xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86CallFrameOptimization.cpp (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pass that optimizes call sequences on x86.
10 // Currently, it converts movs of function parameters onto the stack into
11 // pushes. This is beneficial for two main reasons:
12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13 // 2) It is possible to push memory arguments directly. So, if the
14 //    the transformation is performed pre-reg-alloc, it can help relieve
15 //    register pressure.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86.h"
21 #include "X86FrameLowering.h"
22 #include "X86InstrInfo.h"
23 #include "X86MachineFunctionInfo.h"
24 #include "X86RegisterInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCDwarf.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <iterator>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-cf-opt"
53 
54 static cl::opt<bool>
55     NoX86CFOpt("no-x86-call-frame-opt",
56                cl::desc("Avoid optimizing x86 call frames for size"),
57                cl::init(false), cl::Hidden);
58 
59 namespace {
60 
61 class X86CallFrameOptimization : public MachineFunctionPass {
62 public:
63   X86CallFrameOptimization() : MachineFunctionPass(ID) { }
64 
65   bool runOnMachineFunction(MachineFunction &MF) override;
66 
67   static char ID;
68 
69 private:
70   // Information we know about a particular call site
71   struct CallContext {
72     CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
73 
74     // Iterator referring to the frame setup instruction
75     MachineBasicBlock::iterator FrameSetup;
76 
77     // Actual call instruction
78     MachineInstr *Call = nullptr;
79 
80     // A copy of the stack pointer
81     MachineInstr *SPCopy = nullptr;
82 
83     // The total displacement of all passed parameters
84     int64_t ExpectedDist = 0;
85 
86     // The sequence of storing instructions used to pass the parameters
87     SmallVector<MachineInstr *, 4> ArgStoreVector;
88 
89     // True if this call site has no stack parameters
90     bool NoStackParams = false;
91 
92     // True if this call site can use push instructions
93     bool UsePush = false;
94   };
95 
96   typedef SmallVector<CallContext, 8> ContextVector;
97 
98   bool isLegal(MachineFunction &MF);
99 
100   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
101 
102   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
103                        MachineBasicBlock::iterator I, CallContext &Context);
104 
105   void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
106 
107   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
108                                    Register Reg);
109 
110   enum InstClassification { Convert, Skip, Exit };
111 
112   InstClassification classifyInstruction(MachineBasicBlock &MBB,
113                                          MachineBasicBlock::iterator MI,
114                                          const X86RegisterInfo &RegInfo,
115                                          DenseSet<unsigned int> &UsedRegs);
116 
117   StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
118 
119   const X86InstrInfo *TII = nullptr;
120   const X86FrameLowering *TFL = nullptr;
121   const X86Subtarget *STI = nullptr;
122   MachineRegisterInfo *MRI = nullptr;
123   unsigned SlotSize = 0;
124   unsigned Log2SlotSize = 0;
125 };
126 
127 } // end anonymous namespace
128 char X86CallFrameOptimization::ID = 0;
129 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
130                 "X86 Call Frame Optimization", false, false)
131 
132 // This checks whether the transformation is legal.
133 // Also returns false in cases where it's potentially legal, but
134 // we don't even want to try.
135 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
136   if (NoX86CFOpt.getValue())
137     return false;
138 
139   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
140   // in the compact unwind encoding that Darwin uses. So, bail if there
141   // is a danger of that being generated.
142   if (STI->isTargetDarwin() &&
143       (!MF.getLandingPads().empty() ||
144        (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
145     return false;
146 
147   // It is not valid to change the stack pointer outside the prolog/epilog
148   // on 64-bit Windows.
149   if (STI->isTargetWin64())
150     return false;
151 
152   // You would expect straight-line code between call-frame setup and
153   // call-frame destroy. You would be wrong. There are circumstances (e.g.
154   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
155   // end up with the setup and the destroy in different basic blocks.
156   // This is bad, and breaks SP adjustment.
157   // So, check that all of the frames in the function are closed inside
158   // the same block, and, for good measure, that there are no nested frames.
159   //
160   // If any call allocates more argument stack memory than the stack
161   // probe size, don't do this optimization. Otherwise, this pass
162   // would need to synthesize additional stack probe calls to allocate
163   // memory for arguments.
164   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
165   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
166   bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF);
167   unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF);
168   for (MachineBasicBlock &BB : MF) {
169     bool InsideFrameSequence = false;
170     for (MachineInstr &MI : BB) {
171       if (MI.getOpcode() == FrameSetupOpcode) {
172         if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall)
173           return false;
174         if (InsideFrameSequence)
175           return false;
176         InsideFrameSequence = true;
177       } else if (MI.getOpcode() == FrameDestroyOpcode) {
178         if (!InsideFrameSequence)
179           return false;
180         InsideFrameSequence = false;
181       }
182     }
183 
184     if (InsideFrameSequence)
185       return false;
186   }
187 
188   return true;
189 }
190 
191 // Check whether this transformation is profitable for a particular
192 // function - in terms of code size.
193 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
194                                             ContextVector &CallSeqVector) {
195   // This transformation is always a win when we do not expect to have
196   // a reserved call frame. Under other circumstances, it may be either
197   // a win or a loss, and requires a heuristic.
198   bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
199   if (CannotReserveFrame)
200     return true;
201 
202   Align StackAlign = TFL->getStackAlign();
203 
204   int64_t Advantage = 0;
205   for (const auto &CC : CallSeqVector) {
206     // Call sites where no parameters are passed on the stack
207     // do not affect the cost, since there needs to be no
208     // stack adjustment.
209     if (CC.NoStackParams)
210       continue;
211 
212     if (!CC.UsePush) {
213       // If we don't use pushes for a particular call site,
214       // we pay for not having a reserved call frame with an
215       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
216       // depending on the size of the constant.
217       // TODO: Callee-pop functions should have a smaller penalty, because
218       // an add is needed even with a reserved call frame.
219       Advantage -= 6;
220     } else {
221       // We can use pushes. First, account for the fixed costs.
222       // We'll need a add after the call.
223       Advantage -= 3;
224       // If we have to realign the stack, we'll also need a sub before
225       if (!isAligned(StackAlign, CC.ExpectedDist))
226         Advantage -= 3;
227       // Now, for each push, we save ~3 bytes. For small constants, we actually,
228       // save more (up to 5 bytes), but 3 should be a good approximation.
229       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
230     }
231   }
232 
233   return Advantage >= 0;
234 }
235 
236 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
237   STI = &MF.getSubtarget<X86Subtarget>();
238   TII = STI->getInstrInfo();
239   TFL = STI->getFrameLowering();
240   MRI = &MF.getRegInfo();
241 
242   const X86RegisterInfo &RegInfo =
243       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
244   SlotSize = RegInfo.getSlotSize();
245   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
246   Log2SlotSize = Log2_32(SlotSize);
247 
248   if (skipFunction(MF.getFunction()) || !isLegal(MF))
249     return false;
250 
251   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
252 
253   bool Changed = false;
254 
255   ContextVector CallSeqVector;
256 
257   for (auto &MBB : MF)
258     for (auto &MI : MBB)
259       if (MI.getOpcode() == FrameSetupOpcode) {
260         CallContext Context;
261         collectCallInfo(MF, MBB, MI, Context);
262         CallSeqVector.push_back(Context);
263       }
264 
265   if (!isProfitable(MF, CallSeqVector))
266     return false;
267 
268   for (const auto &CC : CallSeqVector) {
269     if (CC.UsePush) {
270       adjustCallSequence(MF, CC);
271       Changed = true;
272     }
273   }
274 
275   return Changed;
276 }
277 
278 X86CallFrameOptimization::InstClassification
279 X86CallFrameOptimization::classifyInstruction(
280     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
281     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
282   if (MI == MBB.end())
283     return Exit;
284 
285   // The instructions we actually care about are movs onto the stack or special
286   // cases of constant-stores to stack
287   switch (MI->getOpcode()) {
288     case X86::AND16mi8:
289     case X86::AND32mi8:
290     case X86::AND64mi8: {
291       const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
292       return ImmOp.getImm() == 0 ? Convert : Exit;
293     }
294     case X86::OR16mi8:
295     case X86::OR32mi8:
296     case X86::OR64mi8: {
297       const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
298       return ImmOp.getImm() == -1 ? Convert : Exit;
299     }
300     case X86::MOV32mi:
301     case X86::MOV32mr:
302     case X86::MOV64mi32:
303     case X86::MOV64mr:
304       return Convert;
305   }
306 
307   // Not all calling conventions have only stack MOVs between the stack
308   // adjust and the call.
309 
310   // We want to tolerate other instructions, to cover more cases.
311   // In particular:
312   // a) PCrel calls, where we expect an additional COPY of the basereg.
313   // b) Passing frame-index addresses.
314   // c) Calling conventions that have inreg parameters. These generate
315   //    both copies and movs into registers.
316   // To avoid creating lots of special cases, allow any instruction
317   // that does not write into memory, does not def or use the stack
318   // pointer, and does not def any register that was used by a preceding
319   // push.
320   // (Reading from memory is allowed, even if referenced through a
321   // frame index, since these will get adjusted properly in PEI)
322 
323   // The reason for the last condition is that the pushes can't replace
324   // the movs in place, because the order must be reversed.
325   // So if we have a MOV32mr that uses EDX, then an instruction that defs
326   // EDX, and then the call, after the transformation the push will use
327   // the modified version of EDX, and not the original one.
328   // Since we are still in SSA form at this point, we only need to
329   // make sure we don't clobber any *physical* registers that were
330   // used by an earlier mov that will become a push.
331 
332   if (MI->isCall() || MI->mayStore())
333     return Exit;
334 
335   for (const MachineOperand &MO : MI->operands()) {
336     if (!MO.isReg())
337       continue;
338     Register Reg = MO.getReg();
339     if (!Reg.isPhysical())
340       continue;
341     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
342       return Exit;
343     if (MO.isDef()) {
344       for (unsigned int U : UsedRegs)
345         if (RegInfo.regsOverlap(Reg, U))
346           return Exit;
347     }
348   }
349 
350   return Skip;
351 }
352 
353 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
354                                                MachineBasicBlock &MBB,
355                                                MachineBasicBlock::iterator I,
356                                                CallContext &Context) {
357   // Check that this particular call sequence is amenable to the
358   // transformation.
359   const X86RegisterInfo &RegInfo =
360       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
361 
362   // We expect to enter this at the beginning of a call sequence
363   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
364   MachineBasicBlock::iterator FrameSetup = I++;
365   Context.FrameSetup = FrameSetup;
366 
367   // How much do we adjust the stack? This puts an upper bound on
368   // the number of parameters actually passed on it.
369   unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
370 
371   // A zero adjustment means no stack parameters
372   if (!MaxAdjust) {
373     Context.NoStackParams = true;
374     return;
375   }
376 
377   // Skip over DEBUG_VALUE.
378   // For globals in PIC mode, we can have some LEAs here. Skip them as well.
379   // TODO: Extend this to something that covers more cases.
380   while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
381     ++I;
382 
383   Register StackPtr = RegInfo.getStackRegister();
384   auto StackPtrCopyInst = MBB.end();
385   // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
386   // register.  If it's there, use that virtual register as stack pointer
387   // instead. Also, we need to locate this instruction so that we can later
388   // safely ignore it while doing the conservative processing of the call chain.
389   // The COPY can be located anywhere between the call-frame setup
390   // instruction and its first use. We use the call instruction as a boundary
391   // because it is usually cheaper to check if an instruction is a call than
392   // checking if an instruction uses a register.
393   for (auto J = I; !J->isCall(); ++J)
394     if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
395         J->getOperand(1).getReg() == StackPtr) {
396       StackPtrCopyInst = J;
397       Context.SPCopy = &*J++;
398       StackPtr = Context.SPCopy->getOperand(0).getReg();
399       break;
400     }
401 
402   // Scan the call setup sequence for the pattern we're looking for.
403   // We only handle a simple case - a sequence of store instructions that
404   // push a sequence of stack-slot-aligned values onto the stack, with
405   // no gaps between them.
406   if (MaxAdjust > 4)
407     Context.ArgStoreVector.resize(MaxAdjust, nullptr);
408 
409   DenseSet<unsigned int> UsedRegs;
410 
411   for (InstClassification Classification = Skip; Classification != Exit; ++I) {
412     // If this is the COPY of the stack pointer, it's ok to ignore.
413     if (I == StackPtrCopyInst)
414       continue;
415     Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
416     if (Classification != Convert)
417       continue;
418     // We know the instruction has a supported store opcode.
419     // We only want movs of the form:
420     // mov imm/reg, k(%StackPtr)
421     // If we run into something else, bail.
422     // Note that AddrBaseReg may, counter to its name, not be a register,
423     // but rather a frame index.
424     // TODO: Support the fi case. This should probably work now that we
425     // have the infrastructure to track the stack pointer within a call
426     // sequence.
427     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
428         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
429         !I->getOperand(X86::AddrScaleAmt).isImm() ||
430         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
431         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
432         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
433         !I->getOperand(X86::AddrDisp).isImm())
434       return;
435 
436     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
437     assert(StackDisp >= 0 &&
438            "Negative stack displacement when passing parameters");
439 
440     // We really don't want to consider the unaligned case.
441     if (StackDisp & (SlotSize - 1))
442       return;
443     StackDisp >>= Log2SlotSize;
444 
445     assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
446            "Function call has more parameters than the stack is adjusted for.");
447 
448     // If the same stack slot is being filled twice, something's fishy.
449     if (Context.ArgStoreVector[StackDisp] != nullptr)
450       return;
451     Context.ArgStoreVector[StackDisp] = &*I;
452 
453     for (const MachineOperand &MO : I->uses()) {
454       if (!MO.isReg())
455         continue;
456       Register Reg = MO.getReg();
457       if (Reg.isPhysical())
458         UsedRegs.insert(Reg);
459     }
460   }
461 
462   --I;
463 
464   // We now expect the end of the sequence. If we stopped early,
465   // or reached the end of the block without finding a call, bail.
466   if (I == MBB.end() || !I->isCall())
467     return;
468 
469   Context.Call = &*I;
470   if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
471     return;
472 
473   // Now, go through the vector, and see that we don't have any gaps,
474   // but only a series of storing instructions.
475   auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
476   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
477     if (*MMI == nullptr)
478       break;
479 
480   // If the call had no parameters, do nothing
481   if (MMI == Context.ArgStoreVector.begin())
482     return;
483 
484   // We are either at the last parameter, or a gap.
485   // Make sure it's not a gap
486   for (; MMI != MME; ++MMI)
487     if (*MMI != nullptr)
488       return;
489 
490   Context.UsePush = true;
491 }
492 
493 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
494                                                   const CallContext &Context) {
495   // Ok, we can in fact do the transformation for this call.
496   // Do not remove the FrameSetup instruction, but adjust the parameters.
497   // PEI will end up finalizing the handling of this.
498   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
499   MachineBasicBlock &MBB = *(FrameSetup->getParent());
500   TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
501 
502   const DebugLoc &DL = FrameSetup->getDebugLoc();
503   bool Is64Bit = STI->is64Bit();
504   // Now, iterate through the vector in reverse order, and replace the store to
505   // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
506   // replace uses.
507   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
508     MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
509     const MachineOperand &PushOp = Store->getOperand(X86::AddrNumOperands);
510     MachineBasicBlock::iterator Push = nullptr;
511     unsigned PushOpcode;
512     switch (Store->getOpcode()) {
513     default:
514       llvm_unreachable("Unexpected Opcode!");
515     case X86::AND16mi8:
516     case X86::AND32mi8:
517     case X86::AND64mi8:
518     case X86::OR16mi8:
519     case X86::OR32mi8:
520     case X86::OR64mi8:
521     case X86::MOV32mi:
522     case X86::MOV64mi32:
523       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
524       // If the operand is a small (8-bit) immediate, we can use a
525       // PUSH instruction with a shorter encoding.
526       // Note that isImm() may fail even though this is a MOVmi, because
527       // the operand can also be a symbol.
528       if (PushOp.isImm()) {
529         int64_t Val = PushOp.getImm();
530         if (isInt<8>(Val))
531           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
532       }
533       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
534       Push->cloneMemRefs(MF, *Store);
535       break;
536     case X86::MOV32mr:
537     case X86::MOV64mr: {
538       Register Reg = PushOp.getReg();
539 
540       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
541       // in preparation for the PUSH64. The upper 32 bits can be undef.
542       if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
543         Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
544         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
545         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
546         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
547             .addReg(UndefReg)
548             .add(PushOp)
549             .addImm(X86::sub_32bit);
550       }
551 
552       // If PUSHrmm is not slow on this target, try to fold the source of the
553       // push into the instruction.
554       bool SlowPUSHrmm = STI->slowTwoMemOps();
555 
556       // Check that this is legal to fold. Right now, we're extremely
557       // conservative about that.
558       MachineInstr *DefMov = nullptr;
559       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
560         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
561         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
562 
563         unsigned NumOps = DefMov->getDesc().getNumOperands();
564         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
565           Push->addOperand(DefMov->getOperand(i));
566         Push->cloneMergedMemRefs(MF, {DefMov, &*Store});
567         DefMov->eraseFromParent();
568       } else {
569         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
570         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
571                    .addReg(Reg)
572                    .getInstr();
573         Push->cloneMemRefs(MF, *Store);
574       }
575       break;
576     }
577     }
578 
579     // For debugging, when using SP-based CFA, we need to adjust the CFA
580     // offset after each push.
581     // TODO: This is needed only if we require precise CFA.
582     if (!TFL->hasFP(MF))
583       TFL->BuildCFI(
584           MBB, std::next(Push), DL,
585           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
586 
587     MBB.erase(Store);
588   }
589 
590   // The stack-pointer copy is no longer used in the call sequences.
591   // There should not be any other users, but we can't commit to that, so:
592   if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
593     Context.SPCopy->eraseFromParent();
594 
595   // Once we've done this, we need to make sure PEI doesn't assume a reserved
596   // frame.
597   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
598   FuncInfo->setHasPushSequences(true);
599 }
600 
601 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
602     MachineBasicBlock::iterator FrameSetup, Register Reg) {
603   // Do an extremely restricted form of load folding.
604   // ISel will often create patterns like:
605   // movl    4(%edi), %eax
606   // movl    8(%edi), %ecx
607   // movl    12(%edi), %edx
608   // movl    %edx, 8(%esp)
609   // movl    %ecx, 4(%esp)
610   // movl    %eax, (%esp)
611   // call
612   // Get rid of those with prejudice.
613   if (!Reg.isVirtual())
614     return nullptr;
615 
616   // Make sure this is the only use of Reg.
617   if (!MRI->hasOneNonDBGUse(Reg))
618     return nullptr;
619 
620   MachineInstr &DefMI = *MRI->getVRegDef(Reg);
621 
622   // Make sure the def is a MOV from memory.
623   // If the def is in another block, give up.
624   if ((DefMI.getOpcode() != X86::MOV32rm &&
625        DefMI.getOpcode() != X86::MOV64rm) ||
626       DefMI.getParent() != FrameSetup->getParent())
627     return nullptr;
628 
629   // Make sure we don't have any instructions between DefMI and the
630   // push that make folding the load illegal.
631   for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
632     if (I->isLoadFoldBarrier())
633       return nullptr;
634 
635   return &DefMI;
636 }
637 
638 FunctionPass *llvm::createX86CallFrameOptimization() {
639   return new X86CallFrameOptimization();
640 }
641