xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp (revision b9128a37faafede823eb456aa65a11ac69997284)
1 //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl   -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of custom routines for the X86
10 // Calling Convention that aren't done by tablegen.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86CallingConv.h"
15 #include "X86Subtarget.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/IR/CallingConv.h"
19 #include "llvm/IR/Module.h"
20 
21 using namespace llvm;
22 
23 /// When regcall calling convention compiled to 32 bit arch, special treatment
24 /// is required for 64 bit masks.
25 /// The value should be assigned to two GPRs.
26 /// \return true if registers were allocated and false otherwise.
27 static bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT,
28                                           MVT &LocVT,
29                                           CCValAssign::LocInfo &LocInfo,
30                                           ISD::ArgFlagsTy &ArgFlags,
31                                           CCState &State) {
32   // List of GPR registers that are available to store values in regcall
33   // calling convention.
34   static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI,
35                                       X86::ESI};
36 
37   // The vector will save all the available registers for allocation.
38   SmallVector<unsigned, 5> AvailableRegs;
39 
40   // searching for the available registers.
41   for (auto Reg : RegList) {
42     if (!State.isAllocated(Reg))
43       AvailableRegs.push_back(Reg);
44   }
45 
46   const size_t RequiredGprsUponSplit = 2;
47   if (AvailableRegs.size() < RequiredGprsUponSplit)
48     return false; // Not enough free registers - continue the search.
49 
50   // Allocating the available registers.
51   for (unsigned I = 0; I < RequiredGprsUponSplit; I++) {
52 
53     // Marking the register as located.
54     unsigned Reg = State.AllocateReg(AvailableRegs[I]);
55 
56     // Since we previously made sure that 2 registers are available
57     // we expect that a real register number will be returned.
58     assert(Reg && "Expecting a register will be available");
59 
60     // Assign the value to the allocated register
61     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
62   }
63 
64   // Successful in allocating registers - stop scanning next rules.
65   return true;
66 }
67 
68 static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) {
69   if (ValVT.is512BitVector()) {
70     static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2,
71                                            X86::ZMM3, X86::ZMM4, X86::ZMM5};
72     return ArrayRef(std::begin(RegListZMM), std::end(RegListZMM));
73   }
74 
75   if (ValVT.is256BitVector()) {
76     static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2,
77                                            X86::YMM3, X86::YMM4, X86::YMM5};
78     return ArrayRef(std::begin(RegListYMM), std::end(RegListYMM));
79   }
80 
81   static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2,
82                                          X86::XMM3, X86::XMM4, X86::XMM5};
83   return ArrayRef(std::begin(RegListXMM), std::end(RegListXMM));
84 }
85 
86 static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() {
87   static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9};
88   return ArrayRef(std::begin(RegListGPR), std::end(RegListGPR));
89 }
90 
91 static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT,
92                                             MVT &LocVT,
93                                             CCValAssign::LocInfo &LocInfo,
94                                             ISD::ArgFlagsTy &ArgFlags,
95                                             CCState &State) {
96 
97   ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT);
98   bool Is64bit = static_cast<const X86Subtarget &>(
99                      State.getMachineFunction().getSubtarget())
100                      .is64Bit();
101 
102   for (auto Reg : RegList) {
103     // If the register is not marked as allocated - assign to it.
104     if (!State.isAllocated(Reg)) {
105       unsigned AssigedReg = State.AllocateReg(Reg);
106       assert(AssigedReg == Reg && "Expecting a valid register allocation");
107       State.addLoc(
108           CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo));
109       return true;
110     }
111     // If the register is marked as shadow allocated - assign to it.
112     if (Is64bit && State.IsShadowAllocatedReg(Reg)) {
113       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
114       return true;
115     }
116   }
117 
118   llvm_unreachable("Clang should ensure that hva marked vectors will have "
119                    "an available register.");
120   return false;
121 }
122 
123 /// Vectorcall calling convention has special handling for vector types or
124 /// HVA for 64 bit arch.
125 /// For HVAs shadow registers might be allocated on the first pass
126 /// and actual XMM registers are allocated on the second pass.
127 /// For vector types, actual XMM registers are allocated on the first pass.
128 /// \return true if registers were allocated and false otherwise.
129 static bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
130                                  CCValAssign::LocInfo &LocInfo,
131                                  ISD::ArgFlagsTy &ArgFlags, CCState &State) {
132   // On the second pass, go through the HVAs only.
133   if (ArgFlags.isSecArgPass()) {
134     if (ArgFlags.isHva())
135       return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
136                                              ArgFlags, State);
137     return true;
138   }
139 
140   // Process only vector types as defined by vectorcall spec:
141   // "A vector type is either a floating-point type, for example,
142   //  a float or double, or an SIMD vector type, for example, __m128 or __m256".
143   if (!(ValVT.isFloatingPoint() ||
144         (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
145     // If R9 was already assigned it means that we are after the fourth element
146     // and because this is not an HVA / Vector type, we need to allocate
147     // shadow XMM register.
148     if (State.isAllocated(X86::R9)) {
149       // Assign shadow XMM register.
150       (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT));
151     }
152 
153     return false;
154   }
155 
156   if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) {
157     // Assign shadow GPR register.
158     (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs());
159 
160     // Assign XMM register - (shadow for HVA and non-shadow for non HVA).
161     if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
162       // In Vectorcall Calling convention, additional shadow stack can be
163       // created on top of the basic 32 bytes of win64.
164       // It can happen if the fifth or sixth argument is vector type or HVA.
165       // At that case for each argument a shadow stack of 8 bytes is allocated.
166       const TargetRegisterInfo *TRI =
167           State.getMachineFunction().getSubtarget().getRegisterInfo();
168       if (TRI->regsOverlap(Reg, X86::XMM4) ||
169           TRI->regsOverlap(Reg, X86::XMM5))
170         State.AllocateStack(8, Align(8));
171 
172       if (!ArgFlags.isHva()) {
173         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
174         return true; // Allocated a register - Stop the search.
175       }
176     }
177   }
178 
179   // If this is an HVA - Stop the search,
180   // otherwise continue the search.
181   return ArgFlags.isHva();
182 }
183 
184 /// Vectorcall calling convention has special handling for vector types or
185 /// HVA for 32 bit arch.
186 /// For HVAs actual XMM registers are allocated on the second pass.
187 /// For vector types, actual XMM registers are allocated on the first pass.
188 /// \return true if registers were allocated and false otherwise.
189 static bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
190                                  CCValAssign::LocInfo &LocInfo,
191                                  ISD::ArgFlagsTy &ArgFlags, CCState &State) {
192   // On the second pass, go through the HVAs only.
193   if (ArgFlags.isSecArgPass()) {
194     if (ArgFlags.isHva())
195       return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
196                                              ArgFlags, State);
197     return true;
198   }
199 
200   // Process only vector types as defined by vectorcall spec:
201   // "A vector type is either a floating point type, for example,
202   //  a float or double, or an SIMD vector type, for example, __m128 or __m256".
203   if (!(ValVT.isFloatingPoint() ||
204         (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
205     return false;
206   }
207 
208   if (ArgFlags.isHva())
209     return true; // If this is an HVA - Stop the search.
210 
211   // Assign XMM register.
212   if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
213     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
214     return true;
215   }
216 
217   // In case we did not find an available XMM register for a vector -
218   // pass it indirectly.
219   // It is similar to CCPassIndirect, with the addition of inreg.
220   if (!ValVT.isFloatingPoint()) {
221     LocVT = MVT::i32;
222     LocInfo = CCValAssign::Indirect;
223     ArgFlags.setInReg();
224   }
225 
226   return false; // No register was assigned - Continue the search.
227 }
228 
229 static bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &,
230                                 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
231                                 CCState &) {
232   llvm_unreachable("The AnyReg calling convention is only supported by the "
233                    "stackmap and patchpoint intrinsics.");
234   // gracefully fallback to X86 C calling convention on Release builds.
235   return false;
236 }
237 
238 static bool CC_X86_32_MCUInReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
239                                CCValAssign::LocInfo &LocInfo,
240                                ISD::ArgFlagsTy &ArgFlags, CCState &State) {
241   // This is similar to CCAssignToReg<[EAX, EDX, ECX]>, but makes sure
242   // not to split i64 and double between a register and stack
243   static const MCPhysReg RegList[] = {X86::EAX, X86::EDX, X86::ECX};
244   static const unsigned NumRegs = std::size(RegList);
245 
246   SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
247 
248   // If this is the first part of an double/i64/i128, or if we're already
249   // in the middle of a split, add to the pending list. If this is not
250   // the end of the split, return, otherwise go on to process the pending
251   // list
252   if (ArgFlags.isSplit() || !PendingMembers.empty()) {
253     PendingMembers.push_back(
254         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
255     if (!ArgFlags.isSplitEnd())
256       return true;
257   }
258 
259   // If there are no pending members, we are not in the middle of a split,
260   // so do the usual inreg stuff.
261   if (PendingMembers.empty()) {
262     if (unsigned Reg = State.AllocateReg(RegList)) {
263       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
264       return true;
265     }
266     return false;
267   }
268 
269   assert(ArgFlags.isSplitEnd());
270 
271   // We now have the entire original argument in PendingMembers, so decide
272   // whether to use registers or the stack.
273   // Per the MCU ABI:
274   // a) To use registers, we need to have enough of them free to contain
275   // the entire argument.
276   // b) We never want to use more than 2 registers for a single argument.
277 
278   unsigned FirstFree = State.getFirstUnallocated(RegList);
279   bool UseRegs = PendingMembers.size() <= std::min(2U, NumRegs - FirstFree);
280 
281   for (auto &It : PendingMembers) {
282     if (UseRegs)
283       It.convertToReg(State.AllocateReg(RegList[FirstFree++]));
284     else
285       It.convertToMem(State.AllocateStack(4, Align(4)));
286     State.addLoc(It);
287   }
288 
289   PendingMembers.clear();
290 
291   return true;
292 }
293 
294 /// X86 interrupt handlers can only take one or two stack arguments, but if
295 /// there are two arguments, they are in the opposite order from the standard
296 /// convention. Therefore, we have to look at the argument count up front before
297 /// allocating stack for each argument.
298 static bool CC_X86_Intr(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
299                         CCValAssign::LocInfo &LocInfo,
300                         ISD::ArgFlagsTy &ArgFlags, CCState &State) {
301   const MachineFunction &MF = State.getMachineFunction();
302   size_t ArgCount = State.getMachineFunction().getFunction().arg_size();
303   bool Is64Bit = MF.getSubtarget<X86Subtarget>().is64Bit();
304   unsigned SlotSize = Is64Bit ? 8 : 4;
305   unsigned Offset;
306   if (ArgCount == 1 && ValNo == 0) {
307     // If we have one argument, the argument is five stack slots big, at fixed
308     // offset zero.
309     Offset = State.AllocateStack(5 * SlotSize, Align(4));
310   } else if (ArgCount == 2 && ValNo == 0) {
311     // If we have two arguments, the stack slot is *after* the error code
312     // argument. Pretend it doesn't consume stack space, and account for it when
313     // we assign the second argument.
314     Offset = SlotSize;
315   } else if (ArgCount == 2 && ValNo == 1) {
316     // If this is the second of two arguments, it must be the error code. It
317     // appears first on the stack, and is then followed by the five slot
318     // interrupt struct.
319     Offset = 0;
320     (void)State.AllocateStack(6 * SlotSize, Align(4));
321   } else {
322     report_fatal_error("unsupported x86 interrupt prototype");
323   }
324 
325   // FIXME: This should be accounted for in
326   // X86FrameLowering::getFrameIndexReference, not here.
327   if (Is64Bit && ArgCount == 2)
328     Offset += SlotSize;
329 
330   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
331   return true;
332 }
333 
334 static bool CC_X86_64_Pointer(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
335                               CCValAssign::LocInfo &LocInfo,
336                               ISD::ArgFlagsTy &ArgFlags, CCState &State) {
337   if (LocVT != MVT::i64) {
338     LocVT = MVT::i64;
339     LocInfo = CCValAssign::ZExt;
340   }
341   return false;
342 }
343 
344 // Provides entry points of CC_X86 and RetCC_X86.
345 #include "X86GenCallingConv.inc"
346