xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp (revision e51b3d8e53cee7d6a36e34e1cd4d588593d71b40)
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "X86TargetStreamer.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/TargetParser/Host.h"
32 #include "llvm/TargetParser/Triple.h"
33 
34 using namespace llvm;
35 
36 #define GET_REGINFO_MC_DESC
37 #include "X86GenRegisterInfo.inc"
38 
39 #define GET_INSTRINFO_MC_DESC
40 #define GET_INSTRINFO_MC_HELPERS
41 #define ENABLE_INSTR_PREDICATE_VERIFIER
42 #include "X86GenInstrInfo.inc"
43 
44 #define GET_SUBTARGETINFO_MC_DESC
45 #include "X86GenSubtargetInfo.inc"
46 
47 std::string X86_MC::ParseX86Triple(const Triple &TT) {
48   std::string FS;
49   // SSE2 should default to enabled in 64-bit mode, but can be turned off
50   // explicitly.
51   if (TT.isArch64Bit())
52     FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
53   else if (TT.getEnvironment() != Triple::CODE16)
54     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
55   else
56     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
57 
58   return FS;
59 }
60 
61 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
62   if (TT.getArch() == Triple::x86_64)
63     return DWARFFlavour::X86_64;
64 
65   if (TT.isOSDarwin())
66     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
67   if (TT.isOSCygMing())
68     // Unsupported by now, just quick fallback
69     return DWARFFlavour::X86_32_Generic;
70   return DWARFFlavour::X86_32_Generic;
71 }
72 
73 bool X86_MC::hasLockPrefix(const MCInst &MI) {
74   return MI.getFlags() & X86::IP_HAS_LOCK;
75 }
76 
77 static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
78   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
79   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
80   const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
81 
82   return (Base.isReg() && Base.getReg() != 0 && RC.contains(Base.getReg())) ||
83          (Index.isReg() && Index.getReg() != 0 && RC.contains(Index.getReg()));
84 }
85 
86 bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
87                                const MCSubtargetInfo &STI) {
88   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
89   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
90 
91   if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && Base.getReg() == 0 &&
92       Index.isReg() && Index.getReg() == 0)
93     return true;
94   return isMemOperand(MI, Op, X86::GR16RegClassID);
95 }
96 
97 bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
98   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
99   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
100   if (Base.isReg() && Base.getReg() == X86::EIP) {
101     assert(Index.isReg() && Index.getReg() == 0 && "Invalid eip-based address");
102     return true;
103   }
104   if (Index.isReg() && Index.getReg() == X86::EIZ)
105     return true;
106   return isMemOperand(MI, Op, X86::GR32RegClassID);
107 }
108 
109 #ifndef NDEBUG
110 bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
111   return isMemOperand(MI, Op, X86::GR64RegClassID);
112 }
113 #endif
114 
115 bool X86_MC::needsAddressSizeOverride(const MCInst &MI,
116                                       const MCSubtargetInfo &STI,
117                                       int MemoryOperand, uint64_t TSFlags) {
118   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
119   bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
120   bool Is32BitMode = STI.hasFeature(X86::Is32Bit);
121   bool Is64BitMode = STI.hasFeature(X86::Is64Bit);
122   if ((Is16BitMode && AdSize == X86II::AdSize32) ||
123       (Is32BitMode && AdSize == X86II::AdSize16) ||
124       (Is64BitMode && AdSize == X86II::AdSize32))
125     return true;
126   uint64_t Form = TSFlags & X86II::FormMask;
127   switch (Form) {
128   default:
129     break;
130   case X86II::RawFrmDstSrc: {
131     unsigned siReg = MI.getOperand(1).getReg();
132     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
133             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
134             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
135            "SI and DI register sizes do not match");
136     return (!Is32BitMode && siReg == X86::ESI) ||
137            (Is32BitMode && siReg == X86::SI);
138   }
139   case X86II::RawFrmSrc: {
140     unsigned siReg = MI.getOperand(0).getReg();
141     return (!Is32BitMode && siReg == X86::ESI) ||
142            (Is32BitMode && siReg == X86::SI);
143   }
144   case X86II::RawFrmDst: {
145     unsigned siReg = MI.getOperand(0).getReg();
146     return (!Is32BitMode && siReg == X86::EDI) ||
147            (Is32BitMode && siReg == X86::DI);
148   }
149   }
150 
151   // Determine where the memory operand starts, if present.
152   if (MemoryOperand < 0)
153     return false;
154 
155   if (STI.hasFeature(X86::Is64Bit)) {
156     assert(!is16BitMemOperand(MI, MemoryOperand, STI));
157     return is32BitMemOperand(MI, MemoryOperand);
158   }
159   if (STI.hasFeature(X86::Is32Bit)) {
160     assert(!is64BitMemOperand(MI, MemoryOperand));
161     return is16BitMemOperand(MI, MemoryOperand, STI);
162   }
163   assert(STI.hasFeature(X86::Is16Bit));
164   assert(!is64BitMemOperand(MI, MemoryOperand));
165   return !is16BitMemOperand(MI, MemoryOperand, STI);
166 }
167 
168 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
169   // FIXME: TableGen these.
170   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
171     unsigned SEH = MRI->getEncodingValue(Reg);
172     MRI->mapLLVMRegToSEHReg(Reg, SEH);
173   }
174 
175   // Mapping from CodeView to MC register id.
176   static const struct {
177     codeview::RegisterId CVReg;
178     MCPhysReg Reg;
179   } RegMap[] = {
180       {codeview::RegisterId::AL, X86::AL},
181       {codeview::RegisterId::CL, X86::CL},
182       {codeview::RegisterId::DL, X86::DL},
183       {codeview::RegisterId::BL, X86::BL},
184       {codeview::RegisterId::AH, X86::AH},
185       {codeview::RegisterId::CH, X86::CH},
186       {codeview::RegisterId::DH, X86::DH},
187       {codeview::RegisterId::BH, X86::BH},
188       {codeview::RegisterId::AX, X86::AX},
189       {codeview::RegisterId::CX, X86::CX},
190       {codeview::RegisterId::DX, X86::DX},
191       {codeview::RegisterId::BX, X86::BX},
192       {codeview::RegisterId::SP, X86::SP},
193       {codeview::RegisterId::BP, X86::BP},
194       {codeview::RegisterId::SI, X86::SI},
195       {codeview::RegisterId::DI, X86::DI},
196       {codeview::RegisterId::EAX, X86::EAX},
197       {codeview::RegisterId::ECX, X86::ECX},
198       {codeview::RegisterId::EDX, X86::EDX},
199       {codeview::RegisterId::EBX, X86::EBX},
200       {codeview::RegisterId::ESP, X86::ESP},
201       {codeview::RegisterId::EBP, X86::EBP},
202       {codeview::RegisterId::ESI, X86::ESI},
203       {codeview::RegisterId::EDI, X86::EDI},
204 
205       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
206 
207       {codeview::RegisterId::ST0, X86::ST0},
208       {codeview::RegisterId::ST1, X86::ST1},
209       {codeview::RegisterId::ST2, X86::ST2},
210       {codeview::RegisterId::ST3, X86::ST3},
211       {codeview::RegisterId::ST4, X86::ST4},
212       {codeview::RegisterId::ST5, X86::ST5},
213       {codeview::RegisterId::ST6, X86::ST6},
214       {codeview::RegisterId::ST7, X86::ST7},
215 
216       {codeview::RegisterId::ST0, X86::FP0},
217       {codeview::RegisterId::ST1, X86::FP1},
218       {codeview::RegisterId::ST2, X86::FP2},
219       {codeview::RegisterId::ST3, X86::FP3},
220       {codeview::RegisterId::ST4, X86::FP4},
221       {codeview::RegisterId::ST5, X86::FP5},
222       {codeview::RegisterId::ST6, X86::FP6},
223       {codeview::RegisterId::ST7, X86::FP7},
224 
225       {codeview::RegisterId::MM0, X86::MM0},
226       {codeview::RegisterId::MM1, X86::MM1},
227       {codeview::RegisterId::MM2, X86::MM2},
228       {codeview::RegisterId::MM3, X86::MM3},
229       {codeview::RegisterId::MM4, X86::MM4},
230       {codeview::RegisterId::MM5, X86::MM5},
231       {codeview::RegisterId::MM6, X86::MM6},
232       {codeview::RegisterId::MM7, X86::MM7},
233 
234       {codeview::RegisterId::XMM0, X86::XMM0},
235       {codeview::RegisterId::XMM1, X86::XMM1},
236       {codeview::RegisterId::XMM2, X86::XMM2},
237       {codeview::RegisterId::XMM3, X86::XMM3},
238       {codeview::RegisterId::XMM4, X86::XMM4},
239       {codeview::RegisterId::XMM5, X86::XMM5},
240       {codeview::RegisterId::XMM6, X86::XMM6},
241       {codeview::RegisterId::XMM7, X86::XMM7},
242 
243       {codeview::RegisterId::XMM8, X86::XMM8},
244       {codeview::RegisterId::XMM9, X86::XMM9},
245       {codeview::RegisterId::XMM10, X86::XMM10},
246       {codeview::RegisterId::XMM11, X86::XMM11},
247       {codeview::RegisterId::XMM12, X86::XMM12},
248       {codeview::RegisterId::XMM13, X86::XMM13},
249       {codeview::RegisterId::XMM14, X86::XMM14},
250       {codeview::RegisterId::XMM15, X86::XMM15},
251 
252       {codeview::RegisterId::SIL, X86::SIL},
253       {codeview::RegisterId::DIL, X86::DIL},
254       {codeview::RegisterId::BPL, X86::BPL},
255       {codeview::RegisterId::SPL, X86::SPL},
256       {codeview::RegisterId::RAX, X86::RAX},
257       {codeview::RegisterId::RBX, X86::RBX},
258       {codeview::RegisterId::RCX, X86::RCX},
259       {codeview::RegisterId::RDX, X86::RDX},
260       {codeview::RegisterId::RSI, X86::RSI},
261       {codeview::RegisterId::RDI, X86::RDI},
262       {codeview::RegisterId::RBP, X86::RBP},
263       {codeview::RegisterId::RSP, X86::RSP},
264       {codeview::RegisterId::R8, X86::R8},
265       {codeview::RegisterId::R9, X86::R9},
266       {codeview::RegisterId::R10, X86::R10},
267       {codeview::RegisterId::R11, X86::R11},
268       {codeview::RegisterId::R12, X86::R12},
269       {codeview::RegisterId::R13, X86::R13},
270       {codeview::RegisterId::R14, X86::R14},
271       {codeview::RegisterId::R15, X86::R15},
272       {codeview::RegisterId::R8B, X86::R8B},
273       {codeview::RegisterId::R9B, X86::R9B},
274       {codeview::RegisterId::R10B, X86::R10B},
275       {codeview::RegisterId::R11B, X86::R11B},
276       {codeview::RegisterId::R12B, X86::R12B},
277       {codeview::RegisterId::R13B, X86::R13B},
278       {codeview::RegisterId::R14B, X86::R14B},
279       {codeview::RegisterId::R15B, X86::R15B},
280       {codeview::RegisterId::R8W, X86::R8W},
281       {codeview::RegisterId::R9W, X86::R9W},
282       {codeview::RegisterId::R10W, X86::R10W},
283       {codeview::RegisterId::R11W, X86::R11W},
284       {codeview::RegisterId::R12W, X86::R12W},
285       {codeview::RegisterId::R13W, X86::R13W},
286       {codeview::RegisterId::R14W, X86::R14W},
287       {codeview::RegisterId::R15W, X86::R15W},
288       {codeview::RegisterId::R8D, X86::R8D},
289       {codeview::RegisterId::R9D, X86::R9D},
290       {codeview::RegisterId::R10D, X86::R10D},
291       {codeview::RegisterId::R11D, X86::R11D},
292       {codeview::RegisterId::R12D, X86::R12D},
293       {codeview::RegisterId::R13D, X86::R13D},
294       {codeview::RegisterId::R14D, X86::R14D},
295       {codeview::RegisterId::R15D, X86::R15D},
296       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
297       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
298       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
299       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
300       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
301       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
302       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
303       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
304       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
305       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
306       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
307       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
308       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
309       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
310       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
311       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
312       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
313       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
314       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
315       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
316       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
317       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
318       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
319       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
320       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
321       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
322       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
323       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
324       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
325       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
326       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
327       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
328       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
329       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
330       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
331       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
332       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
333       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
334       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
335       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
336       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
337       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
338       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
339       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
340       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
341       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
342       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
343       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
344       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
345       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
346       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
347       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
348       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
349       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
350       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
351       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
352       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
353       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
354       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
355       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
356       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
357       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
358       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
359       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
360       {codeview::RegisterId::AMD64_K0, X86::K0},
361       {codeview::RegisterId::AMD64_K1, X86::K1},
362       {codeview::RegisterId::AMD64_K2, X86::K2},
363       {codeview::RegisterId::AMD64_K3, X86::K3},
364       {codeview::RegisterId::AMD64_K4, X86::K4},
365       {codeview::RegisterId::AMD64_K5, X86::K5},
366       {codeview::RegisterId::AMD64_K6, X86::K6},
367       {codeview::RegisterId::AMD64_K7, X86::K7},
368       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
369       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
370       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
371       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
372       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
373       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
374       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
375       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
376       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
377       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
378       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
379       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
380       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
381       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
382       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
383       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
384 
385   };
386   for (const auto &I : RegMap)
387     MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
388 }
389 
390 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
391                                                   StringRef CPU, StringRef FS) {
392   std::string ArchFS = X86_MC::ParseX86Triple(TT);
393   assert(!ArchFS.empty() && "Failed to parse X86 triple");
394   if (!FS.empty())
395     ArchFS = (Twine(ArchFS) + "," + FS).str();
396 
397   if (CPU.empty())
398     CPU = "generic";
399 
400   return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
401 }
402 
403 static MCInstrInfo *createX86MCInstrInfo() {
404   MCInstrInfo *X = new MCInstrInfo();
405   InitX86MCInstrInfo(X);
406   return X;
407 }
408 
409 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
410   unsigned RA = (TT.getArch() == Triple::x86_64)
411                     ? X86::RIP  // Should have dwarf #16.
412                     : X86::EIP; // Should have dwarf #8.
413 
414   MCRegisterInfo *X = new MCRegisterInfo();
415   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
416                         X86_MC::getDwarfRegFlavour(TT, true), RA);
417   X86_MC::initLLVMToSEHAndCVRegMapping(X);
418   return X;
419 }
420 
421 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
422                                      const Triple &TheTriple,
423                                      const MCTargetOptions &Options) {
424   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
425 
426   MCAsmInfo *MAI;
427   if (TheTriple.isOSBinFormatMachO()) {
428     if (is64Bit)
429       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
430     else
431       MAI = new X86MCAsmInfoDarwin(TheTriple);
432   } else if (TheTriple.isOSBinFormatELF()) {
433     // Force the use of an ELF container.
434     MAI = new X86ELFMCAsmInfo(TheTriple);
435   } else if (TheTriple.isWindowsMSVCEnvironment() ||
436              TheTriple.isWindowsCoreCLREnvironment()) {
437     if (Options.getAssemblyLanguage().equals_insensitive("masm"))
438       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
439     else
440       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
441   } else if (TheTriple.isOSCygMing() ||
442              TheTriple.isWindowsItaniumEnvironment()) {
443     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
444   } else if (TheTriple.isUEFI()) {
445     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
446   } else {
447     // The default is ELF.
448     MAI = new X86ELFMCAsmInfo(TheTriple);
449   }
450 
451   // Initialize initial frame state.
452   // Calculate amount of bytes used for return address storing
453   int stackGrowth = is64Bit ? -8 : -4;
454 
455   // Initial state of the frame pointer is esp+stackGrowth.
456   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
457   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
458       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
459   MAI->addInitialFrameState(Inst);
460 
461   // Add return address to move list
462   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
463   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
464       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
465   MAI->addInitialFrameState(Inst2);
466 
467   return MAI;
468 }
469 
470 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
471                                              unsigned SyntaxVariant,
472                                              const MCAsmInfo &MAI,
473                                              const MCInstrInfo &MII,
474                                              const MCRegisterInfo &MRI) {
475   if (SyntaxVariant == 0)
476     return new X86ATTInstPrinter(MAI, MII, MRI);
477   if (SyntaxVariant == 1)
478     return new X86IntelInstPrinter(MAI, MII, MRI);
479   return nullptr;
480 }
481 
482 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
483                                                    MCContext &Ctx) {
484   // Default to the stock relocation info.
485   return llvm::createMCRelocationInfo(TheTriple, Ctx);
486 }
487 
488 namespace llvm {
489 namespace X86_MC {
490 
491 class X86MCInstrAnalysis : public MCInstrAnalysis {
492   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
493   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
494   virtual ~X86MCInstrAnalysis() = default;
495 
496 public:
497   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
498 
499 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
500 #include "X86GenSubtargetInfo.inc"
501 
502   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
503                             APInt &Mask) const override;
504   std::vector<std::pair<uint64_t, uint64_t>>
505   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
506                  const Triple &TargetTriple) const override;
507 
508   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
509                       uint64_t &Target) const override;
510   std::optional<uint64_t>
511   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
512                                uint64_t Addr, uint64_t Size) const override;
513   std::optional<uint64_t>
514   getMemoryOperandRelocationOffset(const MCInst &Inst,
515                                    uint64_t Size) const override;
516 };
517 
518 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
519 #include "X86GenSubtargetInfo.inc"
520 
521 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
522                                               const MCInst &Inst,
523                                               APInt &Mask) const {
524   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
525   unsigned NumDefs = Desc.getNumDefs();
526   unsigned NumImplicitDefs = Desc.implicit_defs().size();
527   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
528          "Unexpected number of bits in the mask!");
529 
530   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
531   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
532   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
533 
534   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
535   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
536   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
537 
538   auto ClearsSuperReg = [=](unsigned RegID) {
539     // On X86-64, a general purpose integer register is viewed as a 64-bit
540     // register internal to the processor.
541     // An update to the lower 32 bits of a 64 bit integer register is
542     // architecturally defined to zero extend the upper 32 bits.
543     if (GR32RC.contains(RegID))
544       return true;
545 
546     // Early exit if this instruction has no vex/evex/xop prefix.
547     if (!HasEVEX && !HasVEX && !HasXOP)
548       return false;
549 
550     // All VEX and EVEX encoded instructions are defined to zero the high bits
551     // of the destination register up to VLMAX (i.e. the maximum vector register
552     // width pertaining to the instruction).
553     // We assume the same behavior for XOP instructions too.
554     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
555   };
556 
557   Mask.clearAllBits();
558   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
559     const MCOperand &Op = Inst.getOperand(I);
560     if (ClearsSuperReg(Op.getReg()))
561       Mask.setBit(I);
562   }
563 
564   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
565     const MCPhysReg Reg = Desc.implicit_defs()[I];
566     if (ClearsSuperReg(Reg))
567       Mask.setBit(NumDefs + I);
568   }
569 
570   return Mask.getBoolValue();
571 }
572 
573 static std::vector<std::pair<uint64_t, uint64_t>>
574 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
575   // Do a lightweight parsing of PLT entries.
576   std::vector<std::pair<uint64_t, uint64_t>> Result;
577   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
578     // Recognize a jmp.
579     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
580       // The jmp instruction at the beginning of each PLT entry jumps to the
581       // address of the base of the .got.plt section plus the immediate.
582       // Set the 1 << 32 bit to let ELFObjectFileBase::getPltEntries convert the
583       // offset to an address. Imm may be a negative int32_t if the GOT entry is
584       // in .got.
585       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
586       Result.emplace_back(PltSectionVA + Byte, Imm | (uint64_t(1) << 32));
587       Byte += 6;
588     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
589       // The jmp instruction at the beginning of each PLT entry jumps to the
590       // immediate.
591       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
592       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
593       Byte += 6;
594     } else
595       Byte++;
596   }
597   return Result;
598 }
599 
600 static std::vector<std::pair<uint64_t, uint64_t>>
601 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
602   // Do a lightweight parsing of PLT entries.
603   std::vector<std::pair<uint64_t, uint64_t>> Result;
604   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
605     // Recognize a jmp.
606     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
607       // The jmp instruction at the beginning of each PLT entry jumps to the
608       // address of the next instruction plus the immediate.
609       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
610       Result.push_back(
611           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
612       Byte += 6;
613     } else
614       Byte++;
615   }
616   return Result;
617 }
618 
619 std::vector<std::pair<uint64_t, uint64_t>>
620 X86MCInstrAnalysis::findPltEntries(uint64_t PltSectionVA,
621                                    ArrayRef<uint8_t> PltContents,
622                                    const Triple &TargetTriple) const {
623   switch (TargetTriple.getArch()) {
624   case Triple::x86:
625     return findX86PltEntries(PltSectionVA, PltContents);
626   case Triple::x86_64:
627     return findX86_64PltEntries(PltSectionVA, PltContents);
628   default:
629     return {};
630   }
631 }
632 
633 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
634                                         uint64_t Size, uint64_t &Target) const {
635   if (Inst.getNumOperands() == 0 ||
636       Info->get(Inst.getOpcode()).operands()[0].OperandType !=
637           MCOI::OPERAND_PCREL)
638     return false;
639   Target = Addr + Size + Inst.getOperand(0).getImm();
640   return true;
641 }
642 
643 std::optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
644     const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
645     uint64_t Size) const {
646   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
647   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
648   if (MemOpStart == -1)
649     return std::nullopt;
650   MemOpStart += X86II::getOperandBias(MCID);
651 
652   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
653   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
654   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
655   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
656   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
657   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
658       !Disp.isImm())
659     return std::nullopt;
660 
661   // RIP-relative addressing.
662   if (BaseReg.getReg() == X86::RIP)
663     return Addr + Size + Disp.getImm();
664 
665   return std::nullopt;
666 }
667 
668 std::optional<uint64_t>
669 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
670                                                      uint64_t Size) const {
671   if (Inst.getOpcode() != X86::LEA64r)
672     return std::nullopt;
673   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
674   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
675   if (MemOpStart == -1)
676     return std::nullopt;
677   MemOpStart += X86II::getOperandBias(MCID);
678   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
679   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
680   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
681   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
682   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
683   // Must be a simple rip-relative address.
684   if (BaseReg.getReg() != X86::RIP || SegReg.getReg() != 0 ||
685       IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || !Disp.isImm())
686     return std::nullopt;
687   // rip-relative ModR/M immediate is 32 bits.
688   assert(Size > 4 && "invalid instruction size for rip-relative lea");
689   return Size - 4;
690 }
691 
692 } // end of namespace X86_MC
693 
694 } // end of namespace llvm
695 
696 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
697   return new X86_MC::X86MCInstrAnalysis(Info);
698 }
699 
700 // Force static initialization.
701 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
702   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
703     // Register the MC asm info.
704     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
705 
706     // Register the MC instruction info.
707     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
708 
709     // Register the MC register info.
710     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
711 
712     // Register the MC subtarget info.
713     TargetRegistry::RegisterMCSubtargetInfo(*T,
714                                             X86_MC::createX86MCSubtargetInfo);
715 
716     // Register the MC instruction analyzer.
717     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
718 
719     // Register the code emitter.
720     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
721 
722     // Register the obj target streamer.
723     TargetRegistry::RegisterObjectTargetStreamer(*T,
724                                                  createX86ObjectTargetStreamer);
725 
726     // Register the asm target streamer.
727     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
728 
729     // Register the null streamer.
730     TargetRegistry::RegisterNullTargetStreamer(*T, createX86NullTargetStreamer);
731 
732     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
733 
734     // Register the MCInstPrinter.
735     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
736 
737     // Register the MC relocation info.
738     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
739   }
740 
741   // Register the asm backend.
742   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
743                                        createX86_32AsmBackend);
744   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
745                                        createX86_64AsmBackend);
746 }
747 
748 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size,
749                                         bool High) {
750   switch (Size) {
751   default: llvm_unreachable("illegal register size");
752   case 8:
753     if (High) {
754       switch (Reg.id()) {
755       default: return X86::NoRegister;
756       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
757         return X86::AH;
758       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
759         return X86::DH;
760       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
761         return X86::CH;
762       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
763         return X86::BH;
764       }
765     } else {
766       switch (Reg.id()) {
767       default: return X86::NoRegister;
768       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
769         return X86::AL;
770       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
771         return X86::DL;
772       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
773         return X86::CL;
774       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
775         return X86::BL;
776       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
777         return X86::SIL;
778       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
779         return X86::DIL;
780       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
781         return X86::BPL;
782       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
783         return X86::SPL;
784       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
785         return X86::R8B;
786       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
787         return X86::R9B;
788       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
789         return X86::R10B;
790       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
791         return X86::R11B;
792       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
793         return X86::R12B;
794       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
795         return X86::R13B;
796       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
797         return X86::R14B;
798       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
799         return X86::R15B;
800       }
801     }
802   case 16:
803     switch (Reg.id()) {
804     default: return X86::NoRegister;
805     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
806       return X86::AX;
807     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
808       return X86::DX;
809     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
810       return X86::CX;
811     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
812       return X86::BX;
813     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
814       return X86::SI;
815     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
816       return X86::DI;
817     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
818       return X86::BP;
819     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
820       return X86::SP;
821     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
822       return X86::R8W;
823     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
824       return X86::R9W;
825     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
826       return X86::R10W;
827     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
828       return X86::R11W;
829     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
830       return X86::R12W;
831     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
832       return X86::R13W;
833     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
834       return X86::R14W;
835     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
836       return X86::R15W;
837     }
838   case 32:
839     switch (Reg.id()) {
840     default: return X86::NoRegister;
841     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
842       return X86::EAX;
843     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
844       return X86::EDX;
845     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
846       return X86::ECX;
847     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
848       return X86::EBX;
849     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
850       return X86::ESI;
851     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
852       return X86::EDI;
853     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
854       return X86::EBP;
855     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
856       return X86::ESP;
857     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
858       return X86::R8D;
859     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
860       return X86::R9D;
861     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
862       return X86::R10D;
863     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
864       return X86::R11D;
865     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
866       return X86::R12D;
867     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
868       return X86::R13D;
869     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
870       return X86::R14D;
871     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
872       return X86::R15D;
873     }
874   case 64:
875     switch (Reg.id()) {
876     default: return X86::NoRegister;
877     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
878       return X86::RAX;
879     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
880       return X86::RDX;
881     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
882       return X86::RCX;
883     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
884       return X86::RBX;
885     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
886       return X86::RSI;
887     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
888       return X86::RDI;
889     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
890       return X86::RBP;
891     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
892       return X86::RSP;
893     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
894       return X86::R8;
895     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
896       return X86::R9;
897     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
898       return X86::R10;
899     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
900       return X86::R11;
901     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
902       return X86::R12;
903     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
904       return X86::R13;
905     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
906       return X86::R14;
907     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
908       return X86::R15;
909     }
910   }
911 }
912