1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pass that optimizes call sequences on x86. 10 // Currently, it converts movs of function parameters onto the stack into 11 // pushes. This is beneficial for two main reasons: 12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov. 13 // 2) It is possible to push memory arguments directly. So, if the 14 // the transformation is performed pre-reg-alloc, it can help relieve 15 // register pressure. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "MCTargetDesc/X86BaseInfo.h" 20 #include "X86.h" 21 #include "X86FrameLowering.h" 22 #include "X86InstrInfo.h" 23 #include "X86MachineFunctionInfo.h" 24 #include "X86RegisterInfo.h" 25 #include "X86Subtarget.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCDwarf.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstddef> 47 #include <cstdint> 48 #include <iterator> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "x86-cf-opt" 53 54 static cl::opt<bool> 55 NoX86CFOpt("no-x86-call-frame-opt", 56 cl::desc("Avoid optimizing x86 call frames for size"), 57 cl::init(false), cl::Hidden); 58 59 namespace { 60 61 class X86CallFrameOptimization : public MachineFunctionPass { 62 public: 63 X86CallFrameOptimization() : MachineFunctionPass(ID) { } 64 65 bool runOnMachineFunction(MachineFunction &MF) override; 66 67 static char ID; 68 69 private: 70 // Information we know about a particular call site 71 struct CallContext { 72 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {} 73 74 // Iterator referring to the frame setup instruction 75 MachineBasicBlock::iterator FrameSetup; 76 77 // Actual call instruction 78 MachineInstr *Call = nullptr; 79 80 // A copy of the stack pointer 81 MachineInstr *SPCopy = nullptr; 82 83 // The total displacement of all passed parameters 84 int64_t ExpectedDist = 0; 85 86 // The sequence of storing instructions used to pass the parameters 87 SmallVector<MachineInstr *, 4> ArgStoreVector; 88 89 // True if this call site has no stack parameters 90 bool NoStackParams = false; 91 92 // True if this call site can use push instructions 93 bool UsePush = false; 94 }; 95 96 typedef SmallVector<CallContext, 8> ContextVector; 97 98 bool isLegal(MachineFunction &MF); 99 100 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); 101 102 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, 103 MachineBasicBlock::iterator I, CallContext &Context); 104 105 void adjustCallSequence(MachineFunction &MF, const CallContext &Context); 106 107 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, 108 Register Reg); 109 110 enum InstClassification { Convert, Skip, Exit }; 111 112 InstClassification classifyInstruction(MachineBasicBlock &MBB, 113 MachineBasicBlock::iterator MI, 114 const X86RegisterInfo &RegInfo, 115 DenseSet<unsigned int> &UsedRegs); 116 117 StringRef getPassName() const override { return "X86 Optimize Call Frame"; } 118 119 const X86InstrInfo *TII = nullptr; 120 const X86FrameLowering *TFL = nullptr; 121 const X86Subtarget *STI = nullptr; 122 MachineRegisterInfo *MRI = nullptr; 123 unsigned SlotSize = 0; 124 unsigned Log2SlotSize = 0; 125 }; 126 127 } // end anonymous namespace 128 char X86CallFrameOptimization::ID = 0; 129 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE, 130 "X86 Call Frame Optimization", false, false) 131 132 // This checks whether the transformation is legal. 133 // Also returns false in cases where it's potentially legal, but 134 // we don't even want to try. 135 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { 136 if (NoX86CFOpt.getValue()) 137 return false; 138 139 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset 140 // in the compact unwind encoding that Darwin uses. So, bail if there 141 // is a danger of that being generated. 142 if (STI->isTargetDarwin() && 143 (!MF.getLandingPads().empty() || 144 (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF)))) 145 return false; 146 147 // It is not valid to change the stack pointer outside the prolog/epilog 148 // on 64-bit Windows. 149 if (STI->isTargetWin64()) 150 return false; 151 152 // You would expect straight-line code between call-frame setup and 153 // call-frame destroy. You would be wrong. There are circumstances (e.g. 154 // CMOV_GR8 expansion of a select that feeds a function call!) where we can 155 // end up with the setup and the destroy in different basic blocks. 156 // This is bad, and breaks SP adjustment. 157 // So, check that all of the frames in the function are closed inside 158 // the same block, and, for good measure, that there are no nested frames. 159 // 160 // If any call allocates more argument stack memory than the stack 161 // probe size, don't do this optimization. Otherwise, this pass 162 // would need to synthesize additional stack probe calls to allocate 163 // memory for arguments. 164 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 165 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 166 bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF); 167 unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF); 168 for (MachineBasicBlock &BB : MF) { 169 bool InsideFrameSequence = false; 170 for (MachineInstr &MI : BB) { 171 if (MI.getOpcode() == FrameSetupOpcode) { 172 if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall) 173 return false; 174 if (InsideFrameSequence) 175 return false; 176 InsideFrameSequence = true; 177 } else if (MI.getOpcode() == FrameDestroyOpcode) { 178 if (!InsideFrameSequence) 179 return false; 180 InsideFrameSequence = false; 181 } 182 } 183 184 if (InsideFrameSequence) 185 return false; 186 } 187 188 return true; 189 } 190 191 // Check whether this transformation is profitable for a particular 192 // function - in terms of code size. 193 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 194 ContextVector &CallSeqVector) { 195 // This transformation is always a win when we do not expect to have 196 // a reserved call frame. Under other circumstances, it may be either 197 // a win or a loss, and requires a heuristic. 198 bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects(); 199 if (CannotReserveFrame) 200 return true; 201 202 Align StackAlign = TFL->getStackAlign(); 203 204 int64_t Advantage = 0; 205 for (const auto &CC : CallSeqVector) { 206 // Call sites where no parameters are passed on the stack 207 // do not affect the cost, since there needs to be no 208 // stack adjustment. 209 if (CC.NoStackParams) 210 continue; 211 212 if (!CC.UsePush) { 213 // If we don't use pushes for a particular call site, 214 // we pay for not having a reserved call frame with an 215 // additional sub/add esp pair. The cost is ~3 bytes per instruction, 216 // depending on the size of the constant. 217 // TODO: Callee-pop functions should have a smaller penalty, because 218 // an add is needed even with a reserved call frame. 219 Advantage -= 6; 220 } else { 221 // We can use pushes. First, account for the fixed costs. 222 // We'll need a add after the call. 223 Advantage -= 3; 224 // If we have to realign the stack, we'll also need a sub before 225 if (!isAligned(StackAlign, CC.ExpectedDist)) 226 Advantage -= 3; 227 // Now, for each push, we save ~3 bytes. For small constants, we actually, 228 // save more (up to 5 bytes), but 3 should be a good approximation. 229 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; 230 } 231 } 232 233 return Advantage >= 0; 234 } 235 236 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { 237 STI = &MF.getSubtarget<X86Subtarget>(); 238 TII = STI->getInstrInfo(); 239 TFL = STI->getFrameLowering(); 240 MRI = &MF.getRegInfo(); 241 242 const X86RegisterInfo &RegInfo = 243 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 244 SlotSize = RegInfo.getSlotSize(); 245 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size"); 246 Log2SlotSize = Log2_32(SlotSize); 247 248 if (skipFunction(MF.getFunction()) || !isLegal(MF)) 249 return false; 250 251 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 252 253 bool Changed = false; 254 255 ContextVector CallSeqVector; 256 257 for (auto &MBB : MF) 258 for (auto &MI : MBB) 259 if (MI.getOpcode() == FrameSetupOpcode) { 260 CallContext Context; 261 collectCallInfo(MF, MBB, MI, Context); 262 CallSeqVector.push_back(Context); 263 } 264 265 if (!isProfitable(MF, CallSeqVector)) 266 return false; 267 268 for (const auto &CC : CallSeqVector) { 269 if (CC.UsePush) { 270 adjustCallSequence(MF, CC); 271 Changed = true; 272 } 273 } 274 275 return Changed; 276 } 277 278 X86CallFrameOptimization::InstClassification 279 X86CallFrameOptimization::classifyInstruction( 280 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 281 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { 282 if (MI == MBB.end()) 283 return Exit; 284 285 // The instructions we actually care about are movs onto the stack or special 286 // cases of constant-stores to stack 287 switch (MI->getOpcode()) { 288 case X86::AND16mi8: 289 case X86::AND32mi8: 290 case X86::AND64mi8: { 291 const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands); 292 return ImmOp.getImm() == 0 ? Convert : Exit; 293 } 294 case X86::OR16mi8: 295 case X86::OR32mi8: 296 case X86::OR64mi8: { 297 const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands); 298 return ImmOp.getImm() == -1 ? Convert : Exit; 299 } 300 case X86::MOV32mi: 301 case X86::MOV32mr: 302 case X86::MOV64mi32: 303 case X86::MOV64mr: 304 return Convert; 305 } 306 307 // Not all calling conventions have only stack MOVs between the stack 308 // adjust and the call. 309 310 // We want to tolerate other instructions, to cover more cases. 311 // In particular: 312 // a) PCrel calls, where we expect an additional COPY of the basereg. 313 // b) Passing frame-index addresses. 314 // c) Calling conventions that have inreg parameters. These generate 315 // both copies and movs into registers. 316 // To avoid creating lots of special cases, allow any instruction 317 // that does not write into memory, does not def or use the stack 318 // pointer, and does not def any register that was used by a preceding 319 // push. 320 // (Reading from memory is allowed, even if referenced through a 321 // frame index, since these will get adjusted properly in PEI) 322 323 // The reason for the last condition is that the pushes can't replace 324 // the movs in place, because the order must be reversed. 325 // So if we have a MOV32mr that uses EDX, then an instruction that defs 326 // EDX, and then the call, after the transformation the push will use 327 // the modified version of EDX, and not the original one. 328 // Since we are still in SSA form at this point, we only need to 329 // make sure we don't clobber any *physical* registers that were 330 // used by an earlier mov that will become a push. 331 332 if (MI->isCall() || MI->mayStore()) 333 return Exit; 334 335 for (const MachineOperand &MO : MI->operands()) { 336 if (!MO.isReg()) 337 continue; 338 Register Reg = MO.getReg(); 339 if (!Reg.isPhysical()) 340 continue; 341 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) 342 return Exit; 343 if (MO.isDef()) { 344 for (unsigned int U : UsedRegs) 345 if (RegInfo.regsOverlap(Reg, U)) 346 return Exit; 347 } 348 } 349 350 return Skip; 351 } 352 353 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, 354 MachineBasicBlock &MBB, 355 MachineBasicBlock::iterator I, 356 CallContext &Context) { 357 // Check that this particular call sequence is amenable to the 358 // transformation. 359 const X86RegisterInfo &RegInfo = 360 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 361 362 // We expect to enter this at the beginning of a call sequence 363 assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); 364 MachineBasicBlock::iterator FrameSetup = I++; 365 Context.FrameSetup = FrameSetup; 366 367 // How much do we adjust the stack? This puts an upper bound on 368 // the number of parameters actually passed on it. 369 unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize; 370 371 // A zero adjustment means no stack parameters 372 if (!MaxAdjust) { 373 Context.NoStackParams = true; 374 return; 375 } 376 377 // Skip over DEBUG_VALUE. 378 // For globals in PIC mode, we can have some LEAs here. Skip them as well. 379 // TODO: Extend this to something that covers more cases. 380 while (I->getOpcode() == X86::LEA32r || I->isDebugInstr()) 381 ++I; 382 383 Register StackPtr = RegInfo.getStackRegister(); 384 auto StackPtrCopyInst = MBB.end(); 385 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual 386 // register. If it's there, use that virtual register as stack pointer 387 // instead. Also, we need to locate this instruction so that we can later 388 // safely ignore it while doing the conservative processing of the call chain. 389 // The COPY can be located anywhere between the call-frame setup 390 // instruction and its first use. We use the call instruction as a boundary 391 // because it is usually cheaper to check if an instruction is a call than 392 // checking if an instruction uses a register. 393 for (auto J = I; !J->isCall(); ++J) 394 if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() && 395 J->getOperand(1).getReg() == StackPtr) { 396 StackPtrCopyInst = J; 397 Context.SPCopy = &*J++; 398 StackPtr = Context.SPCopy->getOperand(0).getReg(); 399 break; 400 } 401 402 // Scan the call setup sequence for the pattern we're looking for. 403 // We only handle a simple case - a sequence of store instructions that 404 // push a sequence of stack-slot-aligned values onto the stack, with 405 // no gaps between them. 406 if (MaxAdjust > 4) 407 Context.ArgStoreVector.resize(MaxAdjust, nullptr); 408 409 DenseSet<unsigned int> UsedRegs; 410 411 for (InstClassification Classification = Skip; Classification != Exit; ++I) { 412 // If this is the COPY of the stack pointer, it's ok to ignore. 413 if (I == StackPtrCopyInst) 414 continue; 415 Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs); 416 if (Classification != Convert) 417 continue; 418 // We know the instruction has a supported store opcode. 419 // We only want movs of the form: 420 // mov imm/reg, k(%StackPtr) 421 // If we run into something else, bail. 422 // Note that AddrBaseReg may, counter to its name, not be a register, 423 // but rather a frame index. 424 // TODO: Support the fi case. This should probably work now that we 425 // have the infrastructure to track the stack pointer within a call 426 // sequence. 427 if (!I->getOperand(X86::AddrBaseReg).isReg() || 428 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || 429 !I->getOperand(X86::AddrScaleAmt).isImm() || 430 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || 431 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || 432 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || 433 !I->getOperand(X86::AddrDisp).isImm()) 434 return; 435 436 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); 437 assert(StackDisp >= 0 && 438 "Negative stack displacement when passing parameters"); 439 440 // We really don't want to consider the unaligned case. 441 if (StackDisp & (SlotSize - 1)) 442 return; 443 StackDisp >>= Log2SlotSize; 444 445 assert((size_t)StackDisp < Context.ArgStoreVector.size() && 446 "Function call has more parameters than the stack is adjusted for."); 447 448 // If the same stack slot is being filled twice, something's fishy. 449 if (Context.ArgStoreVector[StackDisp] != nullptr) 450 return; 451 Context.ArgStoreVector[StackDisp] = &*I; 452 453 for (const MachineOperand &MO : I->uses()) { 454 if (!MO.isReg()) 455 continue; 456 Register Reg = MO.getReg(); 457 if (Reg.isPhysical()) 458 UsedRegs.insert(Reg); 459 } 460 } 461 462 --I; 463 464 // We now expect the end of the sequence. If we stopped early, 465 // or reached the end of the block without finding a call, bail. 466 if (I == MBB.end() || !I->isCall()) 467 return; 468 469 Context.Call = &*I; 470 if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode()) 471 return; 472 473 // Now, go through the vector, and see that we don't have any gaps, 474 // but only a series of storing instructions. 475 auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end(); 476 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) 477 if (*MMI == nullptr) 478 break; 479 480 // If the call had no parameters, do nothing 481 if (MMI == Context.ArgStoreVector.begin()) 482 return; 483 484 // We are either at the last parameter, or a gap. 485 // Make sure it's not a gap 486 for (; MMI != MME; ++MMI) 487 if (*MMI != nullptr) 488 return; 489 490 Context.UsePush = true; 491 } 492 493 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, 494 const CallContext &Context) { 495 // Ok, we can in fact do the transformation for this call. 496 // Do not remove the FrameSetup instruction, but adjust the parameters. 497 // PEI will end up finalizing the handling of this. 498 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; 499 MachineBasicBlock &MBB = *(FrameSetup->getParent()); 500 TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist); 501 502 DebugLoc DL = FrameSetup->getDebugLoc(); 503 bool Is64Bit = STI->is64Bit(); 504 // Now, iterate through the vector in reverse order, and replace the store to 505 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to 506 // replace uses. 507 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { 508 MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx]; 509 const MachineOperand &PushOp = Store->getOperand(X86::AddrNumOperands); 510 MachineBasicBlock::iterator Push = nullptr; 511 unsigned PushOpcode; 512 switch (Store->getOpcode()) { 513 default: 514 llvm_unreachable("Unexpected Opcode!"); 515 case X86::AND16mi8: 516 case X86::AND32mi8: 517 case X86::AND64mi8: 518 case X86::OR16mi8: 519 case X86::OR32mi8: 520 case X86::OR64mi8: 521 case X86::MOV32mi: 522 case X86::MOV64mi32: 523 PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32; 524 // If the operand is a small (8-bit) immediate, we can use a 525 // PUSH instruction with a shorter encoding. 526 // Note that isImm() may fail even though this is a MOVmi, because 527 // the operand can also be a symbol. 528 if (PushOp.isImm()) { 529 int64_t Val = PushOp.getImm(); 530 if (isInt<8>(Val)) 531 PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8; 532 } 533 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp); 534 Push->cloneMemRefs(MF, *Store); 535 break; 536 case X86::MOV32mr: 537 case X86::MOV64mr: { 538 Register Reg = PushOp.getReg(); 539 540 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg 541 // in preparation for the PUSH64. The upper 32 bits can be undef. 542 if (Is64Bit && Store->getOpcode() == X86::MOV32mr) { 543 Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass); 544 Reg = MRI->createVirtualRegister(&X86::GR64RegClass); 545 BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg); 546 BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg) 547 .addReg(UndefReg) 548 .add(PushOp) 549 .addImm(X86::sub_32bit); 550 } 551 552 // If PUSHrmm is not slow on this target, try to fold the source of the 553 // push into the instruction. 554 bool SlowPUSHrmm = STI->slowTwoMemOps(); 555 556 // Check that this is legal to fold. Right now, we're extremely 557 // conservative about that. 558 MachineInstr *DefMov = nullptr; 559 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { 560 PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; 561 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)); 562 563 unsigned NumOps = DefMov->getDesc().getNumOperands(); 564 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 565 Push->addOperand(DefMov->getOperand(i)); 566 Push->cloneMergedMemRefs(MF, {DefMov, &*Store}); 567 DefMov->eraseFromParent(); 568 } else { 569 PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 570 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) 571 .addReg(Reg) 572 .getInstr(); 573 Push->cloneMemRefs(MF, *Store); 574 } 575 break; 576 } 577 } 578 579 // For debugging, when using SP-based CFA, we need to adjust the CFA 580 // offset after each push. 581 // TODO: This is needed only if we require precise CFA. 582 if (!TFL->hasFP(MF)) 583 TFL->BuildCFI( 584 MBB, std::next(Push), DL, 585 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize)); 586 587 MBB.erase(Store); 588 } 589 590 // The stack-pointer copy is no longer used in the call sequences. 591 // There should not be any other users, but we can't commit to that, so: 592 if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) 593 Context.SPCopy->eraseFromParent(); 594 595 // Once we've done this, we need to make sure PEI doesn't assume a reserved 596 // frame. 597 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 598 FuncInfo->setHasPushSequences(true); 599 } 600 601 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( 602 MachineBasicBlock::iterator FrameSetup, Register Reg) { 603 // Do an extremely restricted form of load folding. 604 // ISel will often create patterns like: 605 // movl 4(%edi), %eax 606 // movl 8(%edi), %ecx 607 // movl 12(%edi), %edx 608 // movl %edx, 8(%esp) 609 // movl %ecx, 4(%esp) 610 // movl %eax, (%esp) 611 // call 612 // Get rid of those with prejudice. 613 if (!Reg.isVirtual()) 614 return nullptr; 615 616 // Make sure this is the only use of Reg. 617 if (!MRI->hasOneNonDBGUse(Reg)) 618 return nullptr; 619 620 MachineInstr &DefMI = *MRI->getVRegDef(Reg); 621 622 // Make sure the def is a MOV from memory. 623 // If the def is in another block, give up. 624 if ((DefMI.getOpcode() != X86::MOV32rm && 625 DefMI.getOpcode() != X86::MOV64rm) || 626 DefMI.getParent() != FrameSetup->getParent()) 627 return nullptr; 628 629 // Make sure we don't have any instructions between DefMI and the 630 // push that make folding the load illegal. 631 for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I) 632 if (I->isLoadFoldBarrier()) 633 return nullptr; 634 635 return &DefMI; 636 } 637 638 FunctionPass *llvm::createX86CallFrameOptimization() { 639 return new X86CallFrameOptimization(); 640 } 641