1 //===-- X86AsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to X86 machine code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86AsmPrinter.h" 15 #include "MCTargetDesc/X86ATTInstPrinter.h" 16 #include "MCTargetDesc/X86BaseInfo.h" 17 #include "MCTargetDesc/X86TargetStreamer.h" 18 #include "TargetInfo/X86TargetInfo.h" 19 #include "X86InstrInfo.h" 20 #include "X86MachineFunctionInfo.h" 21 #include "X86Subtarget.h" 22 #include "llvm/BinaryFormat/COFF.h" 23 #include "llvm/BinaryFormat/ELF.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 26 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Mangler.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/MC/MCCodeEmitter.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/MC/MCExpr.h" 35 #include "llvm/MC/MCSectionCOFF.h" 36 #include "llvm/MC/MCSectionELF.h" 37 #include "llvm/MC/MCSectionMachO.h" 38 #include "llvm/MC/MCStreamer.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Target/TargetMachine.h" 45 46 using namespace llvm; 47 48 X86AsmPrinter::X86AsmPrinter(TargetMachine &TM, 49 std::unique_ptr<MCStreamer> Streamer) 50 : AsmPrinter(TM, std::move(Streamer)), SM(*this), FM(*this) {} 51 52 //===----------------------------------------------------------------------===// 53 // Primitive Helper Functions. 54 //===----------------------------------------------------------------------===// 55 56 /// runOnMachineFunction - Emit the function body. 57 /// 58 bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) { 59 Subtarget = &MF.getSubtarget<X86Subtarget>(); 60 61 SMShadowTracker.startFunction(MF); 62 CodeEmitter.reset(TM.getTarget().createMCCodeEmitter( 63 *Subtarget->getInstrInfo(), *Subtarget->getRegisterInfo(), 64 MF.getContext())); 65 66 EmitFPOData = 67 Subtarget->isTargetWin32() && MF.getMMI().getModule()->getCodeViewFlag(); 68 69 SetupMachineFunction(MF); 70 71 if (Subtarget->isTargetCOFF()) { 72 bool Local = MF.getFunction().hasLocalLinkage(); 73 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 74 OutStreamer->EmitCOFFSymbolStorageClass( 75 Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL); 76 OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION 77 << COFF::SCT_COMPLEX_TYPE_SHIFT); 78 OutStreamer->EndCOFFSymbolDef(); 79 } 80 81 // Emit the rest of the function body. 82 emitFunctionBody(); 83 84 // Emit the XRay table for this function. 85 emitXRayTable(); 86 87 EmitFPOData = false; 88 89 // We didn't modify anything. 90 return false; 91 } 92 93 void X86AsmPrinter::emitFunctionBodyStart() { 94 if (EmitFPOData) { 95 if (auto *XTS = 96 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer())) 97 XTS->emitFPOProc( 98 CurrentFnSym, 99 MF->getInfo<X86MachineFunctionInfo>()->getArgumentStackSize()); 100 } 101 } 102 103 void X86AsmPrinter::emitFunctionBodyEnd() { 104 if (EmitFPOData) { 105 if (auto *XTS = 106 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer())) 107 XTS->emitFPOEndProc(); 108 } 109 } 110 111 /// PrintSymbolOperand - Print a raw symbol reference operand. This handles 112 /// jump tables, constant pools, global address and external symbols, all of 113 /// which print to a label with various suffixes for relocation types etc. 114 void X86AsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 115 raw_ostream &O) { 116 switch (MO.getType()) { 117 default: llvm_unreachable("unknown symbol type!"); 118 case MachineOperand::MO_ConstantPoolIndex: 119 GetCPISymbol(MO.getIndex())->print(O, MAI); 120 printOffset(MO.getOffset(), O); 121 break; 122 case MachineOperand::MO_GlobalAddress: { 123 const GlobalValue *GV = MO.getGlobal(); 124 125 MCSymbol *GVSym; 126 if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY || 127 MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) 128 GVSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 129 else 130 GVSym = getSymbolPreferLocal(*GV); 131 132 // Handle dllimport linkage. 133 if (MO.getTargetFlags() == X86II::MO_DLLIMPORT) 134 GVSym = OutContext.getOrCreateSymbol(Twine("__imp_") + GVSym->getName()); 135 else if (MO.getTargetFlags() == X86II::MO_COFFSTUB) 136 GVSym = 137 OutContext.getOrCreateSymbol(Twine(".refptr.") + GVSym->getName()); 138 139 if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY || 140 MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) { 141 MCSymbol *Sym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 142 MachineModuleInfoImpl::StubValueTy &StubSym = 143 MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym); 144 if (!StubSym.getPointer()) 145 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 146 !GV->hasInternalLinkage()); 147 } 148 149 // If the name begins with a dollar-sign, enclose it in parens. We do this 150 // to avoid having it look like an integer immediate to the assembler. 151 if (GVSym->getName()[0] != '$') 152 GVSym->print(O, MAI); 153 else { 154 O << '('; 155 GVSym->print(O, MAI); 156 O << ')'; 157 } 158 printOffset(MO.getOffset(), O); 159 break; 160 } 161 } 162 163 switch (MO.getTargetFlags()) { 164 default: 165 llvm_unreachable("Unknown target flag on GV operand"); 166 case X86II::MO_NO_FLAG: // No flag. 167 break; 168 case X86II::MO_DARWIN_NONLAZY: 169 case X86II::MO_DLLIMPORT: 170 case X86II::MO_COFFSTUB: 171 // These affect the name of the symbol, not any suffix. 172 break; 173 case X86II::MO_GOT_ABSOLUTE_ADDRESS: 174 O << " + [.-"; 175 MF->getPICBaseSymbol()->print(O, MAI); 176 O << ']'; 177 break; 178 case X86II::MO_PIC_BASE_OFFSET: 179 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: 180 O << '-'; 181 MF->getPICBaseSymbol()->print(O, MAI); 182 break; 183 case X86II::MO_TLSGD: O << "@TLSGD"; break; 184 case X86II::MO_TLSLD: O << "@TLSLD"; break; 185 case X86II::MO_TLSLDM: O << "@TLSLDM"; break; 186 case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break; 187 case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break; 188 case X86II::MO_TPOFF: O << "@TPOFF"; break; 189 case X86II::MO_DTPOFF: O << "@DTPOFF"; break; 190 case X86II::MO_NTPOFF: O << "@NTPOFF"; break; 191 case X86II::MO_GOTNTPOFF: O << "@GOTNTPOFF"; break; 192 case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break; 193 case X86II::MO_GOT: O << "@GOT"; break; 194 case X86II::MO_GOTOFF: O << "@GOTOFF"; break; 195 case X86II::MO_PLT: O << "@PLT"; break; 196 case X86II::MO_TLVP: O << "@TLVP"; break; 197 case X86II::MO_TLVP_PIC_BASE: 198 O << "@TLVP" << '-'; 199 MF->getPICBaseSymbol()->print(O, MAI); 200 break; 201 case X86II::MO_SECREL: O << "@SECREL32"; break; 202 } 203 } 204 205 void X86AsmPrinter::PrintOperand(const MachineInstr *MI, unsigned OpNo, 206 raw_ostream &O) { 207 const MachineOperand &MO = MI->getOperand(OpNo); 208 const bool IsATT = MI->getInlineAsmDialect() == InlineAsm::AD_ATT; 209 switch (MO.getType()) { 210 default: llvm_unreachable("unknown operand type!"); 211 case MachineOperand::MO_Register: { 212 if (IsATT) 213 O << '%'; 214 O << X86ATTInstPrinter::getRegisterName(MO.getReg()); 215 return; 216 } 217 218 case MachineOperand::MO_Immediate: 219 if (IsATT) 220 O << '$'; 221 O << MO.getImm(); 222 return; 223 224 case MachineOperand::MO_ConstantPoolIndex: 225 case MachineOperand::MO_GlobalAddress: { 226 switch (MI->getInlineAsmDialect()) { 227 case InlineAsm::AD_ATT: 228 O << '$'; 229 break; 230 case InlineAsm::AD_Intel: 231 O << "offset "; 232 break; 233 } 234 PrintSymbolOperand(MO, O); 235 break; 236 } 237 case MachineOperand::MO_BlockAddress: { 238 MCSymbol *Sym = GetBlockAddressSymbol(MO.getBlockAddress()); 239 Sym->print(O, MAI); 240 break; 241 } 242 } 243 } 244 245 /// PrintModifiedOperand - Print subregisters based on supplied modifier, 246 /// deferring to PrintOperand() if no modifier was supplied or if operand is not 247 /// a register. 248 void X86AsmPrinter::PrintModifiedOperand(const MachineInstr *MI, unsigned OpNo, 249 raw_ostream &O, const char *Modifier) { 250 const MachineOperand &MO = MI->getOperand(OpNo); 251 if (!Modifier || MO.getType() != MachineOperand::MO_Register) 252 return PrintOperand(MI, OpNo, O); 253 if (MI->getInlineAsmDialect() == InlineAsm::AD_ATT) 254 O << '%'; 255 Register Reg = MO.getReg(); 256 if (strncmp(Modifier, "subreg", strlen("subreg")) == 0) { 257 unsigned Size = (strcmp(Modifier+6,"64") == 0) ? 64 : 258 (strcmp(Modifier+6,"32") == 0) ? 32 : 259 (strcmp(Modifier+6,"16") == 0) ? 16 : 8; 260 Reg = getX86SubSuperRegister(Reg, Size); 261 } 262 O << X86ATTInstPrinter::getRegisterName(Reg); 263 } 264 265 /// PrintPCRelImm - This is used to print an immediate value that ends up 266 /// being encoded as a pc-relative value. These print slightly differently, for 267 /// example, a $ is not emitted. 268 void X86AsmPrinter::PrintPCRelImm(const MachineInstr *MI, unsigned OpNo, 269 raw_ostream &O) { 270 const MachineOperand &MO = MI->getOperand(OpNo); 271 switch (MO.getType()) { 272 default: llvm_unreachable("Unknown pcrel immediate operand"); 273 case MachineOperand::MO_Register: 274 // pc-relativeness was handled when computing the value in the reg. 275 PrintOperand(MI, OpNo, O); 276 return; 277 case MachineOperand::MO_Immediate: 278 O << MO.getImm(); 279 return; 280 case MachineOperand::MO_GlobalAddress: 281 PrintSymbolOperand(MO, O); 282 return; 283 } 284 } 285 286 void X86AsmPrinter::PrintLeaMemReference(const MachineInstr *MI, unsigned OpNo, 287 raw_ostream &O, const char *Modifier) { 288 const MachineOperand &BaseReg = MI->getOperand(OpNo + X86::AddrBaseReg); 289 const MachineOperand &IndexReg = MI->getOperand(OpNo + X86::AddrIndexReg); 290 const MachineOperand &DispSpec = MI->getOperand(OpNo + X86::AddrDisp); 291 292 // If we really don't want to print out (rip), don't. 293 bool HasBaseReg = BaseReg.getReg() != 0; 294 if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") && 295 BaseReg.getReg() == X86::RIP) 296 HasBaseReg = false; 297 298 // HasParenPart - True if we will print out the () part of the mem ref. 299 bool HasParenPart = IndexReg.getReg() || HasBaseReg; 300 301 switch (DispSpec.getType()) { 302 default: 303 llvm_unreachable("unknown operand type!"); 304 case MachineOperand::MO_Immediate: { 305 int DispVal = DispSpec.getImm(); 306 if (DispVal || !HasParenPart) 307 O << DispVal; 308 break; 309 } 310 case MachineOperand::MO_GlobalAddress: 311 case MachineOperand::MO_ConstantPoolIndex: 312 PrintSymbolOperand(DispSpec, O); 313 break; 314 } 315 316 if (Modifier && strcmp(Modifier, "H") == 0) 317 O << "+8"; 318 319 if (HasParenPart) { 320 assert(IndexReg.getReg() != X86::ESP && 321 "X86 doesn't allow scaling by ESP"); 322 323 O << '('; 324 if (HasBaseReg) 325 PrintModifiedOperand(MI, OpNo + X86::AddrBaseReg, O, Modifier); 326 327 if (IndexReg.getReg()) { 328 O << ','; 329 PrintModifiedOperand(MI, OpNo + X86::AddrIndexReg, O, Modifier); 330 unsigned ScaleVal = MI->getOperand(OpNo + X86::AddrScaleAmt).getImm(); 331 if (ScaleVal != 1) 332 O << ',' << ScaleVal; 333 } 334 O << ')'; 335 } 336 } 337 338 void X86AsmPrinter::PrintMemReference(const MachineInstr *MI, unsigned OpNo, 339 raw_ostream &O, const char *Modifier) { 340 assert(isMem(*MI, OpNo) && "Invalid memory reference!"); 341 const MachineOperand &Segment = MI->getOperand(OpNo + X86::AddrSegmentReg); 342 if (Segment.getReg()) { 343 PrintModifiedOperand(MI, OpNo + X86::AddrSegmentReg, O, Modifier); 344 O << ':'; 345 } 346 PrintLeaMemReference(MI, OpNo, O, Modifier); 347 } 348 349 350 void X86AsmPrinter::PrintIntelMemReference(const MachineInstr *MI, 351 unsigned OpNo, raw_ostream &O, 352 const char *Modifier) { 353 const MachineOperand &BaseReg = MI->getOperand(OpNo + X86::AddrBaseReg); 354 unsigned ScaleVal = MI->getOperand(OpNo + X86::AddrScaleAmt).getImm(); 355 const MachineOperand &IndexReg = MI->getOperand(OpNo + X86::AddrIndexReg); 356 const MachineOperand &DispSpec = MI->getOperand(OpNo + X86::AddrDisp); 357 const MachineOperand &SegReg = MI->getOperand(OpNo + X86::AddrSegmentReg); 358 359 // If we really don't want to print out (rip), don't. 360 bool HasBaseReg = BaseReg.getReg() != 0; 361 if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") && 362 BaseReg.getReg() == X86::RIP) 363 HasBaseReg = false; 364 365 // If this has a segment register, print it. 366 if (SegReg.getReg()) { 367 PrintOperand(MI, OpNo + X86::AddrSegmentReg, O); 368 O << ':'; 369 } 370 371 O << '['; 372 373 bool NeedPlus = false; 374 if (HasBaseReg) { 375 PrintOperand(MI, OpNo + X86::AddrBaseReg, O); 376 NeedPlus = true; 377 } 378 379 if (IndexReg.getReg()) { 380 if (NeedPlus) O << " + "; 381 if (ScaleVal != 1) 382 O << ScaleVal << '*'; 383 PrintOperand(MI, OpNo + X86::AddrIndexReg, O); 384 NeedPlus = true; 385 } 386 387 if (!DispSpec.isImm()) { 388 if (NeedPlus) O << " + "; 389 PrintOperand(MI, OpNo + X86::AddrDisp, O); 390 } else { 391 int64_t DispVal = DispSpec.getImm(); 392 if (DispVal || (!IndexReg.getReg() && !HasBaseReg)) { 393 if (NeedPlus) { 394 if (DispVal > 0) 395 O << " + "; 396 else { 397 O << " - "; 398 DispVal = -DispVal; 399 } 400 } 401 O << DispVal; 402 } 403 } 404 O << ']'; 405 } 406 407 static bool printAsmMRegister(const X86AsmPrinter &P, const MachineOperand &MO, 408 char Mode, raw_ostream &O) { 409 Register Reg = MO.getReg(); 410 bool EmitPercent = MO.getParent()->getInlineAsmDialect() == InlineAsm::AD_ATT; 411 412 if (!X86::GR8RegClass.contains(Reg) && 413 !X86::GR16RegClass.contains(Reg) && 414 !X86::GR32RegClass.contains(Reg) && 415 !X86::GR64RegClass.contains(Reg)) 416 return true; 417 418 switch (Mode) { 419 default: return true; // Unknown mode. 420 case 'b': // Print QImode register 421 Reg = getX86SubSuperRegister(Reg, 8); 422 break; 423 case 'h': // Print QImode high register 424 Reg = getX86SubSuperRegister(Reg, 8, true); 425 break; 426 case 'w': // Print HImode register 427 Reg = getX86SubSuperRegister(Reg, 16); 428 break; 429 case 'k': // Print SImode register 430 Reg = getX86SubSuperRegister(Reg, 32); 431 break; 432 case 'V': 433 EmitPercent = false; 434 LLVM_FALLTHROUGH; 435 case 'q': 436 // Print 64-bit register names if 64-bit integer registers are available. 437 // Otherwise, print 32-bit register names. 438 Reg = getX86SubSuperRegister(Reg, P.getSubtarget().is64Bit() ? 64 : 32); 439 break; 440 } 441 442 if (EmitPercent) 443 O << '%'; 444 445 O << X86ATTInstPrinter::getRegisterName(Reg); 446 return false; 447 } 448 449 static bool printAsmVRegister(const MachineOperand &MO, char Mode, 450 raw_ostream &O) { 451 Register Reg = MO.getReg(); 452 bool EmitPercent = MO.getParent()->getInlineAsmDialect() == InlineAsm::AD_ATT; 453 454 unsigned Index; 455 if (X86::VR128XRegClass.contains(Reg)) 456 Index = Reg - X86::XMM0; 457 else if (X86::VR256XRegClass.contains(Reg)) 458 Index = Reg - X86::YMM0; 459 else if (X86::VR512RegClass.contains(Reg)) 460 Index = Reg - X86::ZMM0; 461 else 462 return true; 463 464 switch (Mode) { 465 default: // Unknown mode. 466 return true; 467 case 'x': // Print V4SFmode register 468 Reg = X86::XMM0 + Index; 469 break; 470 case 't': // Print V8SFmode register 471 Reg = X86::YMM0 + Index; 472 break; 473 case 'g': // Print V16SFmode register 474 Reg = X86::ZMM0 + Index; 475 break; 476 } 477 478 if (EmitPercent) 479 O << '%'; 480 481 O << X86ATTInstPrinter::getRegisterName(Reg); 482 return false; 483 } 484 485 /// PrintAsmOperand - Print out an operand for an inline asm expression. 486 /// 487 bool X86AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 488 const char *ExtraCode, raw_ostream &O) { 489 // Does this asm operand have a single letter operand modifier? 490 if (ExtraCode && ExtraCode[0]) { 491 if (ExtraCode[1] != 0) return true; // Unknown modifier. 492 493 const MachineOperand &MO = MI->getOperand(OpNo); 494 495 switch (ExtraCode[0]) { 496 default: 497 // See if this is a generic print operand 498 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O); 499 case 'a': // This is an address. Currently only 'i' and 'r' are expected. 500 switch (MO.getType()) { 501 default: 502 return true; 503 case MachineOperand::MO_Immediate: 504 O << MO.getImm(); 505 return false; 506 case MachineOperand::MO_ConstantPoolIndex: 507 case MachineOperand::MO_JumpTableIndex: 508 case MachineOperand::MO_ExternalSymbol: 509 llvm_unreachable("unexpected operand type!"); 510 case MachineOperand::MO_GlobalAddress: 511 PrintSymbolOperand(MO, O); 512 if (Subtarget->isPICStyleRIPRel()) 513 O << "(%rip)"; 514 return false; 515 case MachineOperand::MO_Register: 516 O << '('; 517 PrintOperand(MI, OpNo, O); 518 O << ')'; 519 return false; 520 } 521 522 case 'c': // Don't print "$" before a global var name or constant. 523 switch (MO.getType()) { 524 default: 525 PrintOperand(MI, OpNo, O); 526 break; 527 case MachineOperand::MO_Immediate: 528 O << MO.getImm(); 529 break; 530 case MachineOperand::MO_ConstantPoolIndex: 531 case MachineOperand::MO_JumpTableIndex: 532 case MachineOperand::MO_ExternalSymbol: 533 llvm_unreachable("unexpected operand type!"); 534 case MachineOperand::MO_GlobalAddress: 535 PrintSymbolOperand(MO, O); 536 break; 537 } 538 return false; 539 540 case 'A': // Print '*' before a register (it must be a register) 541 if (MO.isReg()) { 542 O << '*'; 543 PrintOperand(MI, OpNo, O); 544 return false; 545 } 546 return true; 547 548 case 'b': // Print QImode register 549 case 'h': // Print QImode high register 550 case 'w': // Print HImode register 551 case 'k': // Print SImode register 552 case 'q': // Print DImode register 553 case 'V': // Print native register without '%' 554 if (MO.isReg()) 555 return printAsmMRegister(*this, MO, ExtraCode[0], O); 556 PrintOperand(MI, OpNo, O); 557 return false; 558 559 case 'x': // Print V4SFmode register 560 case 't': // Print V8SFmode register 561 case 'g': // Print V16SFmode register 562 if (MO.isReg()) 563 return printAsmVRegister(MO, ExtraCode[0], O); 564 PrintOperand(MI, OpNo, O); 565 return false; 566 567 case 'P': // This is the operand of a call, treat specially. 568 PrintPCRelImm(MI, OpNo, O); 569 return false; 570 571 case 'n': // Negate the immediate or print a '-' before the operand. 572 // Note: this is a temporary solution. It should be handled target 573 // independently as part of the 'MC' work. 574 if (MO.isImm()) { 575 O << -MO.getImm(); 576 return false; 577 } 578 O << '-'; 579 } 580 } 581 582 PrintOperand(MI, OpNo, O); 583 return false; 584 } 585 586 bool X86AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, 587 const char *ExtraCode, 588 raw_ostream &O) { 589 if (ExtraCode && ExtraCode[0]) { 590 if (ExtraCode[1] != 0) return true; // Unknown modifier. 591 592 switch (ExtraCode[0]) { 593 default: return true; // Unknown modifier. 594 case 'b': // Print QImode register 595 case 'h': // Print QImode high register 596 case 'w': // Print HImode register 597 case 'k': // Print SImode register 598 case 'q': // Print SImode register 599 // These only apply to registers, ignore on mem. 600 break; 601 case 'H': 602 if (MI->getInlineAsmDialect() == InlineAsm::AD_Intel) { 603 return true; // Unsupported modifier in Intel inline assembly. 604 } else { 605 PrintMemReference(MI, OpNo, O, "H"); 606 } 607 return false; 608 case 'P': // Don't print @PLT, but do print as memory. 609 if (MI->getInlineAsmDialect() == InlineAsm::AD_Intel) { 610 PrintIntelMemReference(MI, OpNo, O, "no-rip"); 611 } else { 612 PrintMemReference(MI, OpNo, O, "no-rip"); 613 } 614 return false; 615 } 616 } 617 if (MI->getInlineAsmDialect() == InlineAsm::AD_Intel) { 618 PrintIntelMemReference(MI, OpNo, O, nullptr); 619 } else { 620 PrintMemReference(MI, OpNo, O, nullptr); 621 } 622 return false; 623 } 624 625 void X86AsmPrinter::emitStartOfAsmFile(Module &M) { 626 const Triple &TT = TM.getTargetTriple(); 627 628 if (TT.isOSBinFormatELF()) { 629 // Assemble feature flags that may require creation of a note section. 630 unsigned FeatureFlagsAnd = 0; 631 if (M.getModuleFlag("cf-protection-branch")) 632 FeatureFlagsAnd |= ELF::GNU_PROPERTY_X86_FEATURE_1_IBT; 633 if (M.getModuleFlag("cf-protection-return")) 634 FeatureFlagsAnd |= ELF::GNU_PROPERTY_X86_FEATURE_1_SHSTK; 635 636 if (FeatureFlagsAnd) { 637 // Emit a .note.gnu.property section with the flags. 638 if (!TT.isArch32Bit() && !TT.isArch64Bit()) 639 llvm_unreachable("CFProtection used on invalid architecture!"); 640 MCSection *Cur = OutStreamer->getCurrentSectionOnly(); 641 MCSection *Nt = MMI->getContext().getELFSection( 642 ".note.gnu.property", ELF::SHT_NOTE, ELF::SHF_ALLOC); 643 OutStreamer->SwitchSection(Nt); 644 645 // Emitting note header. 646 const int WordSize = TT.isArch64Bit() && !TT.isX32() ? 8 : 4; 647 emitAlignment(WordSize == 4 ? Align(4) : Align(8)); 648 OutStreamer->emitIntValue(4, 4 /*size*/); // data size for "GNU\0" 649 OutStreamer->emitIntValue(8 + WordSize, 4 /*size*/); // Elf_Prop size 650 OutStreamer->emitIntValue(ELF::NT_GNU_PROPERTY_TYPE_0, 4 /*size*/); 651 OutStreamer->emitBytes(StringRef("GNU", 4)); // note name 652 653 // Emitting an Elf_Prop for the CET properties. 654 OutStreamer->emitInt32(ELF::GNU_PROPERTY_X86_FEATURE_1_AND); 655 OutStreamer->emitInt32(4); // data size 656 OutStreamer->emitInt32(FeatureFlagsAnd); // data 657 emitAlignment(WordSize == 4 ? Align(4) : Align(8)); // padding 658 659 OutStreamer->endSection(Nt); 660 OutStreamer->SwitchSection(Cur); 661 } 662 } 663 664 if (TT.isOSBinFormatMachO()) 665 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 666 667 if (TT.isOSBinFormatCOFF()) { 668 // Emit an absolute @feat.00 symbol. This appears to be some kind of 669 // compiler features bitfield read by link.exe. 670 MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00")); 671 OutStreamer->BeginCOFFSymbolDef(S); 672 OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC); 673 OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); 674 OutStreamer->EndCOFFSymbolDef(); 675 int64_t Feat00Flags = 0; 676 677 if (TT.getArch() == Triple::x86) { 678 // According to the PE-COFF spec, the LSB of this value marks the object 679 // for "registered SEH". This means that all SEH handler entry points 680 // must be registered in .sxdata. Use of any unregistered handlers will 681 // cause the process to terminate immediately. LLVM does not know how to 682 // register any SEH handlers, so its object files should be safe. 683 Feat00Flags |= 1; 684 } 685 686 if (M.getModuleFlag("cfguard")) { 687 Feat00Flags |= 0x800; // Object is CFG-aware. 688 } 689 690 if (M.getModuleFlag("ehcontguard")) { 691 Feat00Flags |= 0x4000; // Object also has EHCont. 692 } 693 694 OutStreamer->emitSymbolAttribute(S, MCSA_Global); 695 OutStreamer->emitAssignment( 696 S, MCConstantExpr::create(Feat00Flags, MMI->getContext())); 697 } 698 OutStreamer->emitSyntaxDirective(); 699 700 // If this is not inline asm and we're in 16-bit 701 // mode prefix assembly with .code16. 702 bool is16 = TT.getEnvironment() == Triple::CODE16; 703 if (M.getModuleInlineAsm().empty() && is16) 704 OutStreamer->emitAssemblerFlag(MCAF_Code16); 705 } 706 707 static void 708 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 709 MachineModuleInfoImpl::StubValueTy &MCSym) { 710 // L_foo$stub: 711 OutStreamer.emitLabel(StubLabel); 712 // .indirect_symbol _foo 713 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 714 715 if (MCSym.getInt()) 716 // External to current translation unit. 717 OutStreamer.emitIntValue(0, 4/*size*/); 718 else 719 // Internal to current translation unit. 720 // 721 // When we place the LSDA into the TEXT section, the type info 722 // pointers need to be indirect and pc-rel. We accomplish this by 723 // using NLPs; however, sometimes the types are local to the file. 724 // We need to fill in the value for the NLP in those cases. 725 OutStreamer.emitValue( 726 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 727 4 /*size*/); 728 } 729 730 static void emitNonLazyStubs(MachineModuleInfo *MMI, MCStreamer &OutStreamer) { 731 732 MachineModuleInfoMachO &MMIMacho = 733 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 734 735 // Output stubs for dynamically-linked functions. 736 MachineModuleInfoMachO::SymbolListTy Stubs; 737 738 // Output stubs for external and common global variables. 739 Stubs = MMIMacho.GetGVStubList(); 740 if (!Stubs.empty()) { 741 OutStreamer.SwitchSection(MMI->getContext().getMachOSection( 742 "__IMPORT", "__pointers", MachO::S_NON_LAZY_SYMBOL_POINTERS, 743 SectionKind::getMetadata())); 744 745 for (auto &Stub : Stubs) 746 emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second); 747 748 Stubs.clear(); 749 OutStreamer.AddBlankLine(); 750 } 751 } 752 753 void X86AsmPrinter::emitEndOfAsmFile(Module &M) { 754 const Triple &TT = TM.getTargetTriple(); 755 756 if (TT.isOSBinFormatMachO()) { 757 // Mach-O uses non-lazy symbol stubs to encode per-TU information into 758 // global table for symbol lookup. 759 emitNonLazyStubs(MMI, *OutStreamer); 760 761 // Emit stack and fault map information. 762 emitStackMaps(SM); 763 FM.serializeToFaultMapSection(); 764 765 // This flag tells the linker that no global symbols contain code that fall 766 // through to other global symbols (e.g. an implementation of multiple entry 767 // points). If this doesn't occur, the linker can safely perform dead code 768 // stripping. Since LLVM never generates code that does this, it is always 769 // safe to set. 770 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 771 } else if (TT.isOSBinFormatCOFF()) { 772 if (MMI->usesMSVCFloatingPoint()) { 773 // In Windows' libcmt.lib, there is a file which is linked in only if the 774 // symbol _fltused is referenced. Linking this in causes some 775 // side-effects: 776 // 777 // 1. For x86-32, it will set the x87 rounding mode to 53-bit instead of 778 // 64-bit mantissas at program start. 779 // 780 // 2. It links in support routines for floating-point in scanf and printf. 781 // 782 // MSVC emits an undefined reference to _fltused when there are any 783 // floating point operations in the program (including calls). A program 784 // that only has: `scanf("%f", &global_float);` may fail to trigger this, 785 // but oh well...that's a documented issue. 786 StringRef SymbolName = 787 (TT.getArch() == Triple::x86) ? "__fltused" : "_fltused"; 788 MCSymbol *S = MMI->getContext().getOrCreateSymbol(SymbolName); 789 OutStreamer->emitSymbolAttribute(S, MCSA_Global); 790 return; 791 } 792 emitStackMaps(SM); 793 } else if (TT.isOSBinFormatELF()) { 794 emitStackMaps(SM); 795 FM.serializeToFaultMapSection(); 796 } 797 } 798 799 //===----------------------------------------------------------------------===// 800 // Target Registry Stuff 801 //===----------------------------------------------------------------------===// 802 803 // Force static initialization. 804 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmPrinter() { 805 RegisterAsmPrinter<X86AsmPrinter> X(getTheX86_32Target()); 806 RegisterAsmPrinter<X86AsmPrinter> Y(getTheX86_64Target()); 807 } 808