xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86AvoidStoreForwardingBlocks.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // If a load follows a store and reloads data that the store has written to
10 // memory, Intel microarchitectures can in many cases forward the data directly
11 // from the store to the load, This "store forwarding" saves cycles by enabling
12 // the load to directly obtain the data instead of accessing the data from
13 // cache or memory.
14 // A "store forward block" occurs in cases that a store cannot be forwarded to
15 // the load. The most typical case of store forward block on Intel Core
16 // microarchitecture that a small store cannot be forwarded to a large load.
17 // The estimated penalty for a store forward block is ~13 cycles.
18 //
19 // This pass tries to recognize and handle cases where "store forward block"
20 // is created by the compiler when lowering memcpy calls to a sequence
21 // of a load and a store.
22 //
23 // The pass currently only handles cases where memcpy is lowered to
24 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
25 // breaking the memcpy should be possible since there is no atomicity
26 // guarantee for loads and stores to XMM/YMM.
27 //
28 // It could be better for performance to solve the problem by loading
29 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
30 // to memory, but this will result in a more conservative optimization since it
31 // requires we prove that all memory accesses between the blocking store and the
32 // load must alias/don't alias before we can move the store, whereas the
33 // transformation done here is correct regardless to other memory accesses.
34 //===----------------------------------------------------------------------===//
35 
36 #include "X86InstrInfo.h"
37 #include "X86Subtarget.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-avoid-SFB"
53 
54 static cl::opt<bool> DisableX86AvoidStoreForwardBlocks(
55     "x86-disable-avoid-SFB", cl::Hidden,
56     cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
57 
58 static cl::opt<unsigned> X86AvoidSFBInspectionLimit(
59     "x86-sfb-inspection-limit",
60     cl::desc("X86: Number of instructions backward to "
61              "inspect for store forwarding blocks."),
62     cl::init(20), cl::Hidden);
63 
64 namespace {
65 
66 using DisplacementSizeMap = std::map<int64_t, unsigned>;
67 
68 class X86AvoidSFBPass : public MachineFunctionPass {
69 public:
70   static char ID;
71   X86AvoidSFBPass() : MachineFunctionPass(ID) { }
72 
73   StringRef getPassName() const override {
74     return "X86 Avoid Store Forwarding Blocks";
75   }
76 
77   bool runOnMachineFunction(MachineFunction &MF) override;
78 
79   void getAnalysisUsage(AnalysisUsage &AU) const override {
80     MachineFunctionPass::getAnalysisUsage(AU);
81     AU.addRequired<AAResultsWrapperPass>();
82   }
83 
84 private:
85   MachineRegisterInfo *MRI;
86   const X86InstrInfo *TII;
87   const X86RegisterInfo *TRI;
88   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2>
89       BlockedLoadsStoresPairs;
90   SmallVector<MachineInstr *, 2> ForRemoval;
91   AliasAnalysis *AA;
92 
93   /// Returns couples of Load then Store to memory which look
94   ///  like a memcpy.
95   void findPotentiallylBlockedCopies(MachineFunction &MF);
96   /// Break the memcpy's load and store into smaller copies
97   /// such that each memory load that was blocked by a smaller store
98   /// would now be copied separately.
99   void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
100                           const DisplacementSizeMap &BlockingStoresDispSizeMap);
101   /// Break a copy of size Size to smaller copies.
102   void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
103                    MachineInstr *StoreInst, int64_t StDispImm,
104                    int64_t LMMOffset, int64_t SMMOffset);
105 
106   void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
107                  MachineInstr *StoreInst, unsigned NStoreOpcode,
108                  int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
109                  int64_t SMMOffset);
110 
111   bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;
112 
113   unsigned getRegSizeInBytes(MachineInstr *Inst);
114 };
115 
116 } // end anonymous namespace
117 
118 char X86AvoidSFBPass::ID = 0;
119 
120 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
121                       false, false)
122 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
123 INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false,
124                     false)
125 
126 FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() {
127   return new X86AvoidSFBPass();
128 }
129 
130 static bool isXMMLoadOpcode(unsigned Opcode) {
131   return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
132          Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
133          Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
134          Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
135          Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
136          Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
137          Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
138          Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
139 }
140 static bool isYMMLoadOpcode(unsigned Opcode) {
141   return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
142          Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
143          Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
144          Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
145          Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
146          Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
147          Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
148 }
149 
150 static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
151   return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
152 }
153 
154 static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) {
155   switch (LdOpcode) {
156   case X86::MOVUPSrm:
157   case X86::MOVAPSrm:
158     return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
159   case X86::VMOVUPSrm:
160   case X86::VMOVAPSrm:
161     return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
162   case X86::VMOVUPDrm:
163   case X86::VMOVAPDrm:
164     return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
165   case X86::VMOVDQUrm:
166   case X86::VMOVDQArm:
167     return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
168   case X86::VMOVUPSZ128rm:
169   case X86::VMOVAPSZ128rm:
170     return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
171   case X86::VMOVUPDZ128rm:
172   case X86::VMOVAPDZ128rm:
173     return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
174   case X86::VMOVUPSYrm:
175   case X86::VMOVAPSYrm:
176     return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
177   case X86::VMOVUPDYrm:
178   case X86::VMOVAPDYrm:
179     return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
180   case X86::VMOVDQUYrm:
181   case X86::VMOVDQAYrm:
182     return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
183   case X86::VMOVUPSZ256rm:
184   case X86::VMOVAPSZ256rm:
185     return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
186   case X86::VMOVUPDZ256rm:
187   case X86::VMOVAPDZ256rm:
188     return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
189   case X86::VMOVDQU64Z128rm:
190   case X86::VMOVDQA64Z128rm:
191     return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
192   case X86::VMOVDQU32Z128rm:
193   case X86::VMOVDQA32Z128rm:
194     return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
195   case X86::VMOVDQU64Z256rm:
196   case X86::VMOVDQA64Z256rm:
197     return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
198   case X86::VMOVDQU32Z256rm:
199   case X86::VMOVDQA32Z256rm:
200     return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
201   default:
202     return false;
203   }
204 }
205 
206 static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
207   bool PBlock = false;
208   PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
209             Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
210             Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
211             Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
212   if (isYMMLoadOpcode(LoadOpcode))
213     PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
214               Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
215               Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
216               Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
217               Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
218               Opcode == X86::VMOVDQU64Z128mr ||
219               Opcode == X86::VMOVDQA64Z128mr ||
220               Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
221   return PBlock;
222 }
223 
224 static const int MOV128SZ = 16;
225 static const int MOV64SZ = 8;
226 static const int MOV32SZ = 4;
227 static const int MOV16SZ = 2;
228 static const int MOV8SZ = 1;
229 
230 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
231   switch (LoadOpcode) {
232   case X86::VMOVUPSYrm:
233   case X86::VMOVAPSYrm:
234     return X86::VMOVUPSrm;
235   case X86::VMOVUPDYrm:
236   case X86::VMOVAPDYrm:
237     return X86::VMOVUPDrm;
238   case X86::VMOVDQUYrm:
239   case X86::VMOVDQAYrm:
240     return X86::VMOVDQUrm;
241   case X86::VMOVUPSZ256rm:
242   case X86::VMOVAPSZ256rm:
243     return X86::VMOVUPSZ128rm;
244   case X86::VMOVUPDZ256rm:
245   case X86::VMOVAPDZ256rm:
246     return X86::VMOVUPDZ128rm;
247   case X86::VMOVDQU64Z256rm:
248   case X86::VMOVDQA64Z256rm:
249     return X86::VMOVDQU64Z128rm;
250   case X86::VMOVDQU32Z256rm:
251   case X86::VMOVDQA32Z256rm:
252     return X86::VMOVDQU32Z128rm;
253   default:
254     llvm_unreachable("Unexpected Load Instruction Opcode");
255   }
256   return 0;
257 }
258 
259 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
260   switch (StoreOpcode) {
261   case X86::VMOVUPSYmr:
262   case X86::VMOVAPSYmr:
263     return X86::VMOVUPSmr;
264   case X86::VMOVUPDYmr:
265   case X86::VMOVAPDYmr:
266     return X86::VMOVUPDmr;
267   case X86::VMOVDQUYmr:
268   case X86::VMOVDQAYmr:
269     return X86::VMOVDQUmr;
270   case X86::VMOVUPSZ256mr:
271   case X86::VMOVAPSZ256mr:
272     return X86::VMOVUPSZ128mr;
273   case X86::VMOVUPDZ256mr:
274   case X86::VMOVAPDZ256mr:
275     return X86::VMOVUPDZ128mr;
276   case X86::VMOVDQU64Z256mr:
277   case X86::VMOVDQA64Z256mr:
278     return X86::VMOVDQU64Z128mr;
279   case X86::VMOVDQU32Z256mr:
280   case X86::VMOVDQA32Z256mr:
281     return X86::VMOVDQU32Z128mr;
282   default:
283     llvm_unreachable("Unexpected Load Instruction Opcode");
284   }
285   return 0;
286 }
287 
288 static int getAddrOffset(MachineInstr *MI) {
289   const MCInstrDesc &Descl = MI->getDesc();
290   int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
291   assert(AddrOffset != -1 && "Expected Memory Operand");
292   AddrOffset += X86II::getOperandBias(Descl);
293   return AddrOffset;
294 }
295 
296 static MachineOperand &getBaseOperand(MachineInstr *MI) {
297   int AddrOffset = getAddrOffset(MI);
298   return MI->getOperand(AddrOffset + X86::AddrBaseReg);
299 }
300 
301 static MachineOperand &getDispOperand(MachineInstr *MI) {
302   int AddrOffset = getAddrOffset(MI);
303   return MI->getOperand(AddrOffset + X86::AddrDisp);
304 }
305 
306 // Relevant addressing modes contain only base register and immediate
307 // displacement or frameindex and immediate displacement.
308 // TODO: Consider expanding to other addressing modes in the future
309 static bool isRelevantAddressingMode(MachineInstr *MI) {
310   int AddrOffset = getAddrOffset(MI);
311   MachineOperand &Base = getBaseOperand(MI);
312   MachineOperand &Disp = getDispOperand(MI);
313   MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
314   MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
315   MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
316 
317   if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
318     return false;
319   if (!Disp.isImm())
320     return false;
321   if (Scale.getImm() != 1)
322     return false;
323   if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
324     return false;
325   if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
326     return false;
327   return true;
328 }
329 
330 // Collect potentially blocking stores.
331 // Limit the number of instructions backwards we want to inspect
332 // since the effect of store block won't be visible if the store
333 // and load instructions have enough instructions in between to
334 // keep the core busy.
335 static SmallVector<MachineInstr *, 2>
336 findPotentialBlockers(MachineInstr *LoadInst) {
337   SmallVector<MachineInstr *, 2> PotentialBlockers;
338   unsigned BlockCount = 0;
339   const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
340   for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
341             E = LoadInst->getParent()->rend();
342        PBInst != E; ++PBInst) {
343     if (PBInst->isMetaInstruction())
344       continue;
345     BlockCount++;
346     if (BlockCount >= InspectionLimit)
347       break;
348     MachineInstr &MI = *PBInst;
349     if (MI.getDesc().isCall())
350       return PotentialBlockers;
351     PotentialBlockers.push_back(&MI);
352   }
353   // If we didn't get to the instructions limit try predecessing blocks.
354   // Ideally we should traverse the predecessor blocks in depth with some
355   // coloring algorithm, but for now let's just look at the first order
356   // predecessors.
357   if (BlockCount < InspectionLimit) {
358     MachineBasicBlock *MBB = LoadInst->getParent();
359     int LimitLeft = InspectionLimit - BlockCount;
360     for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(),
361                                           PE = MBB->pred_end();
362          PB != PE; ++PB) {
363       MachineBasicBlock *PMBB = *PB;
364       int PredCount = 0;
365       for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(),
366                                                PME = PMBB->rend();
367            PBInst != PME; ++PBInst) {
368         if (PBInst->isMetaInstruction())
369           continue;
370         PredCount++;
371         if (PredCount >= LimitLeft)
372           break;
373         if (PBInst->getDesc().isCall())
374           break;
375         PotentialBlockers.push_back(&*PBInst);
376       }
377     }
378   }
379   return PotentialBlockers;
380 }
381 
382 void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
383                                 int64_t LoadDisp, MachineInstr *StoreInst,
384                                 unsigned NStoreOpcode, int64_t StoreDisp,
385                                 unsigned Size, int64_t LMMOffset,
386                                 int64_t SMMOffset) {
387   MachineOperand &LoadBase = getBaseOperand(LoadInst);
388   MachineOperand &StoreBase = getBaseOperand(StoreInst);
389   MachineBasicBlock *MBB = LoadInst->getParent();
390   MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
391   MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
392 
393   unsigned Reg1 = MRI->createVirtualRegister(
394       TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
395   MachineInstr *NewLoad =
396       BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode),
397               Reg1)
398           .add(LoadBase)
399           .addImm(1)
400           .addReg(X86::NoRegister)
401           .addImm(LoadDisp)
402           .addReg(X86::NoRegister)
403           .addMemOperand(
404               MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
405   if (LoadBase.isReg())
406     getBaseOperand(NewLoad).setIsKill(false);
407   LLVM_DEBUG(NewLoad->dump());
408   // If the load and store are consecutive, use the loadInst location to
409   // reduce register pressure.
410   MachineInstr *StInst = StoreInst;
411   auto PrevInstrIt = skipDebugInstructionsBackward(
412       std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
413       MBB->instr_begin());
414   if (PrevInstrIt.getNodePtr() == LoadInst)
415     StInst = LoadInst;
416   MachineInstr *NewStore =
417       BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
418           .add(StoreBase)
419           .addImm(1)
420           .addReg(X86::NoRegister)
421           .addImm(StoreDisp)
422           .addReg(X86::NoRegister)
423           .addReg(Reg1)
424           .addMemOperand(
425               MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
426   if (StoreBase.isReg())
427     getBaseOperand(NewStore).setIsKill(false);
428   MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands);
429   assert(StoreSrcVReg.isReg() && "Expected virtual register");
430   NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill());
431   LLVM_DEBUG(NewStore->dump());
432 }
433 
434 void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
435                                   int64_t LdDispImm, MachineInstr *StoreInst,
436                                   int64_t StDispImm, int64_t LMMOffset,
437                                   int64_t SMMOffset) {
438   int LdDisp = LdDispImm;
439   int StDisp = StDispImm;
440   while (Size > 0) {
441     if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
442       Size = Size - MOV128SZ;
443       buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
444                 StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
445                 StDisp, MOV128SZ, LMMOffset, SMMOffset);
446       LdDisp += MOV128SZ;
447       StDisp += MOV128SZ;
448       LMMOffset += MOV128SZ;
449       SMMOffset += MOV128SZ;
450       continue;
451     }
452     if (Size - MOV64SZ >= 0) {
453       Size = Size - MOV64SZ;
454       buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
455                 MOV64SZ, LMMOffset, SMMOffset);
456       LdDisp += MOV64SZ;
457       StDisp += MOV64SZ;
458       LMMOffset += MOV64SZ;
459       SMMOffset += MOV64SZ;
460       continue;
461     }
462     if (Size - MOV32SZ >= 0) {
463       Size = Size - MOV32SZ;
464       buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
465                 MOV32SZ, LMMOffset, SMMOffset);
466       LdDisp += MOV32SZ;
467       StDisp += MOV32SZ;
468       LMMOffset += MOV32SZ;
469       SMMOffset += MOV32SZ;
470       continue;
471     }
472     if (Size - MOV16SZ >= 0) {
473       Size = Size - MOV16SZ;
474       buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
475                 MOV16SZ, LMMOffset, SMMOffset);
476       LdDisp += MOV16SZ;
477       StDisp += MOV16SZ;
478       LMMOffset += MOV16SZ;
479       SMMOffset += MOV16SZ;
480       continue;
481     }
482     if (Size - MOV8SZ >= 0) {
483       Size = Size - MOV8SZ;
484       buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
485                 MOV8SZ, LMMOffset, SMMOffset);
486       LdDisp += MOV8SZ;
487       StDisp += MOV8SZ;
488       LMMOffset += MOV8SZ;
489       SMMOffset += MOV8SZ;
490       continue;
491     }
492   }
493   assert(Size == 0 && "Wrong size division");
494 }
495 
496 static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
497   MachineOperand &LoadBase = getBaseOperand(LoadInst);
498   MachineOperand &StoreBase = getBaseOperand(StoreInst);
499   auto StorePrevNonDbgInstr = skipDebugInstructionsBackward(
500           std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
501           LoadInst->getParent()->instr_begin()).getNodePtr();
502   if (LoadBase.isReg()) {
503     MachineInstr *LastLoad = LoadInst->getPrevNode();
504     // If the original load and store to xmm/ymm were consecutive
505     // then the partial copies were also created in
506     // a consecutive order to reduce register pressure,
507     // and the location of the last load is before the last store.
508     if (StorePrevNonDbgInstr == LoadInst)
509       LastLoad = LoadInst->getPrevNode()->getPrevNode();
510     getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
511   }
512   if (StoreBase.isReg()) {
513     MachineInstr *StInst = StoreInst;
514     if (StorePrevNonDbgInstr == LoadInst)
515       StInst = LoadInst;
516     getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
517   }
518 }
519 
520 bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
521                             const MachineMemOperand &Op2) const {
522   if (!Op1.getValue() || !Op2.getValue())
523     return true;
524 
525   int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
526   int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
527   int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
528 
529   AliasResult AAResult =
530       AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
531                 MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
532   return AAResult != NoAlias;
533 }
534 
535 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
536   for (auto &MBB : MF)
537     for (auto &MI : MBB) {
538       if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
539         continue;
540       int DefVR = MI.getOperand(0).getReg();
541       if (!MRI->hasOneNonDBGUse(DefVR))
542         continue;
543       for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
544            UI != UE;) {
545         MachineOperand &StoreMO = *UI++;
546         MachineInstr &StoreMI = *StoreMO.getParent();
547         // Skip cases where the memcpy may overlap.
548         if (StoreMI.getParent() == MI.getParent() &&
549             isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
550             isRelevantAddressingMode(&MI) &&
551             isRelevantAddressingMode(&StoreMI)) {
552           assert(MI.hasOneMemOperand() &&
553                  "Expected one memory operand for load instruction");
554           assert(StoreMI.hasOneMemOperand() &&
555                  "Expected one memory operand for store instruction");
556           if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
557             BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
558         }
559       }
560     }
561 }
562 
563 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
564   auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
565                               *LoadInst->getParent()->getParent());
566   return TRI->getRegSizeInBits(*TRC) / 8;
567 }
568 
569 void X86AvoidSFBPass::breakBlockedCopies(
570     MachineInstr *LoadInst, MachineInstr *StoreInst,
571     const DisplacementSizeMap &BlockingStoresDispSizeMap) {
572   int64_t LdDispImm = getDispOperand(LoadInst).getImm();
573   int64_t StDispImm = getDispOperand(StoreInst).getImm();
574   int64_t LMMOffset = 0;
575   int64_t SMMOffset = 0;
576 
577   int64_t LdDisp1 = LdDispImm;
578   int64_t LdDisp2 = 0;
579   int64_t StDisp1 = StDispImm;
580   int64_t StDisp2 = 0;
581   unsigned Size1 = 0;
582   unsigned Size2 = 0;
583   int64_t LdStDelta = StDispImm - LdDispImm;
584 
585   for (auto DispSizePair : BlockingStoresDispSizeMap) {
586     LdDisp2 = DispSizePair.first;
587     StDisp2 = DispSizePair.first + LdStDelta;
588     Size2 = DispSizePair.second;
589     // Avoid copying overlapping areas.
590     if (LdDisp2 < LdDisp1) {
591       int OverlapDelta = LdDisp1 - LdDisp2;
592       LdDisp2 += OverlapDelta;
593       StDisp2 += OverlapDelta;
594       Size2 -= OverlapDelta;
595     }
596     Size1 = LdDisp2 - LdDisp1;
597 
598     // Build a copy for the point until the current blocking store's
599     // displacement.
600     buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
601                 SMMOffset);
602     // Build a copy for the current blocking store.
603     buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
604                 SMMOffset + Size1);
605     LdDisp1 = LdDisp2 + Size2;
606     StDisp1 = StDisp2 + Size2;
607     LMMOffset += Size1 + Size2;
608     SMMOffset += Size1 + Size2;
609   }
610   unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
611   buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
612               LMMOffset);
613 }
614 
615 static bool hasSameBaseOpValue(MachineInstr *LoadInst,
616                                MachineInstr *StoreInst) {
617   MachineOperand &LoadBase = getBaseOperand(LoadInst);
618   MachineOperand &StoreBase = getBaseOperand(StoreInst);
619   if (LoadBase.isReg() != StoreBase.isReg())
620     return false;
621   if (LoadBase.isReg())
622     return LoadBase.getReg() == StoreBase.getReg();
623   return LoadBase.getIndex() == StoreBase.getIndex();
624 }
625 
626 static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
627                             int64_t StoreDispImm, unsigned StoreSize) {
628   return ((StoreDispImm >= LoadDispImm) &&
629           (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
630 }
631 
632 // Keep track of all stores blocking a load
633 static void
634 updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
635                                 int64_t DispImm, unsigned Size) {
636   if (BlockingStoresDispSizeMap.count(DispImm)) {
637     // Choose the smallest blocking store starting at this displacement.
638     if (BlockingStoresDispSizeMap[DispImm] > Size)
639       BlockingStoresDispSizeMap[DispImm] = Size;
640 
641   } else
642     BlockingStoresDispSizeMap[DispImm] = Size;
643 }
644 
645 // Remove blocking stores contained in each other.
646 static void
647 removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
648   if (BlockingStoresDispSizeMap.size() <= 1)
649     return;
650 
651   SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack;
652   for (auto DispSizePair : BlockingStoresDispSizeMap) {
653     int64_t CurrDisp = DispSizePair.first;
654     unsigned CurrSize = DispSizePair.second;
655     while (DispSizeStack.size()) {
656       int64_t PrevDisp = DispSizeStack.back().first;
657       unsigned PrevSize = DispSizeStack.back().second;
658       if (CurrDisp + CurrSize > PrevDisp + PrevSize)
659         break;
660       DispSizeStack.pop_back();
661     }
662     DispSizeStack.push_back(DispSizePair);
663   }
664   BlockingStoresDispSizeMap.clear();
665   for (auto Disp : DispSizeStack)
666     BlockingStoresDispSizeMap.insert(Disp);
667 }
668 
669 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
670   bool Changed = false;
671 
672   if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
673       !MF.getSubtarget<X86Subtarget>().is64Bit())
674     return false;
675 
676   MRI = &MF.getRegInfo();
677   assert(MRI->isSSA() && "Expected MIR to be in SSA form");
678   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
679   TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
680   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
681   LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
682   // Look for a load then a store to XMM/YMM which look like a memcpy
683   findPotentiallylBlockedCopies(MF);
684 
685   for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
686     MachineInstr *LoadInst = LoadStoreInstPair.first;
687     int64_t LdDispImm = getDispOperand(LoadInst).getImm();
688     DisplacementSizeMap BlockingStoresDispSizeMap;
689 
690     SmallVector<MachineInstr *, 2> PotentialBlockers =
691         findPotentialBlockers(LoadInst);
692     for (auto PBInst : PotentialBlockers) {
693       if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
694                                         LoadInst->getOpcode()) ||
695           !isRelevantAddressingMode(PBInst))
696         continue;
697       int64_t PBstDispImm = getDispOperand(PBInst).getImm();
698       assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
699       unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
700       // This check doesn't cover all cases, but it will suffice for now.
701       // TODO: take branch probability into consideration, if the blocking
702       // store is in an unreached block, breaking the memcopy could lose
703       // performance.
704       if (hasSameBaseOpValue(LoadInst, PBInst) &&
705           isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
706                           PBstSize))
707         updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
708                                         PBstSize);
709     }
710 
711     if (BlockingStoresDispSizeMap.empty())
712       continue;
713 
714     // We found a store forward block, break the memcpy's load and store
715     // into smaller copies such that each smaller store that was causing
716     // a store block would now be copied separately.
717     MachineInstr *StoreInst = LoadStoreInstPair.second;
718     LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
719     LLVM_DEBUG(LoadInst->dump());
720     LLVM_DEBUG(StoreInst->dump());
721     LLVM_DEBUG(dbgs() << "Replaced with:\n");
722     removeRedundantBlockingStores(BlockingStoresDispSizeMap);
723     breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
724     updateKillStatus(LoadInst, StoreInst);
725     ForRemoval.push_back(LoadInst);
726     ForRemoval.push_back(StoreInst);
727   }
728   for (auto RemovedInst : ForRemoval) {
729     RemovedInst->eraseFromParent();
730   }
731   ForRemoval.clear();
732   BlockedLoadsStoresPairs.clear();
733   LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);
734 
735   return Changed;
736 }
737