubtarget<"is64Bit()", CCIfType<[i64],
175      CCAssignToReg<RC.GPR_64>>>,
176    CCIfSubtarget<"is32Bit()", CCIfType<[i64],
177      CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
178
179    // long double --> FP
180    CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
181
182    // float, double, float128 --> XMM
183    CCIfType<[f32, f64, f128],
184      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
185
186    // __m128, __m128i, __m128d --> XMM
187    CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
188      CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
189
190    // __m256, __m256i, __m256d --> YMM
191    CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
192      CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
193
194    // __m512, __m512i, __m512d --> ZMM
195    CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
196      CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
197]>;
198}
199
200//===----------------------------------------------------------------------===//
201// Return Value Calling Conventions
202//===----------------------------------------------------------------------===//
203
204// Return-value conventions common to all X86 CC's.
205def RetCC_X86Common : CallingConv<[
206  // Scalar values are returned in AX first, then DX.  For i8, the ABI
207  // requires the values to be in AL and AH, however this code uses AL and DL
208  // instead. This is because using AH for the second register conflicts with
209  // the way LLVM does multiple return values -- a return of {i16,i8} would end
210  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
211  // for functions that return two i8 values are currently expected to pack the
212  // values into an i16 (which uses AX, and thus AL:AH).
213  //
214  // For code that doesn't care about the ABI, we allow returning more than two
215  // integer values in registers.
216  CCIfType<[v1i1],  CCPromoteToType<i8>>,
217  CCIfType<[i1],  CCPromoteToType<i8>>,
218  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
219  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
220  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
221  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
222
223  // Boolean vectors of AVX-512 are returned in SIMD registers.
224  // The call from AVX to AVX-512 function should work,
225  // since the boolean types in AVX/AVX2 are promoted by default.
226  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
227  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
228  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
229  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
230  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
231  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
232
233  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
234  // can only be used by ABI non-compliant code. If the target doesn't have XMM
235  // registers, it won't have vector types.
236  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
237            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
238
239  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
240  // can only be used by ABI non-compliant code. This vector type is only
241  // supported while using the AVX target feature.
242  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
243            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
244
245  // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
246  // can only be used by ABI non-compliant code. This vector type is only
247  // supported while using the AVX-512 target feature.
248  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
249            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
250
251  // MMX vector types are always returned in MM0. If the target doesn't have
252  // MM0, it doesn't support these vector types.
253  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
254
255  // Long double types are always returned in FP0 (even with SSE),
256  // except on Win64.
257  CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
258]>;
259
260// X86-32 C return-value convention.
261def RetCC_X86_32_C : CallingConv<[
262  // The X86-32 calling convention returns FP values in FP0, unless marked
263  // with "inreg" (used here to distinguish one kind of reg from another,
264  // weirdly; this is really the sse-regparm calling convention) in which
265  // case they use XMM0, otherwise it is the same as the common X86 calling
266  // conv.
267  CCIfInReg<CCIfSubtarget<"hasSSE2()",
268    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
269  CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
270  CCDelegateTo<RetCC_X86Common>
271]>;
272
273// X86-32 FastCC return-value convention.
274def RetCC_X86_32_Fast : CallingConv<[
275  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
276  // SSE2.
277  // This can happen when a float, 2 x float, or 3 x float vector is split by
278  // target lowering, and is returned in 1-3 sse regs.
279  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
280  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
281
282  // For integers, ECX can be used as an extra return register
283  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
284  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
285  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
286
287  // Otherwise, it is the same as the common X86 calling convention.
288  CCDelegateTo<RetCC_X86Common>
289]>;
290
291// Intel_OCL_BI return-value convention.
292def RetCC_Intel_OCL_BI : CallingConv<[
293  // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
294  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
295            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
296
297  // 256-bit FP vectors
298  // No more than 4 registers
299  CCIfType<[v8f32, v4f64, v8i32, v4i64],
300            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
301
302  // 512-bit FP vectors
303  CCIfType<[v16f32, v8f64, v16i32, v8i64],
304            CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
305
306  // i32, i64 in the standard way
307  CCDelegateTo<RetCC_X86Common>
308]>;
309
310// X86-32 HiPE return-value convention.
311def RetCC_X86_32_HiPE : CallingConv<[
312  // Promote all types to i32
313  CCIfType<[i8, i16], CCPromoteToType<i32>>,
314
315  // Return: HP, P, VAL1, VAL2
316  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
317]>;
318
319// X86-32 Vectorcall return-value convention.
320def RetCC_X86_32_VectorCall : CallingConv<[
321  // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
322  CCIfType<[f32, f64, f128],
323            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
324
325  // Return integers in the standard way.
326  CCDelegateTo<RetCC_X86Common>
327]>;
328
329// X86-64 C return-value convention.
330def RetCC_X86_64_C : CallingConv<[
331  // The X86-64 calling convention always returns FP values in XMM0.
332  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
333  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
334  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
335
336  // MMX vector types are always returned in XMM0.
337  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
338
339  // Pointers are always returned in full 64-bit registers.
340  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
341
342  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
343
344  CCDelegateTo<RetCC_X86Common>
345]>;
346
347// X86-Win64 C return-value convention.
348def RetCC_X86_Win64_C : CallingConv<[
349  // The X86-Win64 calling convention always returns __m64 values in RAX.
350  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
351
352  // GCC returns FP values in RAX on Win64.
353  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
354  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
355
356  // Otherwise, everything is the same as 'normal' X86-64 C CC.
357  CCDelegateTo<RetCC_X86_64_C>
358]>;
359
360// X86-64 vectorcall return-value convention.
361def RetCC_X86_64_Vectorcall : CallingConv<[
362  // Vectorcall calling convention always returns FP values in XMMs.
363  CCIfType<[f32, f64, f128],
364    CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
365
366  // Otherwise, everything is the same as Windows X86-64 C CC.
367  CCDelegateTo<RetCC_X86_Win64_C>
368]>;
369
370// X86-64 HiPE return-value convention.
371def RetCC_X86_64_HiPE : CallingConv<[
372  // Promote all types to i64
373  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
374
375  // Return: HP, P, VAL1, VAL2
376  CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
377]>;
378
379// X86-64 WebKit_JS return-value convention.
380def RetCC_X86_64_WebKit_JS : CallingConv<[
381  // Promote all types to i64
382  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
383
384  // Return: RAX
385  CCIfType<[i64], CCAssignToReg<[RAX]>>
386]>;
387
388def RetCC_X86_64_Swift : CallingConv<[
389
390  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
391
392  // For integers, ECX, R8D can be used as extra return registers.
393  CCIfType<[v1i1],  CCPromoteToType<i8>>,
394  CCIfType<[i1],  CCPromoteToType<i8>>,
395  CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
396  CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
397  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
398  CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
399
400  // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
401  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
402  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
403  CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
404
405  // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
406  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
407  CCDelegateTo<RetCC_X86Common>
408]>;
409
410// X86-64 AnyReg return-value convention. No explicit register is specified for
411// the return-value. The register allocator is allowed and expected to choose
412// any free register.
413//
414// This calling convention is currently only supported by the stackmap and
415// patchpoint intrinsics. All other uses will result in an assert on Debug
416// builds. On Release builds we fallback to the X86 C calling convention.
417def RetCC_X86_64_AnyReg : CallingConv<[
418  CCCustom<"CC_X86_AnyReg_Error">
419]>;
420
421// X86-64 HHVM return-value convention.
422def RetCC_X86_64_HHVM: CallingConv<[
423  // Promote all types to i64
424  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
425
426  // Return: could return in any GP register save RSP and R12.
427  CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
428                                 RAX, R10, R11, R13, R14, R15]>>
429]>;
430
431
432defm X86_32_RegCall :
433	 X86_RegCall_base<RC_X86_32_RegCall>;
434defm X86_Win64_RegCall :
435     X86_RegCall_base<RC_X86_64_RegCall_Win>;
436defm X86_SysV64_RegCall :
437     X86_RegCall_base<RC_X86_64_RegCall_SysV>;
438
439// This is the root return-value convention for the X86-32 backend.
440def RetCC_X86_32 : CallingConv<[
441  // If FastCC, use RetCC_X86_32_Fast.
442  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
443  CCIfCC<"CallingConv::Tail", CCDelegateTo<RetCC_X86_32_Fast>>,
444  // CFGuard_Check never returns a value so does not need a RetCC.
445  // If HiPE, use RetCC_X86_32_HiPE.
446  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
447  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
448  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
449
450  // Otherwise, use RetCC_X86_32_C.
451  CCDelegateTo<RetCC_X86_32_C>
452]>;
453
454// This is the root return-value convention for the X86-64 backend.
455def RetCC_X86_64 : CallingConv<[
456  // HiPE uses RetCC_X86_64_HiPE
457  CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
458
459  // Handle JavaScript calls.
460  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
461  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
462
463  // Handle Swift calls.
464  CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
465  CCIfCC<"CallingConv::SwiftTail", CCDelegateTo<RetCC_X86_64_Swift>>,
466
467  // Handle explicit CC selection
468  CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
469  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
470
471  // Handle Vectorcall CC
472  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
473
474  // Handle HHVM calls.
475  CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
476
477  CCIfCC<"CallingConv::X86_RegCall",
478          CCIfSubtarget<"isTargetWin64()",
479                        CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
480  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
481
482  // Mingw64 and native Win64 use Win64 CC
483  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
484
485  // Otherwise, drop to normal X86-64 CC
486  CCDelegateTo<RetCC_X86_64_C>
487]>;
488
489// This is the return-value convention used for the entire X86 backend.
490let Entry = 1 in
491def RetCC_X86 : CallingConv<[
492
493  // Check if this is the Intel OpenCL built-ins calling convention
494  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
495
496  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
497  CCDelegateTo<RetCC_X86_32>
498]>;
499
500//===----------------------------------------------------------------------===//
501// X86-64 Argument Calling Conventions
502//===----------------------------------------------------------------------===//
503
504def CC_X86_64_C : CallingConv<[
505  // Handles byval parameters.
506  CCIfByVal<CCPassByVal<8, 8>>,
507
508  // Promote i1/i8/i16/v1i1 arguments to i32.
509  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
510
511  // The 'nest' parameter, if any, is passed in R10.
512  CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
513  CCIfNest<CCAssignToReg<[R10]>>,
514
515  // Pass SwiftSelf in a callee saved register.
516  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
517
518  // A SwiftError is passed in R12.
519  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
520
521  // Pass SwiftAsync in an otherwise callee saved register so that calls to
522  // normal functions don't need to save it somewhere.
523  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
524
525  // For Swift Calling Conventions, pass sret in %rax.
526  CCIfCC<"CallingConv::Swift",
527    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
528  CCIfCC<"CallingConv::SwiftTail",
529    CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
530
531  // Pointers are always passed in full 64-bit registers.
532  CCIfPtr<CCCustom<"CC_X86_64_Pointer">>,
533
534  // The first 6 integer arguments are passed in integer registers.
535  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
536  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
537
538  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
539  CCIfType<[x86mmx],
540            CCIfSubtarget<"isTargetDarwin()",
541            CCIfSubtarget<"hasSSE2()",
542            CCPromoteToType<v2i64>>>>,
543
544  // Boolean vectors of AVX-512 are passed in SIMD registers.
545  // The call from AVX to AVX-512 function should work,
546  // since the boolean types in AVX/AVX2 are promoted by default.
547  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
548  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
549  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
550  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
551  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
552  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
553
554  // The first 8 FP/Vector arguments are passed in XMM registers.
555  CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
556            CCIfSubtarget<"hasSSE1()",
557            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
558
559  // The first 8 256-bit vector arguments are passed in YMM registers, unless
560  // this is a vararg function.
561  // FIXME: This isn't precisely correct; the x86-64 ABI document says that
562  // fixed arguments to vararg functions are supposed to be passed in
563  // registers.  Actually modeling that would be a lot of work, though.
564  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
565                          CCIfSubtarget<"hasAVX()",
566                          CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
567                                         YMM4, YMM5, YMM6, YMM7]>>>>,
568
569  // The first 8 512-bit vector arguments are passed in ZMM registers.
570  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
571            CCIfSubtarget<"hasAVX512()",
572            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
573
574  // Integer/FP values get stored in stack slots that are 8 bytes in size and
575  // 8-byte aligned if there are no more registers to hold them.
576  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
577
578  // Long doubles get stack slots whose size and alignment depends on the
579  // subtarget.
580  CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
581
582  // Vectors get 16-byte stack slots that are 16-byte aligned.
583  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
584
585  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
586  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
587           CCAssignToStack<32, 32>>,
588
589  // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
590  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
591           CCAssignToStack<64, 64>>
592]>;
593
594// Calling convention for X86-64 HHVM.
595def CC_X86_64_HHVM : CallingConv<[
596  // Use all/any GP registers for args, except RSP.
597  CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
598                                 RDI, RSI, RDX, RCX, R8, R9,
599                                 RAX, R10, R11, R13, R14]>>
600]>;
601
602// Calling convention for helper functions in HHVM.
603def CC_X86_64_HHVM_C : CallingConv<[
604  // Pass the first argument in RBP.
605  CCIfType<[i64], CCAssignToReg<[RBP]>>,
606
607  // Otherwise it's the same as the regular C calling convention.
608  CCDelegateTo<CC_X86_64_C>
609]>;
610
611// Calling convention used on Win64
612def CC_X86_Win64_C : CallingConv<[
613  // FIXME: Handle varargs.
614
615  // Byval aggregates are passed by pointer
616  CCIfByVal<CCPassIndirect<i64>>,
617
618  // Promote i1/v1i1 arguments to i8.
619  CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
620
621  // The 'nest' parameter, if any, is passed in R10.
622  CCIfNest<CCAssignToReg<[R10]>>,
623
624  // A SwiftError is passed in R12.
625  CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
626
627  // Pass SwiftSelf in a callee saved register.
628  CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
629
630  // Pass SwiftAsync in an otherwise callee saved register so that calls to
631  // normal functions don't need to save it somewhere.
632  CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[R14]>>>,
633
634  // The 'CFGuardTarget' parameter, if any, is passed in RAX.
635  CCIfCFGuardTarget<CCAssignToReg<[RAX]>>,
636
637  // 128 bit vectors are passed by pointer
638  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
639
640  // 256 bit vectors are passed by pointer
641  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
642
643  // 512 bit vectors are passed by pointer
644  CCIfType<[v64i8, v32i16, v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
645
646  // Long doubles are passed by pointer
647  CCIfType<[f80], CCPassIndirect<i64>>,
648
649  // The first 4 MMX vector arguments are passed in GPRs.
650  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
651
652  // If SSE was disabled, pass FP values smaller than 64-bits as integers in
653  // GPRs or on the stack.
654  CCIfType<[f32], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i32>>>,
655  CCIfType<[f64], CCIfNotSubtarget<"hasSSE1()", CCBitConvertToType<i64>>>,
656
657  // The first 4 FP/Vector arguments are passed in XMM registers.
658  CCIfType<[f32, f64],
659           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
660                                   [RCX , RDX , R8  , R9  ]>>,
661
662  // The first 4 integer arguments are passed in integer registers.
663  CCIfType<[i8 ], CCAssignToRegWithShadow<[CL  , DL  , R8B , R9B ],
664                                          [XMM0, XMM1, XMM2, XMM3]>>,
665  CCIfType<[i16], CCAssignToRegWithShadow<[CX  , DX  , R8W , R9W ],
666                                          [XMM0, XMM1, XMM2, XMM3]>>,
667  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
668                                          [XMM0, XMM1, XMM2, XMM3]>>,
669
670  // Do not pass the sret argument in RCX, the Win64 thiscall calling
671  // convention requires "this" to be passed in RCX.
672  CCIfCC<"CallingConv::X86_ThisCall",
673    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
674                                                     [XMM1, XMM2, XMM3]>>>>,
675
676  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
677                                          [XMM0, XMM1, XMM2, XMM3]>>,
678
679  // Integer/FP values get stored in stack slots that are 8 bytes in size and
680  // 8-byte aligned if there are no more registers to hold them.
681  CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
682]>;
683
684def CC_X86_Win64_VectorCall : CallingConv<[
685  CCCustom<"CC_X86_64_VectorCall">,
686
687  // Delegate to fastcall to handle integer types.
688  CCDelegateTo<CC_X86_Win64_C>
689]>;
690
691
692def CC_X86_64_GHC : CallingConv<[
693  // Promote i8/i16/i32 arguments to i64.
694  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
695
696  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
697  CCIfType<[i64],
698            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
699
700  // Pass in STG registers: F1, F2, F3, F4, D1, D2
701  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
702            CCIfSubtarget<"hasSSE1()",
703            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
704  // AVX
705  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
706            CCIfSubtarget<"hasAVX()",
707            CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
708  // AVX-512
709  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
710            CCIfSubtarget<"hasAVX512()",
711            CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
712]>;
713
714def CC_X86_64_HiPE : CallingConv<[
715  // Promote i8/i16/i32 arguments to i64.
716  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
717
718  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
719  CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
720
721  // Integer/FP values get stored in stack slots that are 8 bytes in size and
722  // 8-byte aligned if there are no more registers to hold them.
723  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
724]>;
725
726def CC_X86_64_WebKit_JS : CallingConv<[
727  // Promote i8/i16 arguments to i32.
728  CCIfType<[i8, i16], CCPromoteToType<i32>>,
729
730  // Only the first integer argument is passed in register.
731  CCIfType<[i32], CCAssignToReg<[EAX]>>,
732  CCIfType<[i64], CCAssignToReg<[RAX]>>,
733
734  // The remaining integer arguments are passed on the stack. 32bit integer and
735  // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
736  // 64bit integer and floating-point arguments are aligned to 8 byte and stored
737  // in 8 byte stack slots.
738  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
739  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
740]>;
741
742// No explicit register is specified for the AnyReg calling convention. The
743// register allocator may assign the arguments to any free register.
744//
745// This calling convention is currently only supported by the stackmap and
746// patchpoint intrinsics. All other uses will result in an assert on Debug
747// builds. On Release builds we fallback to the X86 C calling convention.
748def CC_X86_64_AnyReg : CallingConv<[
749  CCCustom<"CC_X86_AnyReg_Error">
750]>;
751
752//===----------------------------------------------------------------------===//
753// X86 C Calling Convention
754//===----------------------------------------------------------------------===//
755
756/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
757/// values are spilled on the stack.
758def CC_X86_32_Vector_Common : CallingConv<[
759  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
760  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
761
762  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
763  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
764           CCAssignToStack<32, 32>>,
765
766  // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
767  CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
768           CCAssignToStack<64, 64>>
769]>;
770
771// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
772// vector registers
773def CC_X86_32_Vector_Standard : CallingConv<[
774  // SSE vector arguments are passed in XMM registers.
775  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
776                CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
777
778  // AVX 256-bit vector arguments are passed in YMM registers.
779  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
780                CCIfSubtarget<"hasAVX()",
781                CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
782
783  // AVX 512-bit vector arguments are passed in ZMM registers.
784  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
785                CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
786
787  CCDelegateTo<CC_X86_32_Vector_Common>
788]>;
789
790// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
791// vector registers.
792def CC_X86_32_Vector_Darwin : CallingConv<[
793  // SSE vector arguments are passed in XMM registers.
794  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
795                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
796
797  // AVX 256-bit vector arguments are passed in YMM registers.
798  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
799                CCIfSubtarget<"hasAVX()",
800                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
801
802  // AVX 512-bit vector arguments are passed in ZMM registers.
803  CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
804                CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
805
806  CCDelegateTo<CC_X86_32_Vector_Common>
807]>;
808
809/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
810/// values are spilled on the stack.
811def CC_X86_32_Common : CallingConv<[
812  // Handles byval/preallocated parameters.
813  CCIfByVal<CCPassByVal<4, 4>>,
814  CCIfPreallocated<CCPassByVal<4, 4>>,
815
816  // The first 3 float or double arguments, if marked 'inreg' and if the call
817  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
818  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
819                CCIfSubtarget<"hasSSE2()",
820                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
821
822  // The first 3 __m64 vector arguments are passed in mmx registers if the
823  // call is not a vararg call.
824  CCIfNotVarArg<CCIfType<[x86mmx],
825                CCAssignToReg<[MM0, MM1, MM2]>>>,
826
827  // Integer/Float values get stored in stack slots that are 4 bytes in
828  // size and 4-byte aligned.
829  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
830
831  // Doubles get 8-byte slots that are 4-byte aligned.
832  CCIfType<[f64], CCAssignToStack<8, 4>>,
833
834  // Long doubles get slots whose size depends on the subtarget.
835  CCIfType<[f80], CCAssignToStack<0, 4>>,
836
837  // Boolean vectors of AVX-512 are passed in SIMD registers.
838  // The call from AVX to AVX-512 function should work,
839  // since the boolean types in AVX/AVX2 are promoted by default.
840  CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
841  CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
842  CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
843  CCIfType<[v16i1], CCPromoteToType<v16i8>>,
844  CCIfType<[v32i1], CCPromoteToType<v32i8>>,
845  CCIfType<[v64i1], CCPromoteToType<v64i8>>,
846
847  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
848  // passed in the parameter area.
849  CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
850
851  // Darwin passes vectors in a form that differs from the i386 psABI
852  CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
853
854  // Otherwise, drop to 'normal' X86-32 CC
855  CCDelegateTo<CC_X86_32_Vector_Standard>
856]>;
857
858def CC_X86_32_C : CallingConv<[
859  // Promote i1/i8/i16/v1i1 arguments to i32.
860  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
861
862  // The 'nest' parameter, if any, is passed in ECX.
863  CCIfNest<CCAssignToReg<[ECX]>>,
864
865  // On swifttailcc pass swiftself in ECX.
866  CCIfCC<"CallingConv::SwiftTail",
867         CCIfSwiftSelf<CCIfType<[i32], CCAssignToReg<[ECX]>>>>,
868
869  // The first 3 integer arguments, if marked 'inreg' and if the call is not
870  // a vararg call, are passed in integer registers.
871  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
872
873  // Otherwise, same as everything else.
874  CCDelegateTo<CC_X86_32_Common>
875]>;
876
877def CC_X86_32_MCU : CallingConv<[
878  // Handles byval parameters.  Note that, like FastCC, we can't rely on
879  // the delegation to CC_X86_32_Common because that happens after code that
880  // puts arguments in registers.
881  CCIfByVal<CCPassByVal<4, 4>>,
882
883  // Promote i1/i8/i16/v1i1 arguments to i32.
884  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
885
886  // If the call is not a vararg call, some arguments may be passed
887  // in integer registers.
888  CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
889
890  // Otherwise, same as everything else.
891  CCDelegateTo<CC_X86_32_Common>
892]>;
893
894def CC_X86_32_FastCall : CallingConv<[
895  // Promote i1 to i8.
896  CCIfType<[i1], CCPromoteToType<i8>>,
897
898  // The 'nest' parameter, if any, is passed in EAX.
899  CCIfNest<CCAssignToReg<[EAX]>>,
900
901  // The first 2 integer arguments are passed in ECX/EDX
902  CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL,  DL]>>>,
903  CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX,  DX]>>>,
904  CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
905
906  // Otherwise, same as everything else.
907  CCDelegateTo<CC_X86_32_Common>
908]>;
909
910def CC_X86_Win32_VectorCall : CallingConv<[
911  // Pass floating point in XMMs
912  CCCustom<"CC_X86_32_VectorCall">,
913
914  // Delegate to fastcall to handle integer types.
915  CCDelegateTo<CC_X86_32_FastCall>
916]>;
917
918def CC_X86_32_ThisCall_Common : CallingConv<[
919  // The first integer argument is passed in ECX
920  CCIfType<[i32], CCAssignToReg<[ECX]>>,
921
922  // Otherwise, same as everything else.
923  CCDelegateTo<CC_X86_32_Common>
924]>;
925
926def CC_X86_32_ThisCall_Mingw : CallingConv<[
927  // Promote i1/i8/i16/v1i1 arguments to i32.
928  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
929
930  CCDelegateTo<CC_X86_32_ThisCall_Common>
931]>;
932
933def CC_X86_32_ThisCall_Win : CallingConv<[
934  // Promote i1/i8/i16/v1i1 arguments to i32.
935  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
936
937  // Pass sret arguments indirectly through stack.
938  CCIfSRet<CCAssignToStack<4, 4>>,
939
940  CCDelegateTo<CC_X86_32_ThisCall_Common>
941]>;
942
943def CC_X86_32_ThisCall : CallingConv<[
944  CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
945  CCDelegateTo<CC_X86_32_ThisCall_Win>
946]>;
947
948def CC_X86_32_FastCC : CallingConv<[
949  // Handles byval parameters.  Note that we can't rely on the delegation
950  // to CC_X86_32_Common for this because that happens after code that
951  // puts arguments in registers.
952  CCIfByVal<CCPassByVal<4, 4>>,
953
954  // Promote i1/i8/i16/v1i1 arguments to i32.
955  CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
956
957  // The 'nest' parameter, if any, is passed in EAX.
958  CCIfNest<CCAssignToReg<[EAX]>>,
959
960  // The first 2 integer arguments are passed in ECX/EDX
961  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
962
963  // The first 3 float or double arguments, if the call is not a vararg
964  // call and if SSE2 is available, are passed in SSE registers.
965  CCIfNotVarArg<CCIfType<[f32,f64],
966                CCIfSubtarget<"hasSSE2()",
967                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
968
969  // Doubles get 8-byte slots that are 8-byte aligned.
970  CCIfType<[f64], CCAssignToStack<8, 8>>,
971
972  // Otherwise, same as everything else.
973  CCDelegateTo<CC_X86_32_Common>
974]>;
975
976def CC_X86_Win32_CFGuard_Check : CallingConv<[
977  // The CFGuard check call takes exactly one integer argument
978  // (i.e. the target function address), which is passed in ECX.
979  CCIfType<[i32], CCAssignToReg<[ECX]>>
980]>;
981
982def CC_X86_32_GHC : CallingConv<[
983  // Promote i8/i16 arguments to i32.
984  CCIfType<[i8, i16], CCPromoteToType<i32>>,
985
986  // Pass in STG registers: Base, Sp, Hp, R1
987  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
988]>;
989
990def CC_X86_32_HiPE : CallingConv<[
991  // Promote i8/i16 arguments to i32.
992  CCIfType<[i8, i16], CCPromoteToType<i32>>,
993
994  // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
995  CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
996
997  // Integer/Float values get stored in stack slots that are 4 bytes in
998  // size and 4-byte aligned.
999  CCIfType<[i32, f32], CCAssignToStack<4, 4>>
1000]>;
1001
1002// X86-64 Intel OpenCL built-ins calling convention.
1003def CC_Intel_OCL_BI : CallingConv<[
1004
1005  CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
1006  CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
1007
1008  CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
1009  CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
1010
1011  CCIfType<[i32], CCAssignToStack<4, 4>>,
1012
1013  // The SSE vector arguments are passed in XMM registers.
1014  CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
1015           CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
1016
1017  // The 256-bit vector arguments are passed in YMM registers.
1018  CCIfType<[v8f32, v4f64, v8i32, v4i64],
1019           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
1020
1021  // The 512-bit vector arguments are passed in ZMM registers.
1022  CCIfType<[v16f32, v8f64, v16i32, v8i64],
1023           CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
1024
1025  // Pass masks in mask registers
1026  CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
1027
1028  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1029  CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
1030  CCDelegateTo<CC_X86_32_C>
1031]>;
1032
1033//===----------------------------------------------------------------------===//
1034// X86 Root Argument Calling Conventions
1035//===----------------------------------------------------------------------===//
1036
1037// This is the root argument convention for the X86-32 backend.
1038def CC_X86_32 : CallingConv<[
1039  // X86_INTR calling convention is valid in MCU target and should override the
1040  // MCU calling convention. Thus, this should be checked before isTargetMCU().
1041  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1042  CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
1043  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
1044  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
1045  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
1046  CCIfCC<"CallingConv::CFGuard_Check", CCDelegateTo<CC_X86_Win32_CFGuard_Check>>,
1047  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
1048  CCIfCC<"CallingConv::Tail", CCDelegateTo<CC_X86_32_FastCC>>,
1049  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
1050  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
1051  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
1052
1053  // Otherwise, drop to normal X86-32 CC
1054  CCDelegateTo<CC_X86_32_C>
1055]>;
1056
1057// This is the root argument convention for the X86-64 backend.
1058def CC_X86_64 : CallingConv<[
1059  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
1060  CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
1061  CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
1062  CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
1063  CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
1064  CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
1065  CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
1066  CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
1067  CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
1068  CCIfCC<"CallingConv::X86_RegCall",
1069    CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
1070  CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
1071  CCIfCC<"CallingConv::X86_INTR", CCCustom<"CC_X86_Intr">>,
1072
1073  // Mingw64 and native Win64 use Win64 CC
1074  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
1075
1076  // Otherwise, drop to normal X86-64 CC
1077  CCDelegateTo<CC_X86_64_C>
1078]>;
1079
1080// This is the argument convention used for the entire X86 backend.
1081let Entry = 1 in
1082def CC_X86 : CallingConv<[
1083  CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
1084  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
1085  CCDelegateTo<CC_X86_32>
1086]>;
1087
1088//===----------------------------------------------------------------------===//
1089// Callee-saved Registers.
1090//===----------------------------------------------------------------------===//
1091
1092def CSR_NoRegs : CalleeSavedRegs<(add)>;
1093
1094def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1095def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
1096
1097def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
1098def CSR_64_SwiftTail : CalleeSavedRegs<(sub CSR_64, R13, R14)>;
1099
1100def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
1101def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
1102
1103def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
1104
1105def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
1106                                     (sequence "XMM%u", 6, 15))>;
1107
1108def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
1109def CSR_Win64_SwiftTail : CalleeSavedRegs<(sub CSR_Win64, R13, R14)>;
1110
1111// The function used by Darwin to obtain the address of a thread-local variable
1112// uses rdi to pass a single parameter and rax for the return value. All other
1113// GPRs are preserved.
1114def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
1115                                             R8, R9, R10, R11)>;
1116
1117// CSRs that are handled by prologue, epilogue.
1118def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
1119
1120// CSRs that are handled explicitly via copies.
1121def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
1122
1123// All GPRs - except r11
1124def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
1125                                              R8, R9, R10)>;
1126
1127// All registers - except r11
1128def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1129                                                 (sequence "XMM%u", 0, 15))>;
1130def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
1131                                                 (sequence "YMM%u", 0, 15))>;
1132
1133def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
1134                                           R11, R12, R13, R14, R15, RBP,
1135                                           (sequence "XMM%u", 0, 15))>;
1136
1137def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
1138                                              EDI)>;
1139def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
1140                                              (sequence "XMM%u", 0, 7))>;
1141def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
1142                                              (sequence "YMM%u", 0, 7))>;
1143def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
1144                                                 (sequence "ZMM%u", 0, 7),
1145                                                 (sequence "K%u", 0, 7))>;
1146
1147def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
1148def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
1149                                                R10, R11, R12, R13, R14, R15, RBP)>;
1150def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1151                                                   (sequence "YMM%u", 0, 15)),
1152                                              (sequence "XMM%u", 0, 15))>;
1153def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
1154                                                      (sequence "ZMM%u", 0, 31),
1155                                                      (sequence "K%u", 0, 7)),
1156                                                 (sequence "XMM%u", 0, 15))>;
1157
1158// Standard C + YMM6-15
1159def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
1160                                                  R13, R14, R15,
1161                                                  (sequence "YMM%u", 6, 15))>;
1162
1163def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
1164                                                     R12, R13, R14, R15,
1165                                                     (sequence "ZMM%u", 6, 21),
1166                                                     K4, K5, K6, K7)>;
1167//Standard C + XMM 8-15
1168def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
1169                                                 (sequence "XMM%u", 8, 15))>;
1170
1171//Standard C + YMM 8-15
1172def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
1173                                                  (sequence "YMM%u", 8, 15))>;
1174
1175def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RSI, R14, R15,
1176                                                  (sequence "ZMM%u", 16, 31),
1177                                                  K4, K5, K6, K7)>;
1178
1179// Only R12 is preserved for PHP calls in HHVM.
1180def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
1181
1182// Register calling convention preserves few GPR and XMM8-15
1183def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
1184def CSR_32_RegCall       : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
1185                                           (sequence "XMM%u", 4, 7))>;
1186def CSR_Win32_CFGuard_Check_NoSSE : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, ECX)>;
1187def CSR_Win32_CFGuard_Check       : CalleeSavedRegs<(add CSR_32_RegCall, ECX)>;
1188def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1189                                              (sequence "R%u", 10, 15))>;
1190def CSR_Win64_RegCall       : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
1191                                              (sequence "XMM%u", 8, 15))>;
1192def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP,
1193                                               (sequence "R%u", 12, 15))>;
1194def CSR_SysV64_RegCall       : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
1195                                               (sequence "XMM%u", 8, 15))>;
1196