1 //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Define several functions to decode x86 specific shuffle semantics into a 10 // generic vector mask. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86ShuffleDecode.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Support/MathExtras.h" 19 20 //===----------------------------------------------------------------------===// 21 // Vector Mask Decoding 22 //===----------------------------------------------------------------------===// 23 24 namespace llvm { 25 26 void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 27 // Defaults the copying the dest value. 28 ShuffleMask.push_back(0); 29 ShuffleMask.push_back(1); 30 ShuffleMask.push_back(2); 31 ShuffleMask.push_back(3); 32 33 // Decode the immediate. 34 unsigned ZMask = Imm & 15; 35 unsigned CountD = (Imm >> 4) & 3; 36 unsigned CountS = (Imm >> 6) & 3; 37 38 // CountS selects which input element to use. 39 unsigned InVal = 4 + CountS; 40 // CountD specifies which element of destination to update. 41 ShuffleMask[CountD] = InVal; 42 // ZMask zaps values, potentially overriding the CountD elt. 43 if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; 44 if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; 45 if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; 46 if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; 47 } 48 49 void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len, 50 SmallVectorImpl<int> &ShuffleMask) { 51 assert((Idx + Len) <= NumElts && "Insertion out of range"); 52 53 for (unsigned i = 0; i != NumElts; ++i) 54 ShuffleMask.push_back(i); 55 for (unsigned i = 0; i != Len; ++i) 56 ShuffleMask[Idx + i] = NumElts + i; 57 } 58 59 // <3,1> or <6,7,2,3> 60 void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { 61 for (unsigned i = NElts / 2; i != NElts; ++i) 62 ShuffleMask.push_back(NElts + i); 63 64 for (unsigned i = NElts / 2; i != NElts; ++i) 65 ShuffleMask.push_back(i); 66 } 67 68 // <0,2> or <0,1,4,5> 69 void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { 70 for (unsigned i = 0; i != NElts / 2; ++i) 71 ShuffleMask.push_back(i); 72 73 for (unsigned i = 0; i != NElts / 2; ++i) 74 ShuffleMask.push_back(NElts + i); 75 } 76 77 void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { 78 for (int i = 0, e = NumElts / 2; i < e; ++i) { 79 ShuffleMask.push_back(2 * i); 80 ShuffleMask.push_back(2 * i); 81 } 82 } 83 84 void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { 85 for (int i = 0, e = NumElts / 2; i < e; ++i) { 86 ShuffleMask.push_back(2 * i + 1); 87 ShuffleMask.push_back(2 * i + 1); 88 } 89 } 90 91 void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { 92 const unsigned NumLaneElts = 2; 93 94 for (unsigned l = 0; l < NumElts; l += NumLaneElts) 95 for (unsigned i = 0; i < NumLaneElts; ++i) 96 ShuffleMask.push_back(l); 97 } 98 99 void DecodePSLLDQMask(unsigned NumElts, unsigned Imm, 100 SmallVectorImpl<int> &ShuffleMask) { 101 const unsigned NumLaneElts = 16; 102 103 for (unsigned l = 0; l < NumElts; l += NumLaneElts) 104 for (unsigned i = 0; i < NumLaneElts; ++i) { 105 int M = SM_SentinelZero; 106 if (i >= Imm) M = i - Imm + l; 107 ShuffleMask.push_back(M); 108 } 109 } 110 111 void DecodePSRLDQMask(unsigned NumElts, unsigned Imm, 112 SmallVectorImpl<int> &ShuffleMask) { 113 const unsigned NumLaneElts = 16; 114 115 for (unsigned l = 0; l < NumElts; l += NumLaneElts) 116 for (unsigned i = 0; i < NumLaneElts; ++i) { 117 unsigned Base = i + Imm; 118 int M = Base + l; 119 if (Base >= NumLaneElts) M = SM_SentinelZero; 120 ShuffleMask.push_back(M); 121 } 122 } 123 124 void DecodePALIGNRMask(unsigned NumElts, unsigned Imm, 125 SmallVectorImpl<int> &ShuffleMask) { 126 const unsigned NumLaneElts = 16; 127 128 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 129 for (unsigned i = 0; i != NumLaneElts; ++i) { 130 unsigned Base = i + Imm; 131 // if i+imm is out of this lane then we actually need the other source 132 if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; 133 ShuffleMask.push_back(Base + l); 134 } 135 } 136 } 137 138 void DecodeVALIGNMask(unsigned NumElts, unsigned Imm, 139 SmallVectorImpl<int> &ShuffleMask) { 140 // Not all bits of the immediate are used so mask it. 141 assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2"); 142 Imm = Imm & (NumElts - 1); 143 for (unsigned i = 0; i != NumElts; ++i) 144 ShuffleMask.push_back(i + Imm); 145 } 146 147 void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm, 148 SmallVectorImpl<int> &ShuffleMask) { 149 unsigned Size = NumElts * ScalarBits; 150 unsigned NumLanes = Size / 128; 151 if (NumLanes == 0) NumLanes = 1; // Handle MMX 152 unsigned NumLaneElts = NumElts / NumLanes; 153 154 uint32_t SplatImm = (Imm & 0xff) * 0x01010101; 155 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 156 for (unsigned i = 0; i != NumLaneElts; ++i) { 157 ShuffleMask.push_back(SplatImm % NumLaneElts + l); 158 SplatImm /= NumLaneElts; 159 } 160 } 161 } 162 163 void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm, 164 SmallVectorImpl<int> &ShuffleMask) { 165 for (unsigned l = 0; l != NumElts; l += 8) { 166 unsigned NewImm = Imm; 167 for (unsigned i = 0, e = 4; i != e; ++i) { 168 ShuffleMask.push_back(l + i); 169 } 170 for (unsigned i = 4, e = 8; i != e; ++i) { 171 ShuffleMask.push_back(l + 4 + (NewImm & 3)); 172 NewImm >>= 2; 173 } 174 } 175 } 176 177 void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm, 178 SmallVectorImpl<int> &ShuffleMask) { 179 for (unsigned l = 0; l != NumElts; l += 8) { 180 unsigned NewImm = Imm; 181 for (unsigned i = 0, e = 4; i != e; ++i) { 182 ShuffleMask.push_back(l + (NewImm & 3)); 183 NewImm >>= 2; 184 } 185 for (unsigned i = 4, e = 8; i != e; ++i) { 186 ShuffleMask.push_back(l + i); 187 } 188 } 189 } 190 191 void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) { 192 unsigned NumHalfElts = NumElts / 2; 193 194 for (unsigned l = 0; l != NumHalfElts; ++l) 195 ShuffleMask.push_back(l + NumHalfElts); 196 for (unsigned h = 0; h != NumHalfElts; ++h) 197 ShuffleMask.push_back(h); 198 } 199 200 void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits, 201 unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 202 unsigned NumLaneElts = 128 / ScalarBits; 203 204 unsigned NewImm = Imm; 205 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 206 // each half of a lane comes from different source 207 for (unsigned s = 0; s != NumElts * 2; s += NumElts) { 208 for (unsigned i = 0; i != NumLaneElts / 2; ++i) { 209 ShuffleMask.push_back(NewImm % NumLaneElts + s + l); 210 NewImm /= NumLaneElts; 211 } 212 } 213 if (NumLaneElts == 4) NewImm = Imm; // reload imm 214 } 215 } 216 217 void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits, 218 SmallVectorImpl<int> &ShuffleMask) { 219 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate 220 // independently on 128-bit lanes. 221 unsigned NumLanes = (NumElts * ScalarBits) / 128; 222 if (NumLanes == 0) NumLanes = 1; // Handle MMX 223 unsigned NumLaneElts = NumElts / NumLanes; 224 225 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 226 for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { 227 ShuffleMask.push_back(i); // Reads from dest/src1 228 ShuffleMask.push_back(i + NumElts); // Reads from src/src2 229 } 230 } 231 } 232 233 void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits, 234 SmallVectorImpl<int> &ShuffleMask) { 235 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate 236 // independently on 128-bit lanes. 237 unsigned NumLanes = (NumElts * ScalarBits) / 128; 238 if (NumLanes == 0 ) NumLanes = 1; // Handle MMX 239 unsigned NumLaneElts = NumElts / NumLanes; 240 241 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 242 for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { 243 ShuffleMask.push_back(i); // Reads from dest/src1 244 ShuffleMask.push_back(i + NumElts); // Reads from src/src2 245 } 246 } 247 } 248 249 void DecodeVectorBroadcast(unsigned NumElts, 250 SmallVectorImpl<int> &ShuffleMask) { 251 ShuffleMask.append(NumElts, 0); 252 } 253 254 void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts, 255 SmallVectorImpl<int> &ShuffleMask) { 256 unsigned Scale = DstNumElts / SrcNumElts; 257 258 for (unsigned i = 0; i != Scale; ++i) 259 for (unsigned j = 0; j != SrcNumElts; ++j) 260 ShuffleMask.push_back(j); 261 } 262 263 void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize, 264 unsigned Imm, 265 SmallVectorImpl<int> &ShuffleMask) { 266 unsigned NumElementsInLane = 128 / ScalarSize; 267 unsigned NumLanes = NumElts / NumElementsInLane; 268 269 for (unsigned l = 0; l != NumElts; l += NumElementsInLane) { 270 unsigned Index = (Imm % NumLanes) * NumElementsInLane; 271 Imm /= NumLanes; // Discard the bits we just used. 272 // We actually need the other source. 273 if (l >= (NumElts / 2)) 274 Index += NumElts; 275 for (unsigned i = 0; i != NumElementsInLane; ++i) 276 ShuffleMask.push_back(Index + i); 277 } 278 } 279 280 void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm, 281 SmallVectorImpl<int> &ShuffleMask) { 282 unsigned HalfSize = NumElts / 2; 283 284 for (unsigned l = 0; l != 2; ++l) { 285 unsigned HalfMask = Imm >> (l * 4); 286 unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; 287 for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) 288 ShuffleMask.push_back((HalfMask & 8) ? SM_SentinelZero : (int)i); 289 } 290 } 291 292 void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, 293 SmallVectorImpl<int> &ShuffleMask) { 294 for (int i = 0, e = RawMask.size(); i < e; ++i) { 295 uint64_t M = RawMask[i]; 296 if (UndefElts[i]) { 297 ShuffleMask.push_back(SM_SentinelUndef); 298 continue; 299 } 300 // For 256/512-bit vectors the base of the shuffle is the 128-bit 301 // subvector we're inside. 302 int Base = (i / 16) * 16; 303 // If the high bit (7) of the byte is set, the element is zeroed. 304 if (M & (1 << 7)) 305 ShuffleMask.push_back(SM_SentinelZero); 306 else { 307 // Only the least significant 4 bits of the byte are used. 308 int Index = Base + (M & 0xf); 309 ShuffleMask.push_back(Index); 310 } 311 } 312 } 313 314 void DecodeBLENDMask(unsigned NumElts, unsigned Imm, 315 SmallVectorImpl<int> &ShuffleMask) { 316 for (unsigned i = 0; i < NumElts; ++i) { 317 // If there are more than 8 elements in the vector, then any immediate blend 318 // mask wraps around. 319 unsigned Bit = i % 8; 320 ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElts + i : i); 321 } 322 } 323 324 void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, 325 SmallVectorImpl<int> &ShuffleMask) { 326 assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size"); 327 328 // VPPERM Operation 329 // Bits[4:0] - Byte Index (0 - 31) 330 // Bits[7:5] - Permute Operation 331 // 332 // Permute Operation: 333 // 0 - Source byte (no logical operation). 334 // 1 - Invert source byte. 335 // 2 - Bit reverse of source byte. 336 // 3 - Bit reverse of inverted source byte. 337 // 4 - 00h (zero - fill). 338 // 5 - FFh (ones - fill). 339 // 6 - Most significant bit of source byte replicated in all bit positions. 340 // 7 - Invert most significant bit of source byte and replicate in all bit positions. 341 for (int i = 0, e = RawMask.size(); i < e; ++i) { 342 if (UndefElts[i]) { 343 ShuffleMask.push_back(SM_SentinelUndef); 344 continue; 345 } 346 347 uint64_t M = RawMask[i]; 348 uint64_t PermuteOp = (M >> 5) & 0x7; 349 if (PermuteOp == 4) { 350 ShuffleMask.push_back(SM_SentinelZero); 351 continue; 352 } 353 if (PermuteOp != 0) { 354 ShuffleMask.clear(); 355 return; 356 } 357 358 uint64_t Index = M & 0x1F; 359 ShuffleMask.push_back((int)Index); 360 } 361 } 362 363 void DecodeVPERMMask(unsigned NumElts, unsigned Imm, 364 SmallVectorImpl<int> &ShuffleMask) { 365 for (unsigned l = 0; l != NumElts; l += 4) 366 for (unsigned i = 0; i != 4; ++i) 367 ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3)); 368 } 369 370 void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits, 371 unsigned NumDstElts, bool IsAnyExtend, 372 SmallVectorImpl<int> &ShuffleMask) { 373 unsigned Scale = DstScalarBits / SrcScalarBits; 374 assert(SrcScalarBits < DstScalarBits && 375 "Expected zero extension mask to increase scalar size"); 376 377 int Sentinel = IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero; 378 for (unsigned i = 0; i != NumDstElts; i++) { 379 ShuffleMask.push_back(i); 380 ShuffleMask.append(Scale - 1, Sentinel); 381 } 382 } 383 384 void DecodeZeroMoveLowMask(unsigned NumElts, 385 SmallVectorImpl<int> &ShuffleMask) { 386 ShuffleMask.push_back(0); 387 ShuffleMask.append(NumElts - 1, SM_SentinelZero); 388 } 389 390 void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad, 391 SmallVectorImpl<int> &ShuffleMask) { 392 // First element comes from the first element of second source. 393 // Remaining elements: Load zero extends / Move copies from first source. 394 ShuffleMask.push_back(NumElts); 395 for (unsigned i = 1; i < NumElts; i++) 396 ShuffleMask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i); 397 } 398 399 void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx, 400 SmallVectorImpl<int> &ShuffleMask) { 401 unsigned HalfElts = NumElts / 2; 402 403 // Only the bottom 6 bits are valid for each immediate. 404 Len &= 0x3F; 405 Idx &= 0x3F; 406 407 // We can only decode this bit extraction instruction as a shuffle if both the 408 // length and index work with whole elements. 409 if (0 != (Len % EltSize) || 0 != (Idx % EltSize)) 410 return; 411 412 // A length of zero is equivalent to a bit length of 64. 413 if (Len == 0) 414 Len = 64; 415 416 // If the length + index exceeds the bottom 64 bits the result is undefined. 417 if ((Len + Idx) > 64) { 418 ShuffleMask.append(NumElts, SM_SentinelUndef); 419 return; 420 } 421 422 // Convert index and index to work with elements. 423 Len /= EltSize; 424 Idx /= EltSize; 425 426 // EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining 427 // elements of the lower 64-bits. The upper 64-bits are undefined. 428 for (int i = 0; i != Len; ++i) 429 ShuffleMask.push_back(i + Idx); 430 for (int i = Len; i != (int)HalfElts; ++i) 431 ShuffleMask.push_back(SM_SentinelZero); 432 for (int i = HalfElts; i != (int)NumElts; ++i) 433 ShuffleMask.push_back(SM_SentinelUndef); 434 } 435 436 void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx, 437 SmallVectorImpl<int> &ShuffleMask) { 438 unsigned HalfElts = NumElts / 2; 439 440 // Only the bottom 6 bits are valid for each immediate. 441 Len &= 0x3F; 442 Idx &= 0x3F; 443 444 // We can only decode this bit insertion instruction as a shuffle if both the 445 // length and index work with whole elements. 446 if (0 != (Len % EltSize) || 0 != (Idx % EltSize)) 447 return; 448 449 // A length of zero is equivalent to a bit length of 64. 450 if (Len == 0) 451 Len = 64; 452 453 // If the length + index exceeds the bottom 64 bits the result is undefined. 454 if ((Len + Idx) > 64) { 455 ShuffleMask.append(NumElts, SM_SentinelUndef); 456 return; 457 } 458 459 // Convert index and index to work with elements. 460 Len /= EltSize; 461 Idx /= EltSize; 462 463 // INSERTQ: Extract lowest Len elements from lower half of second source and 464 // insert over first source starting at Idx element. The upper 64-bits are 465 // undefined. 466 for (int i = 0; i != Idx; ++i) 467 ShuffleMask.push_back(i); 468 for (int i = 0; i != Len; ++i) 469 ShuffleMask.push_back(i + NumElts); 470 for (int i = Idx + Len; i != (int)HalfElts; ++i) 471 ShuffleMask.push_back(i); 472 for (int i = HalfElts; i != (int)NumElts; ++i) 473 ShuffleMask.push_back(SM_SentinelUndef); 474 } 475 476 void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits, 477 ArrayRef<uint64_t> RawMask, const APInt &UndefElts, 478 SmallVectorImpl<int> &ShuffleMask) { 479 unsigned VecSize = NumElts * ScalarBits; 480 unsigned NumLanes = VecSize / 128; 481 unsigned NumEltsPerLane = NumElts / NumLanes; 482 assert((VecSize == 128 || VecSize == 256 || VecSize == 512) && 483 "Unexpected vector size"); 484 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size"); 485 486 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { 487 if (UndefElts[i]) { 488 ShuffleMask.push_back(SM_SentinelUndef); 489 continue; 490 } 491 uint64_t M = RawMask[i]; 492 M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3)); 493 unsigned LaneOffset = i & ~(NumEltsPerLane - 1); 494 ShuffleMask.push_back((int)(LaneOffset + M)); 495 } 496 } 497 498 void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z, 499 ArrayRef<uint64_t> RawMask, const APInt &UndefElts, 500 SmallVectorImpl<int> &ShuffleMask) { 501 unsigned VecSize = NumElts * ScalarBits; 502 unsigned NumLanes = VecSize / 128; 503 unsigned NumEltsPerLane = NumElts / NumLanes; 504 assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size"); 505 assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size"); 506 assert((NumElts == RawMask.size()) && "Unexpected mask size"); 507 508 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { 509 if (UndefElts[i]) { 510 ShuffleMask.push_back(SM_SentinelUndef); 511 continue; 512 } 513 514 // VPERMIL2 Operation. 515 // Bits[3] - Match Bit. 516 // Bits[2:1] - (Per Lane) PD Shuffle Mask. 517 // Bits[2:0] - (Per Lane) PS Shuffle Mask. 518 uint64_t Selector = RawMask[i]; 519 unsigned MatchBit = (Selector >> 3) & 0x1; 520 521 // M2Z[0:1] MatchBit 522 // 0Xb X Source selected by Selector index. 523 // 10b 0 Source selected by Selector index. 524 // 10b 1 Zero. 525 // 11b 0 Zero. 526 // 11b 1 Source selected by Selector index. 527 if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) { 528 ShuffleMask.push_back(SM_SentinelZero); 529 continue; 530 } 531 532 int Index = i & ~(NumEltsPerLane - 1); 533 if (ScalarBits == 64) 534 Index += (Selector >> 1) & 0x1; 535 else 536 Index += Selector & 0x3; 537 538 int Src = (Selector >> 2) & 0x1; 539 Index += Src * NumElts; 540 ShuffleMask.push_back(Index); 541 } 542 } 543 544 void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, 545 SmallVectorImpl<int> &ShuffleMask) { 546 uint64_t EltMaskSize = RawMask.size() - 1; 547 for (int i = 0, e = RawMask.size(); i != e; ++i) { 548 if (UndefElts[i]) { 549 ShuffleMask.push_back(SM_SentinelUndef); 550 continue; 551 } 552 uint64_t M = RawMask[i]; 553 M &= EltMaskSize; 554 ShuffleMask.push_back((int)M); 555 } 556 } 557 558 void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts, 559 SmallVectorImpl<int> &ShuffleMask) { 560 uint64_t EltMaskSize = (RawMask.size() * 2) - 1; 561 for (int i = 0, e = RawMask.size(); i != e; ++i) { 562 if (UndefElts[i]) { 563 ShuffleMask.push_back(SM_SentinelUndef); 564 continue; 565 } 566 uint64_t M = RawMask[i]; 567 M &= EltMaskSize; 568 ShuffleMask.push_back((int)M); 569 } 570 } 571 572 } // namespace llvm 573