xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/Host.h"
32 
33 using namespace llvm;
34 
35 #define GET_REGINFO_MC_DESC
36 #include "X86GenRegisterInfo.inc"
37 
38 #define GET_INSTRINFO_MC_DESC
39 #define GET_INSTRINFO_MC_HELPERS
40 #define ENABLE_INSTR_PREDICATE_VERIFIER
41 #include "X86GenInstrInfo.inc"
42 
43 #define GET_SUBTARGETINFO_MC_DESC
44 #include "X86GenSubtargetInfo.inc"
45 
46 std::string X86_MC::ParseX86Triple(const Triple &TT) {
47   std::string FS;
48   // SSE2 should default to enabled in 64-bit mode, but can be turned off
49   // explicitly.
50   if (TT.isArch64Bit())
51     FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
52   else if (TT.getEnvironment() != Triple::CODE16)
53     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
54   else
55     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
56 
57   return FS;
58 }
59 
60 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
61   if (TT.getArch() == Triple::x86_64)
62     return DWARFFlavour::X86_64;
63 
64   if (TT.isOSDarwin())
65     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
66   if (TT.isOSCygMing())
67     // Unsupported by now, just quick fallback
68     return DWARFFlavour::X86_32_Generic;
69   return DWARFFlavour::X86_32_Generic;
70 }
71 
72 bool X86_MC::hasLockPrefix(const MCInst &MI) {
73   return MI.getFlags() & X86::IP_HAS_LOCK;
74 }
75 
76 static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
77   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
78   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
79   const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
80 
81   return (Base.isReg() && Base.getReg() != 0 && RC.contains(Base.getReg())) ||
82          (Index.isReg() && Index.getReg() != 0 && RC.contains(Index.getReg()));
83 }
84 
85 bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
86                                const MCSubtargetInfo &STI) {
87   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
88   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
89 
90   if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && Base.getReg() == 0 &&
91       Index.isReg() && Index.getReg() == 0)
92     return true;
93   return isMemOperand(MI, Op, X86::GR16RegClassID);
94 }
95 
96 bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
97   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
98   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
99   if (Base.isReg() && Base.getReg() == X86::EIP) {
100     assert(Index.isReg() && Index.getReg() == 0 && "Invalid eip-based address");
101     return true;
102   }
103   if (Index.isReg() && Index.getReg() == X86::EIZ)
104     return true;
105   return isMemOperand(MI, Op, X86::GR32RegClassID);
106 }
107 
108 #ifndef NDEBUG
109 bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
110   return isMemOperand(MI, Op, X86::GR64RegClassID);
111 }
112 #endif
113 
114 bool X86_MC::needsAddressSizeOverride(const MCInst &MI,
115                                       const MCSubtargetInfo &STI,
116                                       int MemoryOperand, uint64_t TSFlags) {
117   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
118   bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
119   bool Is32BitMode = STI.hasFeature(X86::Is32Bit);
120   bool Is64BitMode = STI.hasFeature(X86::Is64Bit);
121   if ((Is16BitMode && AdSize == X86II::AdSize32) ||
122       (Is32BitMode && AdSize == X86II::AdSize16) ||
123       (Is64BitMode && AdSize == X86II::AdSize32))
124     return true;
125   uint64_t Form = TSFlags & X86II::FormMask;
126   switch (Form) {
127   default:
128     break;
129   case X86II::RawFrmDstSrc: {
130     unsigned siReg = MI.getOperand(1).getReg();
131     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
132             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
133             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
134            "SI and DI register sizes do not match");
135     return (!Is32BitMode && siReg == X86::ESI) ||
136            (Is32BitMode && siReg == X86::SI);
137   }
138   case X86II::RawFrmSrc: {
139     unsigned siReg = MI.getOperand(0).getReg();
140     return (!Is32BitMode && siReg == X86::ESI) ||
141            (Is32BitMode && siReg == X86::SI);
142   }
143   case X86II::RawFrmDst: {
144     unsigned siReg = MI.getOperand(0).getReg();
145     return (!Is32BitMode && siReg == X86::EDI) ||
146            (Is32BitMode && siReg == X86::DI);
147   }
148   }
149 
150   // Determine where the memory operand starts, if present.
151   if (MemoryOperand < 0)
152     return false;
153 
154   if (STI.hasFeature(X86::Is64Bit)) {
155     assert(!is16BitMemOperand(MI, MemoryOperand, STI));
156     return is32BitMemOperand(MI, MemoryOperand);
157   }
158   if (STI.hasFeature(X86::Is32Bit)) {
159     assert(!is64BitMemOperand(MI, MemoryOperand));
160     return is16BitMemOperand(MI, MemoryOperand, STI);
161   }
162   assert(STI.hasFeature(X86::Is16Bit));
163   assert(!is64BitMemOperand(MI, MemoryOperand));
164   return !is16BitMemOperand(MI, MemoryOperand, STI);
165 }
166 
167 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
168   // FIXME: TableGen these.
169   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
170     unsigned SEH = MRI->getEncodingValue(Reg);
171     MRI->mapLLVMRegToSEHReg(Reg, SEH);
172   }
173 
174   // Mapping from CodeView to MC register id.
175   static const struct {
176     codeview::RegisterId CVReg;
177     MCPhysReg Reg;
178   } RegMap[] = {
179       {codeview::RegisterId::AL, X86::AL},
180       {codeview::RegisterId::CL, X86::CL},
181       {codeview::RegisterId::DL, X86::DL},
182       {codeview::RegisterId::BL, X86::BL},
183       {codeview::RegisterId::AH, X86::AH},
184       {codeview::RegisterId::CH, X86::CH},
185       {codeview::RegisterId::DH, X86::DH},
186       {codeview::RegisterId::BH, X86::BH},
187       {codeview::RegisterId::AX, X86::AX},
188       {codeview::RegisterId::CX, X86::CX},
189       {codeview::RegisterId::DX, X86::DX},
190       {codeview::RegisterId::BX, X86::BX},
191       {codeview::RegisterId::SP, X86::SP},
192       {codeview::RegisterId::BP, X86::BP},
193       {codeview::RegisterId::SI, X86::SI},
194       {codeview::RegisterId::DI, X86::DI},
195       {codeview::RegisterId::EAX, X86::EAX},
196       {codeview::RegisterId::ECX, X86::ECX},
197       {codeview::RegisterId::EDX, X86::EDX},
198       {codeview::RegisterId::EBX, X86::EBX},
199       {codeview::RegisterId::ESP, X86::ESP},
200       {codeview::RegisterId::EBP, X86::EBP},
201       {codeview::RegisterId::ESI, X86::ESI},
202       {codeview::RegisterId::EDI, X86::EDI},
203 
204       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
205 
206       {codeview::RegisterId::ST0, X86::ST0},
207       {codeview::RegisterId::ST1, X86::ST1},
208       {codeview::RegisterId::ST2, X86::ST2},
209       {codeview::RegisterId::ST3, X86::ST3},
210       {codeview::RegisterId::ST4, X86::ST4},
211       {codeview::RegisterId::ST5, X86::ST5},
212       {codeview::RegisterId::ST6, X86::ST6},
213       {codeview::RegisterId::ST7, X86::ST7},
214 
215       {codeview::RegisterId::ST0, X86::FP0},
216       {codeview::RegisterId::ST1, X86::FP1},
217       {codeview::RegisterId::ST2, X86::FP2},
218       {codeview::RegisterId::ST3, X86::FP3},
219       {codeview::RegisterId::ST4, X86::FP4},
220       {codeview::RegisterId::ST5, X86::FP5},
221       {codeview::RegisterId::ST6, X86::FP6},
222       {codeview::RegisterId::ST7, X86::FP7},
223 
224       {codeview::RegisterId::MM0, X86::MM0},
225       {codeview::RegisterId::MM1, X86::MM1},
226       {codeview::RegisterId::MM2, X86::MM2},
227       {codeview::RegisterId::MM3, X86::MM3},
228       {codeview::RegisterId::MM4, X86::MM4},
229       {codeview::RegisterId::MM5, X86::MM5},
230       {codeview::RegisterId::MM6, X86::MM6},
231       {codeview::RegisterId::MM7, X86::MM7},
232 
233       {codeview::RegisterId::XMM0, X86::XMM0},
234       {codeview::RegisterId::XMM1, X86::XMM1},
235       {codeview::RegisterId::XMM2, X86::XMM2},
236       {codeview::RegisterId::XMM3, X86::XMM3},
237       {codeview::RegisterId::XMM4, X86::XMM4},
238       {codeview::RegisterId::XMM5, X86::XMM5},
239       {codeview::RegisterId::XMM6, X86::XMM6},
240       {codeview::RegisterId::XMM7, X86::XMM7},
241 
242       {codeview::RegisterId::XMM8, X86::XMM8},
243       {codeview::RegisterId::XMM9, X86::XMM9},
244       {codeview::RegisterId::XMM10, X86::XMM10},
245       {codeview::RegisterId::XMM11, X86::XMM11},
246       {codeview::RegisterId::XMM12, X86::XMM12},
247       {codeview::RegisterId::XMM13, X86::XMM13},
248       {codeview::RegisterId::XMM14, X86::XMM14},
249       {codeview::RegisterId::XMM15, X86::XMM15},
250 
251       {codeview::RegisterId::SIL, X86::SIL},
252       {codeview::RegisterId::DIL, X86::DIL},
253       {codeview::RegisterId::BPL, X86::BPL},
254       {codeview::RegisterId::SPL, X86::SPL},
255       {codeview::RegisterId::RAX, X86::RAX},
256       {codeview::RegisterId::RBX, X86::RBX},
257       {codeview::RegisterId::RCX, X86::RCX},
258       {codeview::RegisterId::RDX, X86::RDX},
259       {codeview::RegisterId::RSI, X86::RSI},
260       {codeview::RegisterId::RDI, X86::RDI},
261       {codeview::RegisterId::RBP, X86::RBP},
262       {codeview::RegisterId::RSP, X86::RSP},
263       {codeview::RegisterId::R8, X86::R8},
264       {codeview::RegisterId::R9, X86::R9},
265       {codeview::RegisterId::R10, X86::R10},
266       {codeview::RegisterId::R11, X86::R11},
267       {codeview::RegisterId::R12, X86::R12},
268       {codeview::RegisterId::R13, X86::R13},
269       {codeview::RegisterId::R14, X86::R14},
270       {codeview::RegisterId::R15, X86::R15},
271       {codeview::RegisterId::R8B, X86::R8B},
272       {codeview::RegisterId::R9B, X86::R9B},
273       {codeview::RegisterId::R10B, X86::R10B},
274       {codeview::RegisterId::R11B, X86::R11B},
275       {codeview::RegisterId::R12B, X86::R12B},
276       {codeview::RegisterId::R13B, X86::R13B},
277       {codeview::RegisterId::R14B, X86::R14B},
278       {codeview::RegisterId::R15B, X86::R15B},
279       {codeview::RegisterId::R8W, X86::R8W},
280       {codeview::RegisterId::R9W, X86::R9W},
281       {codeview::RegisterId::R10W, X86::R10W},
282       {codeview::RegisterId::R11W, X86::R11W},
283       {codeview::RegisterId::R12W, X86::R12W},
284       {codeview::RegisterId::R13W, X86::R13W},
285       {codeview::RegisterId::R14W, X86::R14W},
286       {codeview::RegisterId::R15W, X86::R15W},
287       {codeview::RegisterId::R8D, X86::R8D},
288       {codeview::RegisterId::R9D, X86::R9D},
289       {codeview::RegisterId::R10D, X86::R10D},
290       {codeview::RegisterId::R11D, X86::R11D},
291       {codeview::RegisterId::R12D, X86::R12D},
292       {codeview::RegisterId::R13D, X86::R13D},
293       {codeview::RegisterId::R14D, X86::R14D},
294       {codeview::RegisterId::R15D, X86::R15D},
295       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
296       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
297       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
298       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
299       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
300       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
301       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
302       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
303       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
304       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
305       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
306       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
307       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
308       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
309       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
310       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
311       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
312       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
313       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
314       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
315       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
316       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
317       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
318       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
319       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
320       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
321       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
322       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
323       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
324       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
325       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
326       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
327       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
328       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
329       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
330       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
331       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
332       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
333       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
334       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
335       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
336       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
337       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
338       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
339       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
340       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
341       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
342       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
343       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
344       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
345       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
346       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
347       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
348       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
349       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
350       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
351       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
352       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
353       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
354       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
355       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
356       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
357       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
358       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
359       {codeview::RegisterId::AMD64_K0, X86::K0},
360       {codeview::RegisterId::AMD64_K1, X86::K1},
361       {codeview::RegisterId::AMD64_K2, X86::K2},
362       {codeview::RegisterId::AMD64_K3, X86::K3},
363       {codeview::RegisterId::AMD64_K4, X86::K4},
364       {codeview::RegisterId::AMD64_K5, X86::K5},
365       {codeview::RegisterId::AMD64_K6, X86::K6},
366       {codeview::RegisterId::AMD64_K7, X86::K7},
367       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
368       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
369       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
370       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
371       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
372       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
373       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
374       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
375       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
376       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
377       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
378       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
379       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
380       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
381       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
382       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
383 
384   };
385   for (const auto &I : RegMap)
386     MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
387 }
388 
389 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
390                                                   StringRef CPU, StringRef FS) {
391   std::string ArchFS = X86_MC::ParseX86Triple(TT);
392   assert(!ArchFS.empty() && "Failed to parse X86 triple");
393   if (!FS.empty())
394     ArchFS = (Twine(ArchFS) + "," + FS).str();
395 
396   if (CPU.empty())
397     CPU = "generic";
398 
399   return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
400 }
401 
402 static MCInstrInfo *createX86MCInstrInfo() {
403   MCInstrInfo *X = new MCInstrInfo();
404   InitX86MCInstrInfo(X);
405   return X;
406 }
407 
408 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
409   unsigned RA = (TT.getArch() == Triple::x86_64)
410                     ? X86::RIP  // Should have dwarf #16.
411                     : X86::EIP; // Should have dwarf #8.
412 
413   MCRegisterInfo *X = new MCRegisterInfo();
414   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
415                         X86_MC::getDwarfRegFlavour(TT, true), RA);
416   X86_MC::initLLVMToSEHAndCVRegMapping(X);
417   return X;
418 }
419 
420 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
421                                      const Triple &TheTriple,
422                                      const MCTargetOptions &Options) {
423   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
424 
425   MCAsmInfo *MAI;
426   if (TheTriple.isOSBinFormatMachO()) {
427     if (is64Bit)
428       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
429     else
430       MAI = new X86MCAsmInfoDarwin(TheTriple);
431   } else if (TheTriple.isOSBinFormatELF()) {
432     // Force the use of an ELF container.
433     MAI = new X86ELFMCAsmInfo(TheTriple);
434   } else if (TheTriple.isWindowsMSVCEnvironment() ||
435              TheTriple.isWindowsCoreCLREnvironment()) {
436     if (Options.getAssemblyLanguage().equals_insensitive("masm"))
437       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
438     else
439       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
440   } else if (TheTriple.isOSCygMing() ||
441              TheTriple.isWindowsItaniumEnvironment()) {
442     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
443   } else {
444     // The default is ELF.
445     MAI = new X86ELFMCAsmInfo(TheTriple);
446   }
447 
448   // Initialize initial frame state.
449   // Calculate amount of bytes used for return address storing
450   int stackGrowth = is64Bit ? -8 : -4;
451 
452   // Initial state of the frame pointer is esp+stackGrowth.
453   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
454   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
455       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
456   MAI->addInitialFrameState(Inst);
457 
458   // Add return address to move list
459   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
460   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
461       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
462   MAI->addInitialFrameState(Inst2);
463 
464   return MAI;
465 }
466 
467 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
468                                              unsigned SyntaxVariant,
469                                              const MCAsmInfo &MAI,
470                                              const MCInstrInfo &MII,
471                                              const MCRegisterInfo &MRI) {
472   if (SyntaxVariant == 0)
473     return new X86ATTInstPrinter(MAI, MII, MRI);
474   if (SyntaxVariant == 1)
475     return new X86IntelInstPrinter(MAI, MII, MRI);
476   return nullptr;
477 }
478 
479 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
480                                                    MCContext &Ctx) {
481   // Default to the stock relocation info.
482   return llvm::createMCRelocationInfo(TheTriple, Ctx);
483 }
484 
485 namespace llvm {
486 namespace X86_MC {
487 
488 class X86MCInstrAnalysis : public MCInstrAnalysis {
489   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
490   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
491   virtual ~X86MCInstrAnalysis() = default;
492 
493 public:
494   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
495 
496 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
497 #include "X86GenSubtargetInfo.inc"
498 
499   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
500                             APInt &Mask) const override;
501   std::vector<std::pair<uint64_t, uint64_t>>
502   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
503                  uint64_t GotSectionVA,
504                  const Triple &TargetTriple) const override;
505 
506   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
507                       uint64_t &Target) const override;
508   Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
509                                                   const MCSubtargetInfo *STI,
510                                                   uint64_t Addr,
511                                                   uint64_t Size) const override;
512   Optional<uint64_t>
513   getMemoryOperandRelocationOffset(const MCInst &Inst,
514                                    uint64_t Size) const override;
515 };
516 
517 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
518 #include "X86GenSubtargetInfo.inc"
519 
520 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
521                                               const MCInst &Inst,
522                                               APInt &Mask) const {
523   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
524   unsigned NumDefs = Desc.getNumDefs();
525   unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
526   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
527          "Unexpected number of bits in the mask!");
528 
529   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
530   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
531   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
532 
533   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
534   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
535   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
536 
537   auto ClearsSuperReg = [=](unsigned RegID) {
538     // On X86-64, a general purpose integer register is viewed as a 64-bit
539     // register internal to the processor.
540     // An update to the lower 32 bits of a 64 bit integer register is
541     // architecturally defined to zero extend the upper 32 bits.
542     if (GR32RC.contains(RegID))
543       return true;
544 
545     // Early exit if this instruction has no vex/evex/xop prefix.
546     if (!HasEVEX && !HasVEX && !HasXOP)
547       return false;
548 
549     // All VEX and EVEX encoded instructions are defined to zero the high bits
550     // of the destination register up to VLMAX (i.e. the maximum vector register
551     // width pertaining to the instruction).
552     // We assume the same behavior for XOP instructions too.
553     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
554   };
555 
556   Mask.clearAllBits();
557   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
558     const MCOperand &Op = Inst.getOperand(I);
559     if (ClearsSuperReg(Op.getReg()))
560       Mask.setBit(I);
561   }
562 
563   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
564     const MCPhysReg Reg = Desc.getImplicitDefs()[I];
565     if (ClearsSuperReg(Reg))
566       Mask.setBit(NumDefs + I);
567   }
568 
569   return Mask.getBoolValue();
570 }
571 
572 static std::vector<std::pair<uint64_t, uint64_t>>
573 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
574                   uint64_t GotPltSectionVA) {
575   // Do a lightweight parsing of PLT entries.
576   std::vector<std::pair<uint64_t, uint64_t>> Result;
577   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
578     // Recognize a jmp.
579     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
580       // The jmp instruction at the beginning of each PLT entry jumps to the
581       // address of the base of the .got.plt section plus the immediate.
582       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
583       Result.push_back(
584           std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
585       Byte += 6;
586     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
587       // The jmp instruction at the beginning of each PLT entry jumps to the
588       // immediate.
589       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
590       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
591       Byte += 6;
592     } else
593       Byte++;
594   }
595   return Result;
596 }
597 
598 static std::vector<std::pair<uint64_t, uint64_t>>
599 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
600   // Do a lightweight parsing of PLT entries.
601   std::vector<std::pair<uint64_t, uint64_t>> Result;
602   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
603     // Recognize a jmp.
604     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
605       // The jmp instruction at the beginning of each PLT entry jumps to the
606       // address of the next instruction plus the immediate.
607       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
608       Result.push_back(
609           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
610       Byte += 6;
611     } else
612       Byte++;
613   }
614   return Result;
615 }
616 
617 std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
618     uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
619     uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
620   switch (TargetTriple.getArch()) {
621     case Triple::x86:
622       return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
623     case Triple::x86_64:
624       return findX86_64PltEntries(PltSectionVA, PltContents);
625     default:
626       return {};
627     }
628 }
629 
630 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
631                                         uint64_t Size, uint64_t &Target) const {
632   if (Inst.getNumOperands() == 0 ||
633       Info->get(Inst.getOpcode()).OpInfo[0].OperandType != MCOI::OPERAND_PCREL)
634     return false;
635   Target = Addr + Size + Inst.getOperand(0).getImm();
636   return true;
637 }
638 
639 Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
640     const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
641     uint64_t Size) const {
642   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
643   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
644   if (MemOpStart == -1)
645     return None;
646   MemOpStart += X86II::getOperandBias(MCID);
647 
648   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
649   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
650   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
651   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
652   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
653   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
654       !Disp.isImm())
655     return None;
656 
657   // RIP-relative addressing.
658   if (BaseReg.getReg() == X86::RIP)
659     return Addr + Size + Disp.getImm();
660 
661   return None;
662 }
663 
664 Optional<uint64_t>
665 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
666                                                      uint64_t Size) const {
667   if (Inst.getOpcode() != X86::LEA64r)
668     return None;
669   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
670   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
671   if (MemOpStart == -1)
672     return None;
673   MemOpStart += X86II::getOperandBias(MCID);
674   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
675   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
676   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
677   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
678   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
679   // Must be a simple rip-relative address.
680   if (BaseReg.getReg() != X86::RIP || SegReg.getReg() != 0 ||
681       IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || !Disp.isImm())
682     return None;
683   // rip-relative ModR/M immediate is 32 bits.
684   assert(Size > 4 && "invalid instruction size for rip-relative lea");
685   return Size - 4;
686 }
687 
688 } // end of namespace X86_MC
689 
690 } // end of namespace llvm
691 
692 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
693   return new X86_MC::X86MCInstrAnalysis(Info);
694 }
695 
696 // Force static initialization.
697 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
698   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
699     // Register the MC asm info.
700     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
701 
702     // Register the MC instruction info.
703     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
704 
705     // Register the MC register info.
706     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
707 
708     // Register the MC subtarget info.
709     TargetRegistry::RegisterMCSubtargetInfo(*T,
710                                             X86_MC::createX86MCSubtargetInfo);
711 
712     // Register the MC instruction analyzer.
713     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
714 
715     // Register the code emitter.
716     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
717 
718     // Register the obj target streamer.
719     TargetRegistry::RegisterObjectTargetStreamer(*T,
720                                                  createX86ObjectTargetStreamer);
721 
722     // Register the asm target streamer.
723     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
724 
725     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
726 
727     // Register the MCInstPrinter.
728     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
729 
730     // Register the MC relocation info.
731     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
732   }
733 
734   // Register the asm backend.
735   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
736                                        createX86_32AsmBackend);
737   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
738                                        createX86_64AsmBackend);
739 }
740 
741 MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
742                                               bool High) {
743   switch (Size) {
744   default: return X86::NoRegister;
745   case 8:
746     if (High) {
747       switch (Reg.id()) {
748       default: return getX86SubSuperRegisterOrZero(Reg, 64);
749       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
750         return X86::SI;
751       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
752         return X86::DI;
753       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
754         return X86::BP;
755       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
756         return X86::SP;
757       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
758         return X86::AH;
759       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
760         return X86::DH;
761       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
762         return X86::CH;
763       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
764         return X86::BH;
765       }
766     } else {
767       switch (Reg.id()) {
768       default: return X86::NoRegister;
769       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
770         return X86::AL;
771       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
772         return X86::DL;
773       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
774         return X86::CL;
775       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
776         return X86::BL;
777       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
778         return X86::SIL;
779       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
780         return X86::DIL;
781       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
782         return X86::BPL;
783       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
784         return X86::SPL;
785       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
786         return X86::R8B;
787       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
788         return X86::R9B;
789       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
790         return X86::R10B;
791       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
792         return X86::R11B;
793       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
794         return X86::R12B;
795       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
796         return X86::R13B;
797       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
798         return X86::R14B;
799       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
800         return X86::R15B;
801       }
802     }
803   case 16:
804     switch (Reg.id()) {
805     default: return X86::NoRegister;
806     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
807       return X86::AX;
808     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
809       return X86::DX;
810     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
811       return X86::CX;
812     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
813       return X86::BX;
814     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
815       return X86::SI;
816     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
817       return X86::DI;
818     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
819       return X86::BP;
820     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
821       return X86::SP;
822     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
823       return X86::R8W;
824     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
825       return X86::R9W;
826     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
827       return X86::R10W;
828     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
829       return X86::R11W;
830     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
831       return X86::R12W;
832     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
833       return X86::R13W;
834     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
835       return X86::R14W;
836     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
837       return X86::R15W;
838     }
839   case 32:
840     switch (Reg.id()) {
841     default: return X86::NoRegister;
842     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
843       return X86::EAX;
844     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
845       return X86::EDX;
846     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
847       return X86::ECX;
848     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
849       return X86::EBX;
850     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
851       return X86::ESI;
852     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
853       return X86::EDI;
854     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
855       return X86::EBP;
856     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
857       return X86::ESP;
858     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
859       return X86::R8D;
860     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
861       return X86::R9D;
862     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
863       return X86::R10D;
864     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
865       return X86::R11D;
866     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
867       return X86::R12D;
868     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
869       return X86::R13D;
870     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
871       return X86::R14D;
872     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
873       return X86::R15D;
874     }
875   case 64:
876     switch (Reg.id()) {
877     default: return 0;
878     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
879       return X86::RAX;
880     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
881       return X86::RDX;
882     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
883       return X86::RCX;
884     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
885       return X86::RBX;
886     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
887       return X86::RSI;
888     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
889       return X86::RDI;
890     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
891       return X86::RBP;
892     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
893       return X86::RSP;
894     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
895       return X86::R8;
896     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
897       return X86::R9;
898     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
899       return X86::R10;
900     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
901       return X86::R11;
902     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
903       return X86::R12;
904     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
905       return X86::R13;
906     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
907       return X86::R14;
908     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
909       return X86::R15;
910     }
911   }
912 }
913 
914 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
915   MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
916   assert(Res != X86::NoRegister && "Unexpected register or VT");
917   return Res;
918 }
919 
920 
921