xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp (revision b0d29bc47dba79f6f38e67eabadfb4b32ffd9390)
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Host.h"
31 #include "llvm/Support/TargetRegistry.h"
32 
33 #if _MSC_VER
34 #include <intrin.h>
35 #endif
36 
37 using namespace llvm;
38 
39 #define GET_REGINFO_MC_DESC
40 #include "X86GenRegisterInfo.inc"
41 
42 #define GET_INSTRINFO_MC_DESC
43 #define GET_INSTRINFO_MC_HELPERS
44 #include "X86GenInstrInfo.inc"
45 
46 #define GET_SUBTARGETINFO_MC_DESC
47 #include "X86GenSubtargetInfo.inc"
48 
49 std::string X86_MC::ParseX86Triple(const Triple &TT) {
50   std::string FS;
51   if (TT.getArch() == Triple::x86_64)
52     FS = "+64bit-mode,-32bit-mode,-16bit-mode";
53   else if (TT.getEnvironment() != Triple::CODE16)
54     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
55   else
56     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
57 
58   return FS;
59 }
60 
61 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
62   if (TT.getArch() == Triple::x86_64)
63     return DWARFFlavour::X86_64;
64 
65   if (TT.isOSDarwin())
66     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
67   if (TT.isOSCygMing())
68     // Unsupported by now, just quick fallback
69     return DWARFFlavour::X86_32_Generic;
70   return DWARFFlavour::X86_32_Generic;
71 }
72 
73 bool X86_MC::hasLockPrefix(const MCInst &MI) {
74   return MI.getFlags() & X86::IP_HAS_LOCK;
75 }
76 
77 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
78   // FIXME: TableGen these.
79   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
80     unsigned SEH = MRI->getEncodingValue(Reg);
81     MRI->mapLLVMRegToSEHReg(Reg, SEH);
82   }
83 
84   // Mapping from CodeView to MC register id.
85   static const struct {
86     codeview::RegisterId CVReg;
87     MCPhysReg Reg;
88   } RegMap[] = {
89       {codeview::RegisterId::AL, X86::AL},
90       {codeview::RegisterId::CL, X86::CL},
91       {codeview::RegisterId::DL, X86::DL},
92       {codeview::RegisterId::BL, X86::BL},
93       {codeview::RegisterId::AH, X86::AH},
94       {codeview::RegisterId::CH, X86::CH},
95       {codeview::RegisterId::DH, X86::DH},
96       {codeview::RegisterId::BH, X86::BH},
97       {codeview::RegisterId::AX, X86::AX},
98       {codeview::RegisterId::CX, X86::CX},
99       {codeview::RegisterId::DX, X86::DX},
100       {codeview::RegisterId::BX, X86::BX},
101       {codeview::RegisterId::SP, X86::SP},
102       {codeview::RegisterId::BP, X86::BP},
103       {codeview::RegisterId::SI, X86::SI},
104       {codeview::RegisterId::DI, X86::DI},
105       {codeview::RegisterId::EAX, X86::EAX},
106       {codeview::RegisterId::ECX, X86::ECX},
107       {codeview::RegisterId::EDX, X86::EDX},
108       {codeview::RegisterId::EBX, X86::EBX},
109       {codeview::RegisterId::ESP, X86::ESP},
110       {codeview::RegisterId::EBP, X86::EBP},
111       {codeview::RegisterId::ESI, X86::ESI},
112       {codeview::RegisterId::EDI, X86::EDI},
113 
114       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
115 
116       {codeview::RegisterId::ST0, X86::FP0},
117       {codeview::RegisterId::ST1, X86::FP1},
118       {codeview::RegisterId::ST2, X86::FP2},
119       {codeview::RegisterId::ST3, X86::FP3},
120       {codeview::RegisterId::ST4, X86::FP4},
121       {codeview::RegisterId::ST5, X86::FP5},
122       {codeview::RegisterId::ST6, X86::FP6},
123       {codeview::RegisterId::ST7, X86::FP7},
124 
125       {codeview::RegisterId::MM0, X86::MM0},
126       {codeview::RegisterId::MM1, X86::MM1},
127       {codeview::RegisterId::MM2, X86::MM2},
128       {codeview::RegisterId::MM3, X86::MM3},
129       {codeview::RegisterId::MM4, X86::MM4},
130       {codeview::RegisterId::MM5, X86::MM5},
131       {codeview::RegisterId::MM6, X86::MM6},
132       {codeview::RegisterId::MM7, X86::MM7},
133 
134       {codeview::RegisterId::XMM0, X86::XMM0},
135       {codeview::RegisterId::XMM1, X86::XMM1},
136       {codeview::RegisterId::XMM2, X86::XMM2},
137       {codeview::RegisterId::XMM3, X86::XMM3},
138       {codeview::RegisterId::XMM4, X86::XMM4},
139       {codeview::RegisterId::XMM5, X86::XMM5},
140       {codeview::RegisterId::XMM6, X86::XMM6},
141       {codeview::RegisterId::XMM7, X86::XMM7},
142 
143       {codeview::RegisterId::XMM8, X86::XMM8},
144       {codeview::RegisterId::XMM9, X86::XMM9},
145       {codeview::RegisterId::XMM10, X86::XMM10},
146       {codeview::RegisterId::XMM11, X86::XMM11},
147       {codeview::RegisterId::XMM12, X86::XMM12},
148       {codeview::RegisterId::XMM13, X86::XMM13},
149       {codeview::RegisterId::XMM14, X86::XMM14},
150       {codeview::RegisterId::XMM15, X86::XMM15},
151 
152       {codeview::RegisterId::SIL, X86::SIL},
153       {codeview::RegisterId::DIL, X86::DIL},
154       {codeview::RegisterId::BPL, X86::BPL},
155       {codeview::RegisterId::SPL, X86::SPL},
156       {codeview::RegisterId::RAX, X86::RAX},
157       {codeview::RegisterId::RBX, X86::RBX},
158       {codeview::RegisterId::RCX, X86::RCX},
159       {codeview::RegisterId::RDX, X86::RDX},
160       {codeview::RegisterId::RSI, X86::RSI},
161       {codeview::RegisterId::RDI, X86::RDI},
162       {codeview::RegisterId::RBP, X86::RBP},
163       {codeview::RegisterId::RSP, X86::RSP},
164       {codeview::RegisterId::R8, X86::R8},
165       {codeview::RegisterId::R9, X86::R9},
166       {codeview::RegisterId::R10, X86::R10},
167       {codeview::RegisterId::R11, X86::R11},
168       {codeview::RegisterId::R12, X86::R12},
169       {codeview::RegisterId::R13, X86::R13},
170       {codeview::RegisterId::R14, X86::R14},
171       {codeview::RegisterId::R15, X86::R15},
172       {codeview::RegisterId::R8B, X86::R8B},
173       {codeview::RegisterId::R9B, X86::R9B},
174       {codeview::RegisterId::R10B, X86::R10B},
175       {codeview::RegisterId::R11B, X86::R11B},
176       {codeview::RegisterId::R12B, X86::R12B},
177       {codeview::RegisterId::R13B, X86::R13B},
178       {codeview::RegisterId::R14B, X86::R14B},
179       {codeview::RegisterId::R15B, X86::R15B},
180       {codeview::RegisterId::R8W, X86::R8W},
181       {codeview::RegisterId::R9W, X86::R9W},
182       {codeview::RegisterId::R10W, X86::R10W},
183       {codeview::RegisterId::R11W, X86::R11W},
184       {codeview::RegisterId::R12W, X86::R12W},
185       {codeview::RegisterId::R13W, X86::R13W},
186       {codeview::RegisterId::R14W, X86::R14W},
187       {codeview::RegisterId::R15W, X86::R15W},
188       {codeview::RegisterId::R8D, X86::R8D},
189       {codeview::RegisterId::R9D, X86::R9D},
190       {codeview::RegisterId::R10D, X86::R10D},
191       {codeview::RegisterId::R11D, X86::R11D},
192       {codeview::RegisterId::R12D, X86::R12D},
193       {codeview::RegisterId::R13D, X86::R13D},
194       {codeview::RegisterId::R14D, X86::R14D},
195       {codeview::RegisterId::R15D, X86::R15D},
196       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
197       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
198       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
199       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
200       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
201       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
202       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
203       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
204       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
205       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
206       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
207       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
208       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
209       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
210       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
211       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
212       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
213       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
214       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
215       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
216       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
217       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
218       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
219       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
220       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
221       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
222       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
223       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
224       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
225       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
226       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
227       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
228       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
229       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
230       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
231       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
232       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
233       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
234       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
235       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
236       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
237       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
238       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
239       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
240       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
241       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
242       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
243       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
244       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
245       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
246       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
247       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
248       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
249       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
250       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
251       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
252       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
253       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
254       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
255       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
256       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
257       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
258       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
259       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
260       {codeview::RegisterId::AMD64_K0, X86::K0},
261       {codeview::RegisterId::AMD64_K1, X86::K1},
262       {codeview::RegisterId::AMD64_K2, X86::K2},
263       {codeview::RegisterId::AMD64_K3, X86::K3},
264       {codeview::RegisterId::AMD64_K4, X86::K4},
265       {codeview::RegisterId::AMD64_K5, X86::K5},
266       {codeview::RegisterId::AMD64_K6, X86::K6},
267       {codeview::RegisterId::AMD64_K7, X86::K7},
268       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
269       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
270       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
271       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
272       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
273       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
274       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
275       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
276       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
277       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
278       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
279       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
280       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
281       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
282       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
283       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
284 
285   };
286   for (unsigned I = 0; I < array_lengthof(RegMap); ++I)
287     MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg));
288 }
289 
290 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
291                                                   StringRef CPU, StringRef FS) {
292   std::string ArchFS = X86_MC::ParseX86Triple(TT);
293   assert(!ArchFS.empty() && "Failed to parse X86 triple");
294   if (!FS.empty())
295     ArchFS = (Twine(ArchFS) + "," + FS).str();
296 
297   std::string CPUName = CPU;
298   if (CPUName.empty())
299     CPUName = "generic";
300 
301   return createX86MCSubtargetInfoImpl(TT, CPUName, ArchFS);
302 }
303 
304 static MCInstrInfo *createX86MCInstrInfo() {
305   MCInstrInfo *X = new MCInstrInfo();
306   InitX86MCInstrInfo(X);
307   return X;
308 }
309 
310 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
311   unsigned RA = (TT.getArch() == Triple::x86_64)
312                     ? X86::RIP  // Should have dwarf #16.
313                     : X86::EIP; // Should have dwarf #8.
314 
315   MCRegisterInfo *X = new MCRegisterInfo();
316   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
317                         X86_MC::getDwarfRegFlavour(TT, true), RA);
318   X86_MC::initLLVMToSEHAndCVRegMapping(X);
319   return X;
320 }
321 
322 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
323                                      const Triple &TheTriple,
324                                      const MCTargetOptions &Options) {
325   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
326 
327   MCAsmInfo *MAI;
328   if (TheTriple.isOSBinFormatMachO()) {
329     if (is64Bit)
330       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
331     else
332       MAI = new X86MCAsmInfoDarwin(TheTriple);
333   } else if (TheTriple.isOSBinFormatELF()) {
334     // Force the use of an ELF container.
335     MAI = new X86ELFMCAsmInfo(TheTriple);
336   } else if (TheTriple.isWindowsMSVCEnvironment() ||
337              TheTriple.isWindowsCoreCLREnvironment()) {
338     MAI = new X86MCAsmInfoMicrosoft(TheTriple);
339   } else if (TheTriple.isOSCygMing() ||
340              TheTriple.isWindowsItaniumEnvironment()) {
341     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
342   } else {
343     // The default is ELF.
344     MAI = new X86ELFMCAsmInfo(TheTriple);
345   }
346 
347   // Initialize initial frame state.
348   // Calculate amount of bytes used for return address storing
349   int stackGrowth = is64Bit ? -8 : -4;
350 
351   // Initial state of the frame pointer is esp+stackGrowth.
352   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
353   MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(
354       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
355   MAI->addInitialFrameState(Inst);
356 
357   // Add return address to move list
358   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
359   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
360       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
361   MAI->addInitialFrameState(Inst2);
362 
363   return MAI;
364 }
365 
366 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
367                                              unsigned SyntaxVariant,
368                                              const MCAsmInfo &MAI,
369                                              const MCInstrInfo &MII,
370                                              const MCRegisterInfo &MRI) {
371   if (SyntaxVariant == 0)
372     return new X86ATTInstPrinter(MAI, MII, MRI);
373   if (SyntaxVariant == 1)
374     return new X86IntelInstPrinter(MAI, MII, MRI);
375   return nullptr;
376 }
377 
378 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
379                                                    MCContext &Ctx) {
380   // Default to the stock relocation info.
381   return llvm::createMCRelocationInfo(TheTriple, Ctx);
382 }
383 
384 namespace llvm {
385 namespace X86_MC {
386 
387 class X86MCInstrAnalysis : public MCInstrAnalysis {
388   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
389   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
390   virtual ~X86MCInstrAnalysis() = default;
391 
392 public:
393   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
394 
395 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
396 #include "X86GenSubtargetInfo.inc"
397 
398   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
399                             APInt &Mask) const override;
400   std::vector<std::pair<uint64_t, uint64_t>>
401   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
402                  uint64_t GotSectionVA,
403                  const Triple &TargetTriple) const override;
404   Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
405                                                   uint64_t Addr,
406                                                   uint64_t Size) const override;
407 };
408 
409 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
410 #include "X86GenSubtargetInfo.inc"
411 
412 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
413                                               const MCInst &Inst,
414                                               APInt &Mask) const {
415   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
416   unsigned NumDefs = Desc.getNumDefs();
417   unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
418   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
419          "Unexpected number of bits in the mask!");
420 
421   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
422   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
423   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
424 
425   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
426   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
427   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
428 
429   auto ClearsSuperReg = [=](unsigned RegID) {
430     // On X86-64, a general purpose integer register is viewed as a 64-bit
431     // register internal to the processor.
432     // An update to the lower 32 bits of a 64 bit integer register is
433     // architecturally defined to zero extend the upper 32 bits.
434     if (GR32RC.contains(RegID))
435       return true;
436 
437     // Early exit if this instruction has no vex/evex/xop prefix.
438     if (!HasEVEX && !HasVEX && !HasXOP)
439       return false;
440 
441     // All VEX and EVEX encoded instructions are defined to zero the high bits
442     // of the destination register up to VLMAX (i.e. the maximum vector register
443     // width pertaining to the instruction).
444     // We assume the same behavior for XOP instructions too.
445     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
446   };
447 
448   Mask.clearAllBits();
449   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
450     const MCOperand &Op = Inst.getOperand(I);
451     if (ClearsSuperReg(Op.getReg()))
452       Mask.setBit(I);
453   }
454 
455   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
456     const MCPhysReg Reg = Desc.getImplicitDefs()[I];
457     if (ClearsSuperReg(Reg))
458       Mask.setBit(NumDefs + I);
459   }
460 
461   return Mask.getBoolValue();
462 }
463 
464 static std::vector<std::pair<uint64_t, uint64_t>>
465 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
466                   uint64_t GotPltSectionVA) {
467   // Do a lightweight parsing of PLT entries.
468   std::vector<std::pair<uint64_t, uint64_t>> Result;
469   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
470     // Recognize a jmp.
471     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
472       // The jmp instruction at the beginning of each PLT entry jumps to the
473       // address of the base of the .got.plt section plus the immediate.
474       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
475       Result.push_back(
476           std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
477       Byte += 6;
478     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
479       // The jmp instruction at the beginning of each PLT entry jumps to the
480       // immediate.
481       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
482       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
483       Byte += 6;
484     } else
485       Byte++;
486   }
487   return Result;
488 }
489 
490 static std::vector<std::pair<uint64_t, uint64_t>>
491 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
492   // Do a lightweight parsing of PLT entries.
493   std::vector<std::pair<uint64_t, uint64_t>> Result;
494   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
495     // Recognize a jmp.
496     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
497       // The jmp instruction at the beginning of each PLT entry jumps to the
498       // address of the next instruction plus the immediate.
499       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
500       Result.push_back(
501           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
502       Byte += 6;
503     } else
504       Byte++;
505   }
506   return Result;
507 }
508 
509 std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
510     uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
511     uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
512   switch (TargetTriple.getArch()) {
513     case Triple::x86:
514       return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
515     case Triple::x86_64:
516       return findX86_64PltEntries(PltSectionVA, PltContents);
517     default:
518       return {};
519     }
520 }
521 
522 Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
523     const MCInst &Inst, uint64_t Addr, uint64_t Size) const {
524   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
525   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
526   if (MemOpStart == -1)
527     return None;
528   MemOpStart += X86II::getOperandBias(MCID);
529 
530   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
531   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
532   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
533   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
534   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
535   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
536       !Disp.isImm())
537     return None;
538 
539   // RIP-relative addressing.
540   if (BaseReg.getReg() == X86::RIP)
541     return Addr + Size + Disp.getImm();
542 
543   return None;
544 }
545 
546 } // end of namespace X86_MC
547 
548 } // end of namespace llvm
549 
550 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
551   return new X86_MC::X86MCInstrAnalysis(Info);
552 }
553 
554 // Force static initialization.
555 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
556   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
557     // Register the MC asm info.
558     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
559 
560     // Register the MC instruction info.
561     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
562 
563     // Register the MC register info.
564     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
565 
566     // Register the MC subtarget info.
567     TargetRegistry::RegisterMCSubtargetInfo(*T,
568                                             X86_MC::createX86MCSubtargetInfo);
569 
570     // Register the MC instruction analyzer.
571     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
572 
573     // Register the code emitter.
574     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
575 
576     // Register the obj target streamer.
577     TargetRegistry::RegisterObjectTargetStreamer(*T,
578                                                  createX86ObjectTargetStreamer);
579 
580     // Register the asm target streamer.
581     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
582 
583     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
584 
585     // Register the MCInstPrinter.
586     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
587 
588     // Register the MC relocation info.
589     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
590   }
591 
592   // Register the asm backend.
593   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
594                                        createX86_32AsmBackend);
595   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
596                                        createX86_64AsmBackend);
597 }
598 
599 MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
600                                               bool High) {
601   switch (Size) {
602   default: return X86::NoRegister;
603   case 8:
604     if (High) {
605       switch (Reg.id()) {
606       default: return getX86SubSuperRegisterOrZero(Reg, 64);
607       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
608         return X86::SI;
609       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
610         return X86::DI;
611       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
612         return X86::BP;
613       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
614         return X86::SP;
615       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
616         return X86::AH;
617       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
618         return X86::DH;
619       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
620         return X86::CH;
621       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
622         return X86::BH;
623       }
624     } else {
625       switch (Reg.id()) {
626       default: return X86::NoRegister;
627       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
628         return X86::AL;
629       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
630         return X86::DL;
631       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
632         return X86::CL;
633       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
634         return X86::BL;
635       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
636         return X86::SIL;
637       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
638         return X86::DIL;
639       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
640         return X86::BPL;
641       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
642         return X86::SPL;
643       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
644         return X86::R8B;
645       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
646         return X86::R9B;
647       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
648         return X86::R10B;
649       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
650         return X86::R11B;
651       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
652         return X86::R12B;
653       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
654         return X86::R13B;
655       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
656         return X86::R14B;
657       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
658         return X86::R15B;
659       }
660     }
661   case 16:
662     switch (Reg.id()) {
663     default: return X86::NoRegister;
664     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
665       return X86::AX;
666     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
667       return X86::DX;
668     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
669       return X86::CX;
670     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
671       return X86::BX;
672     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
673       return X86::SI;
674     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
675       return X86::DI;
676     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
677       return X86::BP;
678     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
679       return X86::SP;
680     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
681       return X86::R8W;
682     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
683       return X86::R9W;
684     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
685       return X86::R10W;
686     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
687       return X86::R11W;
688     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
689       return X86::R12W;
690     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
691       return X86::R13W;
692     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
693       return X86::R14W;
694     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
695       return X86::R15W;
696     }
697   case 32:
698     switch (Reg.id()) {
699     default: return X86::NoRegister;
700     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
701       return X86::EAX;
702     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
703       return X86::EDX;
704     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
705       return X86::ECX;
706     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
707       return X86::EBX;
708     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
709       return X86::ESI;
710     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
711       return X86::EDI;
712     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
713       return X86::EBP;
714     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
715       return X86::ESP;
716     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
717       return X86::R8D;
718     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
719       return X86::R9D;
720     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
721       return X86::R10D;
722     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
723       return X86::R11D;
724     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
725       return X86::R12D;
726     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
727       return X86::R13D;
728     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
729       return X86::R14D;
730     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
731       return X86::R15D;
732     }
733   case 64:
734     switch (Reg.id()) {
735     default: return 0;
736     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
737       return X86::RAX;
738     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
739       return X86::RDX;
740     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
741       return X86::RCX;
742     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
743       return X86::RBX;
744     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
745       return X86::RSI;
746     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
747       return X86::RDI;
748     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
749       return X86::RBP;
750     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
751       return X86::RSP;
752     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
753       return X86::R8;
754     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
755       return X86::R9;
756     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
757       return X86::R10;
758     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
759       return X86::R11;
760     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
761       return X86::R12;
762     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
763       return X86::R13;
764     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
765       return X86::R14;
766     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
767       return X86::R15;
768     }
769   }
770 }
771 
772 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
773   MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
774   assert(Res != X86::NoRegister && "Unexpected register or VT");
775   return Res;
776 }
777 
778 
779