xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Host.h"
31 #include "llvm/Support/TargetRegistry.h"
32 
33 using namespace llvm;
34 
35 #define GET_REGINFO_MC_DESC
36 #include "X86GenRegisterInfo.inc"
37 
38 #define GET_INSTRINFO_MC_DESC
39 #define GET_INSTRINFO_MC_HELPERS
40 #include "X86GenInstrInfo.inc"
41 
42 #define GET_SUBTARGETINFO_MC_DESC
43 #include "X86GenSubtargetInfo.inc"
44 
45 std::string X86_MC::ParseX86Triple(const Triple &TT) {
46   std::string FS;
47   if (TT.getArch() == Triple::x86_64)
48     FS = "+64bit-mode,-32bit-mode,-16bit-mode";
49   else if (TT.getEnvironment() != Triple::CODE16)
50     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
51   else
52     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
53 
54   return FS;
55 }
56 
57 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
58   if (TT.getArch() == Triple::x86_64)
59     return DWARFFlavour::X86_64;
60 
61   if (TT.isOSDarwin())
62     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
63   if (TT.isOSCygMing())
64     // Unsupported by now, just quick fallback
65     return DWARFFlavour::X86_32_Generic;
66   return DWARFFlavour::X86_32_Generic;
67 }
68 
69 bool X86_MC::hasLockPrefix(const MCInst &MI) {
70   return MI.getFlags() & X86::IP_HAS_LOCK;
71 }
72 
73 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
74   // FIXME: TableGen these.
75   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
76     unsigned SEH = MRI->getEncodingValue(Reg);
77     MRI->mapLLVMRegToSEHReg(Reg, SEH);
78   }
79 
80   // Mapping from CodeView to MC register id.
81   static const struct {
82     codeview::RegisterId CVReg;
83     MCPhysReg Reg;
84   } RegMap[] = {
85       {codeview::RegisterId::AL, X86::AL},
86       {codeview::RegisterId::CL, X86::CL},
87       {codeview::RegisterId::DL, X86::DL},
88       {codeview::RegisterId::BL, X86::BL},
89       {codeview::RegisterId::AH, X86::AH},
90       {codeview::RegisterId::CH, X86::CH},
91       {codeview::RegisterId::DH, X86::DH},
92       {codeview::RegisterId::BH, X86::BH},
93       {codeview::RegisterId::AX, X86::AX},
94       {codeview::RegisterId::CX, X86::CX},
95       {codeview::RegisterId::DX, X86::DX},
96       {codeview::RegisterId::BX, X86::BX},
97       {codeview::RegisterId::SP, X86::SP},
98       {codeview::RegisterId::BP, X86::BP},
99       {codeview::RegisterId::SI, X86::SI},
100       {codeview::RegisterId::DI, X86::DI},
101       {codeview::RegisterId::EAX, X86::EAX},
102       {codeview::RegisterId::ECX, X86::ECX},
103       {codeview::RegisterId::EDX, X86::EDX},
104       {codeview::RegisterId::EBX, X86::EBX},
105       {codeview::RegisterId::ESP, X86::ESP},
106       {codeview::RegisterId::EBP, X86::EBP},
107       {codeview::RegisterId::ESI, X86::ESI},
108       {codeview::RegisterId::EDI, X86::EDI},
109 
110       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
111 
112       {codeview::RegisterId::ST0, X86::FP0},
113       {codeview::RegisterId::ST1, X86::FP1},
114       {codeview::RegisterId::ST2, X86::FP2},
115       {codeview::RegisterId::ST3, X86::FP3},
116       {codeview::RegisterId::ST4, X86::FP4},
117       {codeview::RegisterId::ST5, X86::FP5},
118       {codeview::RegisterId::ST6, X86::FP6},
119       {codeview::RegisterId::ST7, X86::FP7},
120 
121       {codeview::RegisterId::MM0, X86::MM0},
122       {codeview::RegisterId::MM1, X86::MM1},
123       {codeview::RegisterId::MM2, X86::MM2},
124       {codeview::RegisterId::MM3, X86::MM3},
125       {codeview::RegisterId::MM4, X86::MM4},
126       {codeview::RegisterId::MM5, X86::MM5},
127       {codeview::RegisterId::MM6, X86::MM6},
128       {codeview::RegisterId::MM7, X86::MM7},
129 
130       {codeview::RegisterId::XMM0, X86::XMM0},
131       {codeview::RegisterId::XMM1, X86::XMM1},
132       {codeview::RegisterId::XMM2, X86::XMM2},
133       {codeview::RegisterId::XMM3, X86::XMM3},
134       {codeview::RegisterId::XMM4, X86::XMM4},
135       {codeview::RegisterId::XMM5, X86::XMM5},
136       {codeview::RegisterId::XMM6, X86::XMM6},
137       {codeview::RegisterId::XMM7, X86::XMM7},
138 
139       {codeview::RegisterId::XMM8, X86::XMM8},
140       {codeview::RegisterId::XMM9, X86::XMM9},
141       {codeview::RegisterId::XMM10, X86::XMM10},
142       {codeview::RegisterId::XMM11, X86::XMM11},
143       {codeview::RegisterId::XMM12, X86::XMM12},
144       {codeview::RegisterId::XMM13, X86::XMM13},
145       {codeview::RegisterId::XMM14, X86::XMM14},
146       {codeview::RegisterId::XMM15, X86::XMM15},
147 
148       {codeview::RegisterId::SIL, X86::SIL},
149       {codeview::RegisterId::DIL, X86::DIL},
150       {codeview::RegisterId::BPL, X86::BPL},
151       {codeview::RegisterId::SPL, X86::SPL},
152       {codeview::RegisterId::RAX, X86::RAX},
153       {codeview::RegisterId::RBX, X86::RBX},
154       {codeview::RegisterId::RCX, X86::RCX},
155       {codeview::RegisterId::RDX, X86::RDX},
156       {codeview::RegisterId::RSI, X86::RSI},
157       {codeview::RegisterId::RDI, X86::RDI},
158       {codeview::RegisterId::RBP, X86::RBP},
159       {codeview::RegisterId::RSP, X86::RSP},
160       {codeview::RegisterId::R8, X86::R8},
161       {codeview::RegisterId::R9, X86::R9},
162       {codeview::RegisterId::R10, X86::R10},
163       {codeview::RegisterId::R11, X86::R11},
164       {codeview::RegisterId::R12, X86::R12},
165       {codeview::RegisterId::R13, X86::R13},
166       {codeview::RegisterId::R14, X86::R14},
167       {codeview::RegisterId::R15, X86::R15},
168       {codeview::RegisterId::R8B, X86::R8B},
169       {codeview::RegisterId::R9B, X86::R9B},
170       {codeview::RegisterId::R10B, X86::R10B},
171       {codeview::RegisterId::R11B, X86::R11B},
172       {codeview::RegisterId::R12B, X86::R12B},
173       {codeview::RegisterId::R13B, X86::R13B},
174       {codeview::RegisterId::R14B, X86::R14B},
175       {codeview::RegisterId::R15B, X86::R15B},
176       {codeview::RegisterId::R8W, X86::R8W},
177       {codeview::RegisterId::R9W, X86::R9W},
178       {codeview::RegisterId::R10W, X86::R10W},
179       {codeview::RegisterId::R11W, X86::R11W},
180       {codeview::RegisterId::R12W, X86::R12W},
181       {codeview::RegisterId::R13W, X86::R13W},
182       {codeview::RegisterId::R14W, X86::R14W},
183       {codeview::RegisterId::R15W, X86::R15W},
184       {codeview::RegisterId::R8D, X86::R8D},
185       {codeview::RegisterId::R9D, X86::R9D},
186       {codeview::RegisterId::R10D, X86::R10D},
187       {codeview::RegisterId::R11D, X86::R11D},
188       {codeview::RegisterId::R12D, X86::R12D},
189       {codeview::RegisterId::R13D, X86::R13D},
190       {codeview::RegisterId::R14D, X86::R14D},
191       {codeview::RegisterId::R15D, X86::R15D},
192       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
193       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
194       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
195       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
196       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
197       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
198       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
199       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
200       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
201       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
202       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
203       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
204       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
205       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
206       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
207       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
208       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
209       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
210       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
211       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
212       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
213       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
214       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
215       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
216       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
217       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
218       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
219       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
220       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
221       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
222       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
223       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
224       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
225       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
226       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
227       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
228       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
229       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
230       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
231       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
232       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
233       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
234       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
235       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
236       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
237       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
238       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
239       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
240       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
241       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
242       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
243       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
244       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
245       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
246       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
247       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
248       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
249       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
250       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
251       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
252       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
253       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
254       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
255       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
256       {codeview::RegisterId::AMD64_K0, X86::K0},
257       {codeview::RegisterId::AMD64_K1, X86::K1},
258       {codeview::RegisterId::AMD64_K2, X86::K2},
259       {codeview::RegisterId::AMD64_K3, X86::K3},
260       {codeview::RegisterId::AMD64_K4, X86::K4},
261       {codeview::RegisterId::AMD64_K5, X86::K5},
262       {codeview::RegisterId::AMD64_K6, X86::K6},
263       {codeview::RegisterId::AMD64_K7, X86::K7},
264       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
265       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
266       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
267       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
268       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
269       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
270       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
271       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
272       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
273       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
274       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
275       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
276       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
277       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
278       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
279       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
280 
281   };
282   for (unsigned I = 0; I < array_lengthof(RegMap); ++I)
283     MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg));
284 }
285 
286 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
287                                                   StringRef CPU, StringRef FS) {
288   std::string ArchFS = X86_MC::ParseX86Triple(TT);
289   assert(!ArchFS.empty() && "Failed to parse X86 triple");
290   if (!FS.empty())
291     ArchFS = (Twine(ArchFS) + "," + FS).str();
292 
293   std::string CPUName = std::string(CPU);
294   if (CPUName.empty())
295     CPUName = "generic";
296 
297   return createX86MCSubtargetInfoImpl(TT, CPUName, ArchFS);
298 }
299 
300 static MCInstrInfo *createX86MCInstrInfo() {
301   MCInstrInfo *X = new MCInstrInfo();
302   InitX86MCInstrInfo(X);
303   return X;
304 }
305 
306 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
307   unsigned RA = (TT.getArch() == Triple::x86_64)
308                     ? X86::RIP  // Should have dwarf #16.
309                     : X86::EIP; // Should have dwarf #8.
310 
311   MCRegisterInfo *X = new MCRegisterInfo();
312   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
313                         X86_MC::getDwarfRegFlavour(TT, true), RA);
314   X86_MC::initLLVMToSEHAndCVRegMapping(X);
315   return X;
316 }
317 
318 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
319                                      const Triple &TheTriple,
320                                      const MCTargetOptions &Options) {
321   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
322 
323   MCAsmInfo *MAI;
324   if (TheTriple.isOSBinFormatMachO()) {
325     if (is64Bit)
326       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
327     else
328       MAI = new X86MCAsmInfoDarwin(TheTriple);
329   } else if (TheTriple.isOSBinFormatELF()) {
330     // Force the use of an ELF container.
331     MAI = new X86ELFMCAsmInfo(TheTriple);
332   } else if (TheTriple.isWindowsMSVCEnvironment() ||
333              TheTriple.isWindowsCoreCLREnvironment()) {
334     if (Options.getAssemblyLanguage().equals_lower("masm"))
335       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
336     else
337       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
338   } else if (TheTriple.isOSCygMing() ||
339              TheTriple.isWindowsItaniumEnvironment()) {
340     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
341   } else {
342     // The default is ELF.
343     MAI = new X86ELFMCAsmInfo(TheTriple);
344   }
345 
346   // Initialize initial frame state.
347   // Calculate amount of bytes used for return address storing
348   int stackGrowth = is64Bit ? -8 : -4;
349 
350   // Initial state of the frame pointer is esp+stackGrowth.
351   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
352   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
353       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
354   MAI->addInitialFrameState(Inst);
355 
356   // Add return address to move list
357   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
358   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
359       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
360   MAI->addInitialFrameState(Inst2);
361 
362   return MAI;
363 }
364 
365 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
366                                              unsigned SyntaxVariant,
367                                              const MCAsmInfo &MAI,
368                                              const MCInstrInfo &MII,
369                                              const MCRegisterInfo &MRI) {
370   if (SyntaxVariant == 0)
371     return new X86ATTInstPrinter(MAI, MII, MRI);
372   if (SyntaxVariant == 1)
373     return new X86IntelInstPrinter(MAI, MII, MRI);
374   return nullptr;
375 }
376 
377 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
378                                                    MCContext &Ctx) {
379   // Default to the stock relocation info.
380   return llvm::createMCRelocationInfo(TheTriple, Ctx);
381 }
382 
383 namespace llvm {
384 namespace X86_MC {
385 
386 class X86MCInstrAnalysis : public MCInstrAnalysis {
387   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
388   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
389   virtual ~X86MCInstrAnalysis() = default;
390 
391 public:
392   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
393 
394 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
395 #include "X86GenSubtargetInfo.inc"
396 
397   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
398                             APInt &Mask) const override;
399   std::vector<std::pair<uint64_t, uint64_t>>
400   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
401                  uint64_t GotSectionVA,
402                  const Triple &TargetTriple) const override;
403 
404   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
405                       uint64_t &Target) const override;
406   Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
407                                                   uint64_t Addr,
408                                                   uint64_t Size) const override;
409 };
410 
411 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
412 #include "X86GenSubtargetInfo.inc"
413 
414 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
415                                               const MCInst &Inst,
416                                               APInt &Mask) const {
417   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
418   unsigned NumDefs = Desc.getNumDefs();
419   unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
420   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
421          "Unexpected number of bits in the mask!");
422 
423   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
424   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
425   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
426 
427   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
428   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
429   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
430 
431   auto ClearsSuperReg = [=](unsigned RegID) {
432     // On X86-64, a general purpose integer register is viewed as a 64-bit
433     // register internal to the processor.
434     // An update to the lower 32 bits of a 64 bit integer register is
435     // architecturally defined to zero extend the upper 32 bits.
436     if (GR32RC.contains(RegID))
437       return true;
438 
439     // Early exit if this instruction has no vex/evex/xop prefix.
440     if (!HasEVEX && !HasVEX && !HasXOP)
441       return false;
442 
443     // All VEX and EVEX encoded instructions are defined to zero the high bits
444     // of the destination register up to VLMAX (i.e. the maximum vector register
445     // width pertaining to the instruction).
446     // We assume the same behavior for XOP instructions too.
447     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
448   };
449 
450   Mask.clearAllBits();
451   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
452     const MCOperand &Op = Inst.getOperand(I);
453     if (ClearsSuperReg(Op.getReg()))
454       Mask.setBit(I);
455   }
456 
457   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
458     const MCPhysReg Reg = Desc.getImplicitDefs()[I];
459     if (ClearsSuperReg(Reg))
460       Mask.setBit(NumDefs + I);
461   }
462 
463   return Mask.getBoolValue();
464 }
465 
466 static std::vector<std::pair<uint64_t, uint64_t>>
467 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
468                   uint64_t GotPltSectionVA) {
469   // Do a lightweight parsing of PLT entries.
470   std::vector<std::pair<uint64_t, uint64_t>> Result;
471   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
472     // Recognize a jmp.
473     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
474       // The jmp instruction at the beginning of each PLT entry jumps to the
475       // address of the base of the .got.plt section plus the immediate.
476       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
477       Result.push_back(
478           std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
479       Byte += 6;
480     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
481       // The jmp instruction at the beginning of each PLT entry jumps to the
482       // immediate.
483       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
484       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
485       Byte += 6;
486     } else
487       Byte++;
488   }
489   return Result;
490 }
491 
492 static std::vector<std::pair<uint64_t, uint64_t>>
493 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
494   // Do a lightweight parsing of PLT entries.
495   std::vector<std::pair<uint64_t, uint64_t>> Result;
496   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
497     // Recognize a jmp.
498     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
499       // The jmp instruction at the beginning of each PLT entry jumps to the
500       // address of the next instruction plus the immediate.
501       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
502       Result.push_back(
503           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
504       Byte += 6;
505     } else
506       Byte++;
507   }
508   return Result;
509 }
510 
511 std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
512     uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
513     uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
514   switch (TargetTriple.getArch()) {
515     case Triple::x86:
516       return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
517     case Triple::x86_64:
518       return findX86_64PltEntries(PltSectionVA, PltContents);
519     default:
520       return {};
521     }
522 }
523 
524 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
525                                         uint64_t Size, uint64_t &Target) const {
526   if (Inst.getNumOperands() == 0 ||
527       Info->get(Inst.getOpcode()).OpInfo[0].OperandType != MCOI::OPERAND_PCREL)
528     return false;
529   Target = Addr + Size + Inst.getOperand(0).getImm();
530   return true;
531 }
532 
533 Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
534     const MCInst &Inst, uint64_t Addr, uint64_t Size) const {
535   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
536   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
537   if (MemOpStart == -1)
538     return None;
539   MemOpStart += X86II::getOperandBias(MCID);
540 
541   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
542   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
543   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
544   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
545   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
546   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
547       !Disp.isImm())
548     return None;
549 
550   // RIP-relative addressing.
551   if (BaseReg.getReg() == X86::RIP)
552     return Addr + Size + Disp.getImm();
553 
554   return None;
555 }
556 
557 } // end of namespace X86_MC
558 
559 } // end of namespace llvm
560 
561 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
562   return new X86_MC::X86MCInstrAnalysis(Info);
563 }
564 
565 // Force static initialization.
566 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
567   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
568     // Register the MC asm info.
569     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
570 
571     // Register the MC instruction info.
572     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
573 
574     // Register the MC register info.
575     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
576 
577     // Register the MC subtarget info.
578     TargetRegistry::RegisterMCSubtargetInfo(*T,
579                                             X86_MC::createX86MCSubtargetInfo);
580 
581     // Register the MC instruction analyzer.
582     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
583 
584     // Register the code emitter.
585     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
586 
587     // Register the obj target streamer.
588     TargetRegistry::RegisterObjectTargetStreamer(*T,
589                                                  createX86ObjectTargetStreamer);
590 
591     // Register the asm target streamer.
592     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
593 
594     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
595 
596     // Register the MCInstPrinter.
597     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
598 
599     // Register the MC relocation info.
600     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
601   }
602 
603   // Register the asm backend.
604   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
605                                        createX86_32AsmBackend);
606   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
607                                        createX86_64AsmBackend);
608 }
609 
610 MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
611                                               bool High) {
612   switch (Size) {
613   default: return X86::NoRegister;
614   case 8:
615     if (High) {
616       switch (Reg.id()) {
617       default: return getX86SubSuperRegisterOrZero(Reg, 64);
618       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
619         return X86::SI;
620       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
621         return X86::DI;
622       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
623         return X86::BP;
624       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
625         return X86::SP;
626       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
627         return X86::AH;
628       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
629         return X86::DH;
630       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
631         return X86::CH;
632       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
633         return X86::BH;
634       }
635     } else {
636       switch (Reg.id()) {
637       default: return X86::NoRegister;
638       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
639         return X86::AL;
640       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
641         return X86::DL;
642       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
643         return X86::CL;
644       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
645         return X86::BL;
646       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
647         return X86::SIL;
648       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
649         return X86::DIL;
650       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
651         return X86::BPL;
652       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
653         return X86::SPL;
654       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
655         return X86::R8B;
656       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
657         return X86::R9B;
658       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
659         return X86::R10B;
660       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
661         return X86::R11B;
662       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
663         return X86::R12B;
664       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
665         return X86::R13B;
666       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
667         return X86::R14B;
668       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
669         return X86::R15B;
670       }
671     }
672   case 16:
673     switch (Reg.id()) {
674     default: return X86::NoRegister;
675     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
676       return X86::AX;
677     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
678       return X86::DX;
679     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
680       return X86::CX;
681     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
682       return X86::BX;
683     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
684       return X86::SI;
685     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
686       return X86::DI;
687     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
688       return X86::BP;
689     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
690       return X86::SP;
691     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
692       return X86::R8W;
693     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
694       return X86::R9W;
695     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
696       return X86::R10W;
697     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
698       return X86::R11W;
699     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
700       return X86::R12W;
701     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
702       return X86::R13W;
703     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
704       return X86::R14W;
705     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
706       return X86::R15W;
707     }
708   case 32:
709     switch (Reg.id()) {
710     default: return X86::NoRegister;
711     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
712       return X86::EAX;
713     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
714       return X86::EDX;
715     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
716       return X86::ECX;
717     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
718       return X86::EBX;
719     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
720       return X86::ESI;
721     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
722       return X86::EDI;
723     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
724       return X86::EBP;
725     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
726       return X86::ESP;
727     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
728       return X86::R8D;
729     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
730       return X86::R9D;
731     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
732       return X86::R10D;
733     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
734       return X86::R11D;
735     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
736       return X86::R12D;
737     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
738       return X86::R13D;
739     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
740       return X86::R14D;
741     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
742       return X86::R15D;
743     }
744   case 64:
745     switch (Reg.id()) {
746     default: return 0;
747     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
748       return X86::RAX;
749     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
750       return X86::RDX;
751     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
752       return X86::RCX;
753     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
754       return X86::RBX;
755     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
756       return X86::RSI;
757     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
758       return X86::RDI;
759     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
760       return X86::RBP;
761     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
762       return X86::RSP;
763     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
764       return X86::R8;
765     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
766       return X86::R9;
767     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
768       return X86::R10;
769     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
770       return X86::R11;
771     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
772       return X86::R12;
773     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
774       return X86::R13;
775     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
776       return X86::R14;
777     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
778       return X86::R15;
779     }
780   }
781 }
782 
783 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
784   MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
785   assert(Res != X86::NoRegister && "Unexpected register or VT");
786   return Res;
787 }
788 
789 
790