xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl   -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of custom routines for the X86
10 // Calling Convention that aren't done by tablegen.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86CallingConv.h"
15 #include "X86Subtarget.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/IR/CallingConv.h"
19 
20 using namespace llvm;
21 
22 /// When regcall calling convention compiled to 32 bit arch, special treatment
23 /// is required for 64 bit masks.
24 /// The value should be assigned to two GPRs.
25 /// \return true if registers were allocated and false otherwise.
26 static bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT,
27                                           MVT &LocVT,
28                                           CCValAssign::LocInfo &LocInfo,
29                                           ISD::ArgFlagsTy &ArgFlags,
30                                           CCState &State) {
31   // List of GPR registers that are available to store values in regcall
32   // calling convention.
33   static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI,
34                                       X86::ESI};
35 
36   // The vector will save all the available registers for allocation.
37   SmallVector<unsigned, 5> AvailableRegs;
38 
39   // searching for the available registers.
40   for (auto Reg : RegList) {
41     if (!State.isAllocated(Reg))
42       AvailableRegs.push_back(Reg);
43   }
44 
45   const size_t RequiredGprsUponSplit = 2;
46   if (AvailableRegs.size() < RequiredGprsUponSplit)
47     return false; // Not enough free registers - continue the search.
48 
49   // Allocating the available registers.
50   for (unsigned I = 0; I < RequiredGprsUponSplit; I++) {
51 
52     // Marking the register as located.
53     unsigned Reg = State.AllocateReg(AvailableRegs[I]);
54 
55     // Since we previously made sure that 2 registers are available
56     // we expect that a real register number will be returned.
57     assert(Reg && "Expecting a register will be available");
58 
59     // Assign the value to the allocated register
60     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
61   }
62 
63   // Successful in allocating registers - stop scanning next rules.
64   return true;
65 }
66 
67 static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) {
68   if (ValVT.is512BitVector()) {
69     static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2,
70                                            X86::ZMM3, X86::ZMM4, X86::ZMM5};
71     return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM));
72   }
73 
74   if (ValVT.is256BitVector()) {
75     static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2,
76                                            X86::YMM3, X86::YMM4, X86::YMM5};
77     return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM));
78   }
79 
80   static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2,
81                                          X86::XMM3, X86::XMM4, X86::XMM5};
82   return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM));
83 }
84 
85 static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() {
86   static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9};
87   return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR));
88 }
89 
90 static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT,
91                                             MVT &LocVT,
92                                             CCValAssign::LocInfo &LocInfo,
93                                             ISD::ArgFlagsTy &ArgFlags,
94                                             CCState &State) {
95 
96   ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT);
97   bool Is64bit = static_cast<const X86Subtarget &>(
98                      State.getMachineFunction().getSubtarget())
99                      .is64Bit();
100 
101   for (auto Reg : RegList) {
102     // If the register is not marked as allocated - assign to it.
103     if (!State.isAllocated(Reg)) {
104       unsigned AssigedReg = State.AllocateReg(Reg);
105       assert(AssigedReg == Reg && "Expecting a valid register allocation");
106       State.addLoc(
107           CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo));
108       return true;
109     }
110     // If the register is marked as shadow allocated - assign to it.
111     if (Is64bit && State.IsShadowAllocatedReg(Reg)) {
112       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
113       return true;
114     }
115   }
116 
117   llvm_unreachable("Clang should ensure that hva marked vectors will have "
118                    "an available register.");
119   return false;
120 }
121 
122 /// Vectorcall calling convention has special handling for vector types or
123 /// HVA for 64 bit arch.
124 /// For HVAs shadow registers might be allocated on the first pass
125 /// and actual XMM registers are allocated on the second pass.
126 /// For vector types, actual XMM registers are allocated on the first pass.
127 /// \return true if registers were allocated and false otherwise.
128 static bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
129                                  CCValAssign::LocInfo &LocInfo,
130                                  ISD::ArgFlagsTy &ArgFlags, CCState &State) {
131   // On the second pass, go through the HVAs only.
132   if (ArgFlags.isSecArgPass()) {
133     if (ArgFlags.isHva())
134       return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
135                                              ArgFlags, State);
136     return true;
137   }
138 
139   // Process only vector types as defined by vectorcall spec:
140   // "A vector type is either a floating-point type, for example,
141   //  a float or double, or an SIMD vector type, for example, __m128 or __m256".
142   if (!(ValVT.isFloatingPoint() ||
143         (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
144     // If R9 was already assigned it means that we are after the fourth element
145     // and because this is not an HVA / Vector type, we need to allocate
146     // shadow XMM register.
147     if (State.isAllocated(X86::R9)) {
148       // Assign shadow XMM register.
149       (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT));
150     }
151 
152     return false;
153   }
154 
155   if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) {
156     // Assign shadow GPR register.
157     (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs());
158 
159     // Assign XMM register - (shadow for HVA and non-shadow for non HVA).
160     if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
161       // In Vectorcall Calling convention, additional shadow stack can be
162       // created on top of the basic 32 bytes of win64.
163       // It can happen if the fifth or sixth argument is vector type or HVA.
164       // At that case for each argument a shadow stack of 8 bytes is allocated.
165       const TargetRegisterInfo *TRI =
166           State.getMachineFunction().getSubtarget().getRegisterInfo();
167       if (TRI->regsOverlap(Reg, X86::XMM4) ||
168           TRI->regsOverlap(Reg, X86::XMM5))
169         State.AllocateStack(8, Align(8));
170 
171       if (!ArgFlags.isHva()) {
172         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
173         return true; // Allocated a register - Stop the search.
174       }
175     }
176   }
177 
178   // If this is an HVA - Stop the search,
179   // otherwise continue the search.
180   return ArgFlags.isHva();
181 }
182 
183 /// Vectorcall calling convention has special handling for vector types or
184 /// HVA for 32 bit arch.
185 /// For HVAs actual XMM registers are allocated on the second pass.
186 /// For vector types, actual XMM registers are allocated on the first pass.
187 /// \return true if registers were allocated and false otherwise.
188 static bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
189                                  CCValAssign::LocInfo &LocInfo,
190                                  ISD::ArgFlagsTy &ArgFlags, CCState &State) {
191   // On the second pass, go through the HVAs only.
192   if (ArgFlags.isSecArgPass()) {
193     if (ArgFlags.isHva())
194       return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
195                                              ArgFlags, State);
196     return true;
197   }
198 
199   // Process only vector types as defined by vectorcall spec:
200   // "A vector type is either a floating point type, for example,
201   //  a float or double, or an SIMD vector type, for example, __m128 or __m256".
202   if (!(ValVT.isFloatingPoint() ||
203         (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
204     return false;
205   }
206 
207   if (ArgFlags.isHva())
208     return true; // If this is an HVA - Stop the search.
209 
210   // Assign XMM register.
211   if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
212     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
213     return true;
214   }
215 
216   // In case we did not find an available XMM register for a vector -
217   // pass it indirectly.
218   // It is similar to CCPassIndirect, with the addition of inreg.
219   if (!ValVT.isFloatingPoint()) {
220     LocVT = MVT::i32;
221     LocInfo = CCValAssign::Indirect;
222     ArgFlags.setInReg();
223   }
224 
225   return false; // No register was assigned - Continue the search.
226 }
227 
228 static bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &,
229                                 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
230                                 CCState &) {
231   llvm_unreachable("The AnyReg calling convention is only supported by the "
232                    "stackmap and patchpoint intrinsics.");
233   // gracefully fallback to X86 C calling convention on Release builds.
234   return false;
235 }
236 
237 static bool CC_X86_32_MCUInReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
238                                CCValAssign::LocInfo &LocInfo,
239                                ISD::ArgFlagsTy &ArgFlags, CCState &State) {
240   // This is similar to CCAssignToReg<[EAX, EDX, ECX]>, but makes sure
241   // not to split i64 and double between a register and stack
242   static const MCPhysReg RegList[] = {X86::EAX, X86::EDX, X86::ECX};
243   static const unsigned NumRegs = sizeof(RegList) / sizeof(RegList[0]);
244 
245   SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
246 
247   // If this is the first part of an double/i64/i128, or if we're already
248   // in the middle of a split, add to the pending list. If this is not
249   // the end of the split, return, otherwise go on to process the pending
250   // list
251   if (ArgFlags.isSplit() || !PendingMembers.empty()) {
252     PendingMembers.push_back(
253         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
254     if (!ArgFlags.isSplitEnd())
255       return true;
256   }
257 
258   // If there are no pending members, we are not in the middle of a split,
259   // so do the usual inreg stuff.
260   if (PendingMembers.empty()) {
261     if (unsigned Reg = State.AllocateReg(RegList)) {
262       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
263       return true;
264     }
265     return false;
266   }
267 
268   assert(ArgFlags.isSplitEnd());
269 
270   // We now have the entire original argument in PendingMembers, so decide
271   // whether to use registers or the stack.
272   // Per the MCU ABI:
273   // a) To use registers, we need to have enough of them free to contain
274   // the entire argument.
275   // b) We never want to use more than 2 registers for a single argument.
276 
277   unsigned FirstFree = State.getFirstUnallocated(RegList);
278   bool UseRegs = PendingMembers.size() <= std::min(2U, NumRegs - FirstFree);
279 
280   for (auto &It : PendingMembers) {
281     if (UseRegs)
282       It.convertToReg(State.AllocateReg(RegList[FirstFree++]));
283     else
284       It.convertToMem(State.AllocateStack(4, Align(4)));
285     State.addLoc(It);
286   }
287 
288   PendingMembers.clear();
289 
290   return true;
291 }
292 
293 /// X86 interrupt handlers can only take one or two stack arguments, but if
294 /// there are two arguments, they are in the opposite order from the standard
295 /// convention. Therefore, we have to look at the argument count up front before
296 /// allocating stack for each argument.
297 static bool CC_X86_Intr(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
298                         CCValAssign::LocInfo &LocInfo,
299                         ISD::ArgFlagsTy &ArgFlags, CCState &State) {
300   const MachineFunction &MF = State.getMachineFunction();
301   size_t ArgCount = State.getMachineFunction().getFunction().arg_size();
302   bool Is64Bit = static_cast<const X86Subtarget &>(MF.getSubtarget()).is64Bit();
303   unsigned SlotSize = Is64Bit ? 8 : 4;
304   unsigned Offset;
305   if (ArgCount == 1 && ValNo == 0) {
306     // If we have one argument, the argument is five stack slots big, at fixed
307     // offset zero.
308     Offset = State.AllocateStack(5 * SlotSize, Align(4));
309   } else if (ArgCount == 2 && ValNo == 0) {
310     // If we have two arguments, the stack slot is *after* the error code
311     // argument. Pretend it doesn't consume stack space, and account for it when
312     // we assign the second argument.
313     Offset = SlotSize;
314   } else if (ArgCount == 2 && ValNo == 1) {
315     // If this is the second of two arguments, it must be the error code. It
316     // appears first on the stack, and is then followed by the five slot
317     // interrupt struct.
318     Offset = 0;
319     (void)State.AllocateStack(6 * SlotSize, Align(4));
320   } else {
321     report_fatal_error("unsupported x86 interrupt prototype");
322   }
323 
324   // FIXME: This should be accounted for in
325   // X86FrameLowering::getFrameIndexReference, not here.
326   if (Is64Bit && ArgCount == 2)
327     Offset += SlotSize;
328 
329   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
330   return true;
331 }
332 
333 static bool CC_X86_64_Pointer(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
334                               CCValAssign::LocInfo &LocInfo,
335                               ISD::ArgFlagsTy &ArgFlags, CCState &State) {
336   if (LocVT != MVT::i64) {
337     LocVT = MVT::i64;
338     LocInfo = CCValAssign::ZExt;
339   }
340   return false;
341 }
342 
343 // Provides entry points of CC_X86 and RetCC_X86.
344 #include "X86GenCallingConv.inc"
345