1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides X86 specific target descriptions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86MCTargetDesc.h" 14 #include "TargetInfo/X86TargetInfo.h" 15 #include "X86ATTInstPrinter.h" 16 #include "X86BaseInfo.h" 17 #include "X86IntelInstPrinter.h" 18 #include "X86MCAsmInfo.h" 19 #include "X86TargetStreamer.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/DebugInfo/CodeView/CodeView.h" 22 #include "llvm/MC/MCDwarf.h" 23 #include "llvm/MC/MCInstrAnalysis.h" 24 #include "llvm/MC/MCInstrInfo.h" 25 #include "llvm/MC/MCRegisterInfo.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSubtargetInfo.h" 28 #include "llvm/MC/MachineLocation.h" 29 #include "llvm/MC/TargetRegistry.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/TargetParser/Host.h" 32 #include "llvm/TargetParser/Triple.h" 33 34 using namespace llvm; 35 36 #define GET_REGINFO_MC_DESC 37 #include "X86GenRegisterInfo.inc" 38 39 #define GET_INSTRINFO_MC_DESC 40 #define GET_INSTRINFO_MC_HELPERS 41 #define ENABLE_INSTR_PREDICATE_VERIFIER 42 #include "X86GenInstrInfo.inc" 43 44 #define GET_SUBTARGETINFO_MC_DESC 45 #include "X86GenSubtargetInfo.inc" 46 47 std::string X86_MC::ParseX86Triple(const Triple &TT) { 48 std::string FS; 49 // SSE2 should default to enabled in 64-bit mode, but can be turned off 50 // explicitly. 51 if (TT.isArch64Bit()) 52 FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2"; 53 else if (TT.getEnvironment() != Triple::CODE16) 54 FS = "-64bit-mode,+32bit-mode,-16bit-mode"; 55 else 56 FS = "-64bit-mode,-32bit-mode,+16bit-mode"; 57 58 return FS; 59 } 60 61 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) { 62 if (TT.getArch() == Triple::x86_64) 63 return DWARFFlavour::X86_64; 64 65 if (TT.isOSDarwin()) 66 return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic; 67 if (TT.isOSCygMing()) 68 // Unsupported by now, just quick fallback 69 return DWARFFlavour::X86_32_Generic; 70 return DWARFFlavour::X86_32_Generic; 71 } 72 73 bool X86_MC::hasLockPrefix(const MCInst &MI) { 74 return MI.getFlags() & X86::IP_HAS_LOCK; 75 } 76 77 static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) { 78 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg); 79 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg); 80 const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID]; 81 82 return (Base.isReg() && Base.getReg() != 0 && RC.contains(Base.getReg())) || 83 (Index.isReg() && Index.getReg() != 0 && RC.contains(Index.getReg())); 84 } 85 86 bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op, 87 const MCSubtargetInfo &STI) { 88 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg); 89 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg); 90 91 if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && Base.getReg() == 0 && 92 Index.isReg() && Index.getReg() == 0) 93 return true; 94 return isMemOperand(MI, Op, X86::GR16RegClassID); 95 } 96 97 bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) { 98 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg); 99 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg); 100 if (Base.isReg() && Base.getReg() == X86::EIP) { 101 assert(Index.isReg() && Index.getReg() == 0 && "Invalid eip-based address"); 102 return true; 103 } 104 if (Index.isReg() && Index.getReg() == X86::EIZ) 105 return true; 106 return isMemOperand(MI, Op, X86::GR32RegClassID); 107 } 108 109 #ifndef NDEBUG 110 bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) { 111 return isMemOperand(MI, Op, X86::GR64RegClassID); 112 } 113 #endif 114 115 bool X86_MC::needsAddressSizeOverride(const MCInst &MI, 116 const MCSubtargetInfo &STI, 117 int MemoryOperand, uint64_t TSFlags) { 118 uint64_t AdSize = TSFlags & X86II::AdSizeMask; 119 bool Is16BitMode = STI.hasFeature(X86::Is16Bit); 120 bool Is32BitMode = STI.hasFeature(X86::Is32Bit); 121 bool Is64BitMode = STI.hasFeature(X86::Is64Bit); 122 if ((Is16BitMode && AdSize == X86II::AdSize32) || 123 (Is32BitMode && AdSize == X86II::AdSize16) || 124 (Is64BitMode && AdSize == X86II::AdSize32)) 125 return true; 126 uint64_t Form = TSFlags & X86II::FormMask; 127 switch (Form) { 128 default: 129 break; 130 case X86II::RawFrmDstSrc: { 131 unsigned siReg = MI.getOperand(1).getReg(); 132 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) || 133 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) || 134 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) && 135 "SI and DI register sizes do not match"); 136 return (!Is32BitMode && siReg == X86::ESI) || 137 (Is32BitMode && siReg == X86::SI); 138 } 139 case X86II::RawFrmSrc: { 140 unsigned siReg = MI.getOperand(0).getReg(); 141 return (!Is32BitMode && siReg == X86::ESI) || 142 (Is32BitMode && siReg == X86::SI); 143 } 144 case X86II::RawFrmDst: { 145 unsigned siReg = MI.getOperand(0).getReg(); 146 return (!Is32BitMode && siReg == X86::EDI) || 147 (Is32BitMode && siReg == X86::DI); 148 } 149 } 150 151 // Determine where the memory operand starts, if present. 152 if (MemoryOperand < 0) 153 return false; 154 155 if (STI.hasFeature(X86::Is64Bit)) { 156 assert(!is16BitMemOperand(MI, MemoryOperand, STI)); 157 return is32BitMemOperand(MI, MemoryOperand); 158 } 159 if (STI.hasFeature(X86::Is32Bit)) { 160 assert(!is64BitMemOperand(MI, MemoryOperand)); 161 return is16BitMemOperand(MI, MemoryOperand, STI); 162 } 163 assert(STI.hasFeature(X86::Is16Bit)); 164 assert(!is64BitMemOperand(MI, MemoryOperand)); 165 return !is16BitMemOperand(MI, MemoryOperand, STI); 166 } 167 168 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) { 169 // FIXME: TableGen these. 170 for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) { 171 unsigned SEH = MRI->getEncodingValue(Reg); 172 MRI->mapLLVMRegToSEHReg(Reg, SEH); 173 } 174 175 // Mapping from CodeView to MC register id. 176 static const struct { 177 codeview::RegisterId CVReg; 178 MCPhysReg Reg; 179 } RegMap[] = { 180 {codeview::RegisterId::AL, X86::AL}, 181 {codeview::RegisterId::CL, X86::CL}, 182 {codeview::RegisterId::DL, X86::DL}, 183 {codeview::RegisterId::BL, X86::BL}, 184 {codeview::RegisterId::AH, X86::AH}, 185 {codeview::RegisterId::CH, X86::CH}, 186 {codeview::RegisterId::DH, X86::DH}, 187 {codeview::RegisterId::BH, X86::BH}, 188 {codeview::RegisterId::AX, X86::AX}, 189 {codeview::RegisterId::CX, X86::CX}, 190 {codeview::RegisterId::DX, X86::DX}, 191 {codeview::RegisterId::BX, X86::BX}, 192 {codeview::RegisterId::SP, X86::SP}, 193 {codeview::RegisterId::BP, X86::BP}, 194 {codeview::RegisterId::SI, X86::SI}, 195 {codeview::RegisterId::DI, X86::DI}, 196 {codeview::RegisterId::EAX, X86::EAX}, 197 {codeview::RegisterId::ECX, X86::ECX}, 198 {codeview::RegisterId::EDX, X86::EDX}, 199 {codeview::RegisterId::EBX, X86::EBX}, 200 {codeview::RegisterId::ESP, X86::ESP}, 201 {codeview::RegisterId::EBP, X86::EBP}, 202 {codeview::RegisterId::ESI, X86::ESI}, 203 {codeview::RegisterId::EDI, X86::EDI}, 204 205 {codeview::RegisterId::EFLAGS, X86::EFLAGS}, 206 207 {codeview::RegisterId::ST0, X86::ST0}, 208 {codeview::RegisterId::ST1, X86::ST1}, 209 {codeview::RegisterId::ST2, X86::ST2}, 210 {codeview::RegisterId::ST3, X86::ST3}, 211 {codeview::RegisterId::ST4, X86::ST4}, 212 {codeview::RegisterId::ST5, X86::ST5}, 213 {codeview::RegisterId::ST6, X86::ST6}, 214 {codeview::RegisterId::ST7, X86::ST7}, 215 216 {codeview::RegisterId::ST0, X86::FP0}, 217 {codeview::RegisterId::ST1, X86::FP1}, 218 {codeview::RegisterId::ST2, X86::FP2}, 219 {codeview::RegisterId::ST3, X86::FP3}, 220 {codeview::RegisterId::ST4, X86::FP4}, 221 {codeview::RegisterId::ST5, X86::FP5}, 222 {codeview::RegisterId::ST6, X86::FP6}, 223 {codeview::RegisterId::ST7, X86::FP7}, 224 225 {codeview::RegisterId::MM0, X86::MM0}, 226 {codeview::RegisterId::MM1, X86::MM1}, 227 {codeview::RegisterId::MM2, X86::MM2}, 228 {codeview::RegisterId::MM3, X86::MM3}, 229 {codeview::RegisterId::MM4, X86::MM4}, 230 {codeview::RegisterId::MM5, X86::MM5}, 231 {codeview::RegisterId::MM6, X86::MM6}, 232 {codeview::RegisterId::MM7, X86::MM7}, 233 234 {codeview::RegisterId::XMM0, X86::XMM0}, 235 {codeview::RegisterId::XMM1, X86::XMM1}, 236 {codeview::RegisterId::XMM2, X86::XMM2}, 237 {codeview::RegisterId::XMM3, X86::XMM3}, 238 {codeview::RegisterId::XMM4, X86::XMM4}, 239 {codeview::RegisterId::XMM5, X86::XMM5}, 240 {codeview::RegisterId::XMM6, X86::XMM6}, 241 {codeview::RegisterId::XMM7, X86::XMM7}, 242 243 {codeview::RegisterId::XMM8, X86::XMM8}, 244 {codeview::RegisterId::XMM9, X86::XMM9}, 245 {codeview::RegisterId::XMM10, X86::XMM10}, 246 {codeview::RegisterId::XMM11, X86::XMM11}, 247 {codeview::RegisterId::XMM12, X86::XMM12}, 248 {codeview::RegisterId::XMM13, X86::XMM13}, 249 {codeview::RegisterId::XMM14, X86::XMM14}, 250 {codeview::RegisterId::XMM15, X86::XMM15}, 251 252 {codeview::RegisterId::SIL, X86::SIL}, 253 {codeview::RegisterId::DIL, X86::DIL}, 254 {codeview::RegisterId::BPL, X86::BPL}, 255 {codeview::RegisterId::SPL, X86::SPL}, 256 {codeview::RegisterId::RAX, X86::RAX}, 257 {codeview::RegisterId::RBX, X86::RBX}, 258 {codeview::RegisterId::RCX, X86::RCX}, 259 {codeview::RegisterId::RDX, X86::RDX}, 260 {codeview::RegisterId::RSI, X86::RSI}, 261 {codeview::RegisterId::RDI, X86::RDI}, 262 {codeview::RegisterId::RBP, X86::RBP}, 263 {codeview::RegisterId::RSP, X86::RSP}, 264 {codeview::RegisterId::R8, X86::R8}, 265 {codeview::RegisterId::R9, X86::R9}, 266 {codeview::RegisterId::R10, X86::R10}, 267 {codeview::RegisterId::R11, X86::R11}, 268 {codeview::RegisterId::R12, X86::R12}, 269 {codeview::RegisterId::R13, X86::R13}, 270 {codeview::RegisterId::R14, X86::R14}, 271 {codeview::RegisterId::R15, X86::R15}, 272 {codeview::RegisterId::R8B, X86::R8B}, 273 {codeview::RegisterId::R9B, X86::R9B}, 274 {codeview::RegisterId::R10B, X86::R10B}, 275 {codeview::RegisterId::R11B, X86::R11B}, 276 {codeview::RegisterId::R12B, X86::R12B}, 277 {codeview::RegisterId::R13B, X86::R13B}, 278 {codeview::RegisterId::R14B, X86::R14B}, 279 {codeview::RegisterId::R15B, X86::R15B}, 280 {codeview::RegisterId::R8W, X86::R8W}, 281 {codeview::RegisterId::R9W, X86::R9W}, 282 {codeview::RegisterId::R10W, X86::R10W}, 283 {codeview::RegisterId::R11W, X86::R11W}, 284 {codeview::RegisterId::R12W, X86::R12W}, 285 {codeview::RegisterId::R13W, X86::R13W}, 286 {codeview::RegisterId::R14W, X86::R14W}, 287 {codeview::RegisterId::R15W, X86::R15W}, 288 {codeview::RegisterId::R8D, X86::R8D}, 289 {codeview::RegisterId::R9D, X86::R9D}, 290 {codeview::RegisterId::R10D, X86::R10D}, 291 {codeview::RegisterId::R11D, X86::R11D}, 292 {codeview::RegisterId::R12D, X86::R12D}, 293 {codeview::RegisterId::R13D, X86::R13D}, 294 {codeview::RegisterId::R14D, X86::R14D}, 295 {codeview::RegisterId::R15D, X86::R15D}, 296 {codeview::RegisterId::AMD64_YMM0, X86::YMM0}, 297 {codeview::RegisterId::AMD64_YMM1, X86::YMM1}, 298 {codeview::RegisterId::AMD64_YMM2, X86::YMM2}, 299 {codeview::RegisterId::AMD64_YMM3, X86::YMM3}, 300 {codeview::RegisterId::AMD64_YMM4, X86::YMM4}, 301 {codeview::RegisterId::AMD64_YMM5, X86::YMM5}, 302 {codeview::RegisterId::AMD64_YMM6, X86::YMM6}, 303 {codeview::RegisterId::AMD64_YMM7, X86::YMM7}, 304 {codeview::RegisterId::AMD64_YMM8, X86::YMM8}, 305 {codeview::RegisterId::AMD64_YMM9, X86::YMM9}, 306 {codeview::RegisterId::AMD64_YMM10, X86::YMM10}, 307 {codeview::RegisterId::AMD64_YMM11, X86::YMM11}, 308 {codeview::RegisterId::AMD64_YMM12, X86::YMM12}, 309 {codeview::RegisterId::AMD64_YMM13, X86::YMM13}, 310 {codeview::RegisterId::AMD64_YMM14, X86::YMM14}, 311 {codeview::RegisterId::AMD64_YMM15, X86::YMM15}, 312 {codeview::RegisterId::AMD64_YMM16, X86::YMM16}, 313 {codeview::RegisterId::AMD64_YMM17, X86::YMM17}, 314 {codeview::RegisterId::AMD64_YMM18, X86::YMM18}, 315 {codeview::RegisterId::AMD64_YMM19, X86::YMM19}, 316 {codeview::RegisterId::AMD64_YMM20, X86::YMM20}, 317 {codeview::RegisterId::AMD64_YMM21, X86::YMM21}, 318 {codeview::RegisterId::AMD64_YMM22, X86::YMM22}, 319 {codeview::RegisterId::AMD64_YMM23, X86::YMM23}, 320 {codeview::RegisterId::AMD64_YMM24, X86::YMM24}, 321 {codeview::RegisterId::AMD64_YMM25, X86::YMM25}, 322 {codeview::RegisterId::AMD64_YMM26, X86::YMM26}, 323 {codeview::RegisterId::AMD64_YMM27, X86::YMM27}, 324 {codeview::RegisterId::AMD64_YMM28, X86::YMM28}, 325 {codeview::RegisterId::AMD64_YMM29, X86::YMM29}, 326 {codeview::RegisterId::AMD64_YMM30, X86::YMM30}, 327 {codeview::RegisterId::AMD64_YMM31, X86::YMM31}, 328 {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0}, 329 {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1}, 330 {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2}, 331 {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3}, 332 {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4}, 333 {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5}, 334 {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6}, 335 {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7}, 336 {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8}, 337 {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9}, 338 {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10}, 339 {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11}, 340 {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12}, 341 {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13}, 342 {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14}, 343 {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15}, 344 {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16}, 345 {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17}, 346 {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18}, 347 {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19}, 348 {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20}, 349 {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21}, 350 {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22}, 351 {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23}, 352 {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24}, 353 {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25}, 354 {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26}, 355 {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27}, 356 {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28}, 357 {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29}, 358 {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30}, 359 {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31}, 360 {codeview::RegisterId::AMD64_K0, X86::K0}, 361 {codeview::RegisterId::AMD64_K1, X86::K1}, 362 {codeview::RegisterId::AMD64_K2, X86::K2}, 363 {codeview::RegisterId::AMD64_K3, X86::K3}, 364 {codeview::RegisterId::AMD64_K4, X86::K4}, 365 {codeview::RegisterId::AMD64_K5, X86::K5}, 366 {codeview::RegisterId::AMD64_K6, X86::K6}, 367 {codeview::RegisterId::AMD64_K7, X86::K7}, 368 {codeview::RegisterId::AMD64_XMM16, X86::XMM16}, 369 {codeview::RegisterId::AMD64_XMM17, X86::XMM17}, 370 {codeview::RegisterId::AMD64_XMM18, X86::XMM18}, 371 {codeview::RegisterId::AMD64_XMM19, X86::XMM19}, 372 {codeview::RegisterId::AMD64_XMM20, X86::XMM20}, 373 {codeview::RegisterId::AMD64_XMM21, X86::XMM21}, 374 {codeview::RegisterId::AMD64_XMM22, X86::XMM22}, 375 {codeview::RegisterId::AMD64_XMM23, X86::XMM23}, 376 {codeview::RegisterId::AMD64_XMM24, X86::XMM24}, 377 {codeview::RegisterId::AMD64_XMM25, X86::XMM25}, 378 {codeview::RegisterId::AMD64_XMM26, X86::XMM26}, 379 {codeview::RegisterId::AMD64_XMM27, X86::XMM27}, 380 {codeview::RegisterId::AMD64_XMM28, X86::XMM28}, 381 {codeview::RegisterId::AMD64_XMM29, X86::XMM29}, 382 {codeview::RegisterId::AMD64_XMM30, X86::XMM30}, 383 {codeview::RegisterId::AMD64_XMM31, X86::XMM31}, 384 385 }; 386 for (const auto &I : RegMap) 387 MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg)); 388 } 389 390 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT, 391 StringRef CPU, StringRef FS) { 392 std::string ArchFS = X86_MC::ParseX86Triple(TT); 393 assert(!ArchFS.empty() && "Failed to parse X86 triple"); 394 if (!FS.empty()) 395 ArchFS = (Twine(ArchFS) + "," + FS).str(); 396 397 if (CPU.empty()) 398 CPU = "generic"; 399 400 size_t posNoEVEX512 = FS.rfind("-evex512"); 401 // Make sure we won't be cheated by "-avx512fp16". 402 size_t posNoAVX512F = 403 FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,"); 404 size_t posEVEX512 = FS.rfind("+evex512"); 405 size_t posAVX512F = FS.rfind("+avx512"); // Any AVX512XXX will enable AVX512F. 406 407 if (posAVX512F != StringRef::npos && 408 (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F)) 409 if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos) 410 ArchFS += ",+evex512"; 411 412 return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS); 413 } 414 415 static MCInstrInfo *createX86MCInstrInfo() { 416 MCInstrInfo *X = new MCInstrInfo(); 417 InitX86MCInstrInfo(X); 418 return X; 419 } 420 421 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) { 422 unsigned RA = (TT.getArch() == Triple::x86_64) 423 ? X86::RIP // Should have dwarf #16. 424 : X86::EIP; // Should have dwarf #8. 425 426 MCRegisterInfo *X = new MCRegisterInfo(); 427 InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false), 428 X86_MC::getDwarfRegFlavour(TT, true), RA); 429 X86_MC::initLLVMToSEHAndCVRegMapping(X); 430 return X; 431 } 432 433 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI, 434 const Triple &TheTriple, 435 const MCTargetOptions &Options) { 436 bool is64Bit = TheTriple.getArch() == Triple::x86_64; 437 438 MCAsmInfo *MAI; 439 if (TheTriple.isOSBinFormatMachO()) { 440 if (is64Bit) 441 MAI = new X86_64MCAsmInfoDarwin(TheTriple); 442 else 443 MAI = new X86MCAsmInfoDarwin(TheTriple); 444 } else if (TheTriple.isOSBinFormatELF()) { 445 // Force the use of an ELF container. 446 MAI = new X86ELFMCAsmInfo(TheTriple); 447 } else if (TheTriple.isWindowsMSVCEnvironment() || 448 TheTriple.isWindowsCoreCLREnvironment()) { 449 if (Options.getAssemblyLanguage().equals_insensitive("masm")) 450 MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple); 451 else 452 MAI = new X86MCAsmInfoMicrosoft(TheTriple); 453 } else if (TheTriple.isOSCygMing() || 454 TheTriple.isWindowsItaniumEnvironment()) { 455 MAI = new X86MCAsmInfoGNUCOFF(TheTriple); 456 } else if (TheTriple.isUEFI()) { 457 MAI = new X86MCAsmInfoGNUCOFF(TheTriple); 458 } else { 459 // The default is ELF. 460 MAI = new X86ELFMCAsmInfo(TheTriple); 461 } 462 463 // Initialize initial frame state. 464 // Calculate amount of bytes used for return address storing 465 int stackGrowth = is64Bit ? -8 : -4; 466 467 // Initial state of the frame pointer is esp+stackGrowth. 468 unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP; 469 MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa( 470 nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth); 471 MAI->addInitialFrameState(Inst); 472 473 // Add return address to move list 474 unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP; 475 MCCFIInstruction Inst2 = MCCFIInstruction::createOffset( 476 nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth); 477 MAI->addInitialFrameState(Inst2); 478 479 return MAI; 480 } 481 482 static MCInstPrinter *createX86MCInstPrinter(const Triple &T, 483 unsigned SyntaxVariant, 484 const MCAsmInfo &MAI, 485 const MCInstrInfo &MII, 486 const MCRegisterInfo &MRI) { 487 if (SyntaxVariant == 0) 488 return new X86ATTInstPrinter(MAI, MII, MRI); 489 if (SyntaxVariant == 1) 490 return new X86IntelInstPrinter(MAI, MII, MRI); 491 return nullptr; 492 } 493 494 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple, 495 MCContext &Ctx) { 496 // Default to the stock relocation info. 497 return llvm::createMCRelocationInfo(TheTriple, Ctx); 498 } 499 500 namespace llvm { 501 namespace X86_MC { 502 503 class X86MCInstrAnalysis : public MCInstrAnalysis { 504 X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete; 505 X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete; 506 virtual ~X86MCInstrAnalysis() = default; 507 508 public: 509 X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {} 510 511 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS 512 #include "X86GenSubtargetInfo.inc" 513 514 bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, 515 APInt &Mask) const override; 516 std::vector<std::pair<uint64_t, uint64_t>> 517 findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, 518 const Triple &TargetTriple) const override; 519 520 bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, 521 uint64_t &Target) const override; 522 std::optional<uint64_t> 523 evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI, 524 uint64_t Addr, uint64_t Size) const override; 525 std::optional<uint64_t> 526 getMemoryOperandRelocationOffset(const MCInst &Inst, 527 uint64_t Size) const override; 528 }; 529 530 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS 531 #include "X86GenSubtargetInfo.inc" 532 533 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI, 534 const MCInst &Inst, 535 APInt &Mask) const { 536 const MCInstrDesc &Desc = Info->get(Inst.getOpcode()); 537 unsigned NumDefs = Desc.getNumDefs(); 538 unsigned NumImplicitDefs = Desc.implicit_defs().size(); 539 assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs && 540 "Unexpected number of bits in the mask!"); 541 542 bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX; 543 bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX; 544 bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP; 545 546 const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID); 547 const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID); 548 const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID); 549 550 auto ClearsSuperReg = [=](unsigned RegID) { 551 // On X86-64, a general purpose integer register is viewed as a 64-bit 552 // register internal to the processor. 553 // An update to the lower 32 bits of a 64 bit integer register is 554 // architecturally defined to zero extend the upper 32 bits. 555 if (GR32RC.contains(RegID)) 556 return true; 557 558 // Early exit if this instruction has no vex/evex/xop prefix. 559 if (!HasEVEX && !HasVEX && !HasXOP) 560 return false; 561 562 // All VEX and EVEX encoded instructions are defined to zero the high bits 563 // of the destination register up to VLMAX (i.e. the maximum vector register 564 // width pertaining to the instruction). 565 // We assume the same behavior for XOP instructions too. 566 return VR128XRC.contains(RegID) || VR256XRC.contains(RegID); 567 }; 568 569 Mask.clearAllBits(); 570 for (unsigned I = 0, E = NumDefs; I < E; ++I) { 571 const MCOperand &Op = Inst.getOperand(I); 572 if (ClearsSuperReg(Op.getReg())) 573 Mask.setBit(I); 574 } 575 576 for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) { 577 const MCPhysReg Reg = Desc.implicit_defs()[I]; 578 if (ClearsSuperReg(Reg)) 579 Mask.setBit(NumDefs + I); 580 } 581 582 return Mask.getBoolValue(); 583 } 584 585 static std::vector<std::pair<uint64_t, uint64_t>> 586 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) { 587 // Do a lightweight parsing of PLT entries. 588 std::vector<std::pair<uint64_t, uint64_t>> Result; 589 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) { 590 // Recognize a jmp. 591 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) { 592 // The jmp instruction at the beginning of each PLT entry jumps to the 593 // address of the base of the .got.plt section plus the immediate. 594 // Set the 1 << 32 bit to let ELFObjectFileBase::getPltEntries convert the 595 // offset to an address. Imm may be a negative int32_t if the GOT entry is 596 // in .got. 597 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2); 598 Result.emplace_back(PltSectionVA + Byte, Imm | (uint64_t(1) << 32)); 599 Byte += 6; 600 } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) { 601 // The jmp instruction at the beginning of each PLT entry jumps to the 602 // immediate. 603 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2); 604 Result.push_back(std::make_pair(PltSectionVA + Byte, Imm)); 605 Byte += 6; 606 } else 607 Byte++; 608 } 609 return Result; 610 } 611 612 static std::vector<std::pair<uint64_t, uint64_t>> 613 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) { 614 // Do a lightweight parsing of PLT entries. 615 std::vector<std::pair<uint64_t, uint64_t>> Result; 616 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) { 617 // Recognize a jmp. 618 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) { 619 // The jmp instruction at the beginning of each PLT entry jumps to the 620 // address of the next instruction plus the immediate. 621 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2); 622 Result.push_back( 623 std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm)); 624 Byte += 6; 625 } else 626 Byte++; 627 } 628 return Result; 629 } 630 631 std::vector<std::pair<uint64_t, uint64_t>> 632 X86MCInstrAnalysis::findPltEntries(uint64_t PltSectionVA, 633 ArrayRef<uint8_t> PltContents, 634 const Triple &TargetTriple) const { 635 switch (TargetTriple.getArch()) { 636 case Triple::x86: 637 return findX86PltEntries(PltSectionVA, PltContents); 638 case Triple::x86_64: 639 return findX86_64PltEntries(PltSectionVA, PltContents); 640 default: 641 return {}; 642 } 643 } 644 645 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr, 646 uint64_t Size, uint64_t &Target) const { 647 if (Inst.getNumOperands() == 0 || 648 Info->get(Inst.getOpcode()).operands()[0].OperandType != 649 MCOI::OPERAND_PCREL) 650 return false; 651 Target = Addr + Size + Inst.getOperand(0).getImm(); 652 return true; 653 } 654 655 std::optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress( 656 const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr, 657 uint64_t Size) const { 658 const MCInstrDesc &MCID = Info->get(Inst.getOpcode()); 659 int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags); 660 if (MemOpStart == -1) 661 return std::nullopt; 662 MemOpStart += X86II::getOperandBias(MCID); 663 664 const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg); 665 const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg); 666 const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg); 667 const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt); 668 const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp); 669 if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || 670 !Disp.isImm()) 671 return std::nullopt; 672 673 // RIP-relative addressing. 674 if (BaseReg.getReg() == X86::RIP) 675 return Addr + Size + Disp.getImm(); 676 677 return std::nullopt; 678 } 679 680 std::optional<uint64_t> 681 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst, 682 uint64_t Size) const { 683 if (Inst.getOpcode() != X86::LEA64r) 684 return std::nullopt; 685 const MCInstrDesc &MCID = Info->get(Inst.getOpcode()); 686 int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags); 687 if (MemOpStart == -1) 688 return std::nullopt; 689 MemOpStart += X86II::getOperandBias(MCID); 690 const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg); 691 const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg); 692 const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg); 693 const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt); 694 const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp); 695 // Must be a simple rip-relative address. 696 if (BaseReg.getReg() != X86::RIP || SegReg.getReg() != 0 || 697 IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || !Disp.isImm()) 698 return std::nullopt; 699 // rip-relative ModR/M immediate is 32 bits. 700 assert(Size > 4 && "invalid instruction size for rip-relative lea"); 701 return Size - 4; 702 } 703 704 } // end of namespace X86_MC 705 706 } // end of namespace llvm 707 708 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) { 709 return new X86_MC::X86MCInstrAnalysis(Info); 710 } 711 712 // Force static initialization. 713 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() { 714 for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) { 715 // Register the MC asm info. 716 RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo); 717 718 // Register the MC instruction info. 719 TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo); 720 721 // Register the MC register info. 722 TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo); 723 724 // Register the MC subtarget info. 725 TargetRegistry::RegisterMCSubtargetInfo(*T, 726 X86_MC::createX86MCSubtargetInfo); 727 728 // Register the MC instruction analyzer. 729 TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis); 730 731 // Register the code emitter. 732 TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter); 733 734 // Register the obj target streamer. 735 TargetRegistry::RegisterObjectTargetStreamer(*T, 736 createX86ObjectTargetStreamer); 737 738 // Register the asm target streamer. 739 TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer); 740 741 // Register the null streamer. 742 TargetRegistry::RegisterNullTargetStreamer(*T, createX86NullTargetStreamer); 743 744 TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer); 745 TargetRegistry::RegisterELFStreamer(*T, createX86ELFStreamer); 746 747 // Register the MCInstPrinter. 748 TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter); 749 750 // Register the MC relocation info. 751 TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo); 752 } 753 754 // Register the asm backend. 755 TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(), 756 createX86_32AsmBackend); 757 TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(), 758 createX86_64AsmBackend); 759 } 760 761 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, 762 bool High) { 763 #define DEFAULT_NOREG \ 764 default: \ 765 return X86::NoRegister; 766 #define SUB_SUPER(R1, R2, R3, R4, R) \ 767 case X86::R1: \ 768 case X86::R2: \ 769 case X86::R3: \ 770 case X86::R4: \ 771 return X86::R; 772 #define A_SUB_SUPER(R) \ 773 case X86::AH: \ 774 SUB_SUPER(AL, AX, EAX, RAX, R) 775 #define D_SUB_SUPER(R) \ 776 case X86::DH: \ 777 SUB_SUPER(DL, DX, EDX, RDX, R) 778 #define C_SUB_SUPER(R) \ 779 case X86::CH: \ 780 SUB_SUPER(CL, CX, ECX, RCX, R) 781 #define B_SUB_SUPER(R) \ 782 case X86::BH: \ 783 SUB_SUPER(BL, BX, EBX, RBX, R) 784 #define SI_SUB_SUPER(R) SUB_SUPER(SIL, SI, ESI, RSI, R) 785 #define DI_SUB_SUPER(R) SUB_SUPER(DIL, DI, EDI, RDI, R) 786 #define BP_SUB_SUPER(R) SUB_SUPER(BPL, BP, EBP, RBP, R) 787 #define SP_SUB_SUPER(R) SUB_SUPER(SPL, SP, ESP, RSP, R) 788 #define NO_SUB_SUPER(NO, REG) \ 789 SUB_SUPER(R##NO##B, R##NO##W, R##NO##D, R##NO, REG) 790 #define NO_SUB_SUPER_B(NO) NO_SUB_SUPER(NO, R##NO##B) 791 #define NO_SUB_SUPER_W(NO) NO_SUB_SUPER(NO, R##NO##W) 792 #define NO_SUB_SUPER_D(NO) NO_SUB_SUPER(NO, R##NO##D) 793 #define NO_SUB_SUPER_Q(NO) NO_SUB_SUPER(NO, R##NO) 794 switch (Size) { 795 default: 796 llvm_unreachable("illegal register size"); 797 case 8: 798 if (High) { 799 switch (Reg.id()) { 800 DEFAULT_NOREG 801 A_SUB_SUPER(AH) 802 D_SUB_SUPER(DH) 803 C_SUB_SUPER(CH) 804 B_SUB_SUPER(BH) 805 } 806 } else { 807 switch (Reg.id()) { 808 DEFAULT_NOREG 809 A_SUB_SUPER(AL) 810 D_SUB_SUPER(DL) 811 C_SUB_SUPER(CL) 812 B_SUB_SUPER(BL) 813 SI_SUB_SUPER(SIL) 814 DI_SUB_SUPER(DIL) 815 BP_SUB_SUPER(BPL) 816 SP_SUB_SUPER(SPL) 817 NO_SUB_SUPER_B(8) 818 NO_SUB_SUPER_B(9) 819 NO_SUB_SUPER_B(10) 820 NO_SUB_SUPER_B(11) 821 NO_SUB_SUPER_B(12) 822 NO_SUB_SUPER_B(13) 823 NO_SUB_SUPER_B(14) 824 NO_SUB_SUPER_B(15) 825 NO_SUB_SUPER_B(16) 826 NO_SUB_SUPER_B(17) 827 NO_SUB_SUPER_B(18) 828 NO_SUB_SUPER_B(19) 829 NO_SUB_SUPER_B(20) 830 NO_SUB_SUPER_B(21) 831 NO_SUB_SUPER_B(22) 832 NO_SUB_SUPER_B(23) 833 NO_SUB_SUPER_B(24) 834 NO_SUB_SUPER_B(25) 835 NO_SUB_SUPER_B(26) 836 NO_SUB_SUPER_B(27) 837 NO_SUB_SUPER_B(28) 838 NO_SUB_SUPER_B(29) 839 NO_SUB_SUPER_B(30) 840 NO_SUB_SUPER_B(31) 841 } 842 } 843 case 16: 844 switch (Reg.id()) { 845 DEFAULT_NOREG 846 A_SUB_SUPER(AX) 847 D_SUB_SUPER(DX) 848 C_SUB_SUPER(CX) 849 B_SUB_SUPER(BX) 850 SI_SUB_SUPER(SI) 851 DI_SUB_SUPER(DI) 852 BP_SUB_SUPER(BP) 853 SP_SUB_SUPER(SP) 854 NO_SUB_SUPER_W(8) 855 NO_SUB_SUPER_W(9) 856 NO_SUB_SUPER_W(10) 857 NO_SUB_SUPER_W(11) 858 NO_SUB_SUPER_W(12) 859 NO_SUB_SUPER_W(13) 860 NO_SUB_SUPER_W(14) 861 NO_SUB_SUPER_W(15) 862 NO_SUB_SUPER_W(16) 863 NO_SUB_SUPER_W(17) 864 NO_SUB_SUPER_W(18) 865 NO_SUB_SUPER_W(19) 866 NO_SUB_SUPER_W(20) 867 NO_SUB_SUPER_W(21) 868 NO_SUB_SUPER_W(22) 869 NO_SUB_SUPER_W(23) 870 NO_SUB_SUPER_W(24) 871 NO_SUB_SUPER_W(25) 872 NO_SUB_SUPER_W(26) 873 NO_SUB_SUPER_W(27) 874 NO_SUB_SUPER_W(28) 875 NO_SUB_SUPER_W(29) 876 NO_SUB_SUPER_W(30) 877 NO_SUB_SUPER_W(31) 878 } 879 case 32: 880 switch (Reg.id()) { 881 DEFAULT_NOREG 882 A_SUB_SUPER(EAX) 883 D_SUB_SUPER(EDX) 884 C_SUB_SUPER(ECX) 885 B_SUB_SUPER(EBX) 886 SI_SUB_SUPER(ESI) 887 DI_SUB_SUPER(EDI) 888 BP_SUB_SUPER(EBP) 889 SP_SUB_SUPER(ESP) 890 NO_SUB_SUPER_D(8) 891 NO_SUB_SUPER_D(9) 892 NO_SUB_SUPER_D(10) 893 NO_SUB_SUPER_D(11) 894 NO_SUB_SUPER_D(12) 895 NO_SUB_SUPER_D(13) 896 NO_SUB_SUPER_D(14) 897 NO_SUB_SUPER_D(15) 898 NO_SUB_SUPER_D(16) 899 NO_SUB_SUPER_D(17) 900 NO_SUB_SUPER_D(18) 901 NO_SUB_SUPER_D(19) 902 NO_SUB_SUPER_D(20) 903 NO_SUB_SUPER_D(21) 904 NO_SUB_SUPER_D(22) 905 NO_SUB_SUPER_D(23) 906 NO_SUB_SUPER_D(24) 907 NO_SUB_SUPER_D(25) 908 NO_SUB_SUPER_D(26) 909 NO_SUB_SUPER_D(27) 910 NO_SUB_SUPER_D(28) 911 NO_SUB_SUPER_D(29) 912 NO_SUB_SUPER_D(30) 913 NO_SUB_SUPER_D(31) 914 } 915 case 64: 916 switch (Reg.id()) { 917 DEFAULT_NOREG 918 A_SUB_SUPER(RAX) 919 D_SUB_SUPER(RDX) 920 C_SUB_SUPER(RCX) 921 B_SUB_SUPER(RBX) 922 SI_SUB_SUPER(RSI) 923 DI_SUB_SUPER(RDI) 924 BP_SUB_SUPER(RBP) 925 SP_SUB_SUPER(RSP) 926 NO_SUB_SUPER_Q(8) 927 NO_SUB_SUPER_Q(9) 928 NO_SUB_SUPER_Q(10) 929 NO_SUB_SUPER_Q(11) 930 NO_SUB_SUPER_Q(12) 931 NO_SUB_SUPER_Q(13) 932 NO_SUB_SUPER_Q(14) 933 NO_SUB_SUPER_Q(15) 934 NO_SUB_SUPER_Q(16) 935 NO_SUB_SUPER_Q(17) 936 NO_SUB_SUPER_Q(18) 937 NO_SUB_SUPER_Q(19) 938 NO_SUB_SUPER_Q(20) 939 NO_SUB_SUPER_Q(21) 940 NO_SUB_SUPER_Q(22) 941 NO_SUB_SUPER_Q(23) 942 NO_SUB_SUPER_Q(24) 943 NO_SUB_SUPER_Q(25) 944 NO_SUB_SUPER_Q(26) 945 NO_SUB_SUPER_Q(27) 946 NO_SUB_SUPER_Q(28) 947 NO_SUB_SUPER_Q(29) 948 NO_SUB_SUPER_Q(30) 949 NO_SUB_SUPER_Q(31) 950 } 951 } 952 } 953