1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides X86 specific target descriptions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86MCTargetDesc.h" 14 #include "TargetInfo/X86TargetInfo.h" 15 #include "X86ATTInstPrinter.h" 16 #include "X86BaseInfo.h" 17 #include "X86IntelInstPrinter.h" 18 #include "X86MCAsmInfo.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/DebugInfo/CodeView/CodeView.h" 22 #include "llvm/MC/MCDwarf.h" 23 #include "llvm/MC/MCInstrAnalysis.h" 24 #include "llvm/MC/MCInstrInfo.h" 25 #include "llvm/MC/MCRegisterInfo.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSubtargetInfo.h" 28 #include "llvm/MC/MachineLocation.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Host.h" 31 #include "llvm/Support/TargetRegistry.h" 32 33 #if _MSC_VER 34 #include <intrin.h> 35 #endif 36 37 using namespace llvm; 38 39 #define GET_REGINFO_MC_DESC 40 #include "X86GenRegisterInfo.inc" 41 42 #define GET_INSTRINFO_MC_DESC 43 #define GET_INSTRINFO_MC_HELPERS 44 #include "X86GenInstrInfo.inc" 45 46 #define GET_SUBTARGETINFO_MC_DESC 47 #include "X86GenSubtargetInfo.inc" 48 49 std::string X86_MC::ParseX86Triple(const Triple &TT) { 50 std::string FS; 51 if (TT.getArch() == Triple::x86_64) 52 FS = "+64bit-mode,-32bit-mode,-16bit-mode"; 53 else if (TT.getEnvironment() != Triple::CODE16) 54 FS = "-64bit-mode,+32bit-mode,-16bit-mode"; 55 else 56 FS = "-64bit-mode,-32bit-mode,+16bit-mode"; 57 58 return FS; 59 } 60 61 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) { 62 if (TT.getArch() == Triple::x86_64) 63 return DWARFFlavour::X86_64; 64 65 if (TT.isOSDarwin()) 66 return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic; 67 if (TT.isOSCygMing()) 68 // Unsupported by now, just quick fallback 69 return DWARFFlavour::X86_32_Generic; 70 return DWARFFlavour::X86_32_Generic; 71 } 72 73 bool X86_MC::hasLockPrefix(const MCInst &MI) { 74 return MI.getFlags() & X86::IP_HAS_LOCK; 75 } 76 77 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) { 78 // FIXME: TableGen these. 79 for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) { 80 unsigned SEH = MRI->getEncodingValue(Reg); 81 MRI->mapLLVMRegToSEHReg(Reg, SEH); 82 } 83 84 // Mapping from CodeView to MC register id. 85 static const struct { 86 codeview::RegisterId CVReg; 87 MCPhysReg Reg; 88 } RegMap[] = { 89 {codeview::RegisterId::AL, X86::AL}, 90 {codeview::RegisterId::CL, X86::CL}, 91 {codeview::RegisterId::DL, X86::DL}, 92 {codeview::RegisterId::BL, X86::BL}, 93 {codeview::RegisterId::AH, X86::AH}, 94 {codeview::RegisterId::CH, X86::CH}, 95 {codeview::RegisterId::DH, X86::DH}, 96 {codeview::RegisterId::BH, X86::BH}, 97 {codeview::RegisterId::AX, X86::AX}, 98 {codeview::RegisterId::CX, X86::CX}, 99 {codeview::RegisterId::DX, X86::DX}, 100 {codeview::RegisterId::BX, X86::BX}, 101 {codeview::RegisterId::SP, X86::SP}, 102 {codeview::RegisterId::BP, X86::BP}, 103 {codeview::RegisterId::SI, X86::SI}, 104 {codeview::RegisterId::DI, X86::DI}, 105 {codeview::RegisterId::EAX, X86::EAX}, 106 {codeview::RegisterId::ECX, X86::ECX}, 107 {codeview::RegisterId::EDX, X86::EDX}, 108 {codeview::RegisterId::EBX, X86::EBX}, 109 {codeview::RegisterId::ESP, X86::ESP}, 110 {codeview::RegisterId::EBP, X86::EBP}, 111 {codeview::RegisterId::ESI, X86::ESI}, 112 {codeview::RegisterId::EDI, X86::EDI}, 113 114 {codeview::RegisterId::EFLAGS, X86::EFLAGS}, 115 116 {codeview::RegisterId::ST0, X86::FP0}, 117 {codeview::RegisterId::ST1, X86::FP1}, 118 {codeview::RegisterId::ST2, X86::FP2}, 119 {codeview::RegisterId::ST3, X86::FP3}, 120 {codeview::RegisterId::ST4, X86::FP4}, 121 {codeview::RegisterId::ST5, X86::FP5}, 122 {codeview::RegisterId::ST6, X86::FP6}, 123 {codeview::RegisterId::ST7, X86::FP7}, 124 125 {codeview::RegisterId::MM0, X86::MM0}, 126 {codeview::RegisterId::MM1, X86::MM1}, 127 {codeview::RegisterId::MM2, X86::MM2}, 128 {codeview::RegisterId::MM3, X86::MM3}, 129 {codeview::RegisterId::MM4, X86::MM4}, 130 {codeview::RegisterId::MM5, X86::MM5}, 131 {codeview::RegisterId::MM6, X86::MM6}, 132 {codeview::RegisterId::MM7, X86::MM7}, 133 134 {codeview::RegisterId::XMM0, X86::XMM0}, 135 {codeview::RegisterId::XMM1, X86::XMM1}, 136 {codeview::RegisterId::XMM2, X86::XMM2}, 137 {codeview::RegisterId::XMM3, X86::XMM3}, 138 {codeview::RegisterId::XMM4, X86::XMM4}, 139 {codeview::RegisterId::XMM5, X86::XMM5}, 140 {codeview::RegisterId::XMM6, X86::XMM6}, 141 {codeview::RegisterId::XMM7, X86::XMM7}, 142 143 {codeview::RegisterId::XMM8, X86::XMM8}, 144 {codeview::RegisterId::XMM9, X86::XMM9}, 145 {codeview::RegisterId::XMM10, X86::XMM10}, 146 {codeview::RegisterId::XMM11, X86::XMM11}, 147 {codeview::RegisterId::XMM12, X86::XMM12}, 148 {codeview::RegisterId::XMM13, X86::XMM13}, 149 {codeview::RegisterId::XMM14, X86::XMM14}, 150 {codeview::RegisterId::XMM15, X86::XMM15}, 151 152 {codeview::RegisterId::SIL, X86::SIL}, 153 {codeview::RegisterId::DIL, X86::DIL}, 154 {codeview::RegisterId::BPL, X86::BPL}, 155 {codeview::RegisterId::SPL, X86::SPL}, 156 {codeview::RegisterId::RAX, X86::RAX}, 157 {codeview::RegisterId::RBX, X86::RBX}, 158 {codeview::RegisterId::RCX, X86::RCX}, 159 {codeview::RegisterId::RDX, X86::RDX}, 160 {codeview::RegisterId::RSI, X86::RSI}, 161 {codeview::RegisterId::RDI, X86::RDI}, 162 {codeview::RegisterId::RBP, X86::RBP}, 163 {codeview::RegisterId::RSP, X86::RSP}, 164 {codeview::RegisterId::R8, X86::R8}, 165 {codeview::RegisterId::R9, X86::R9}, 166 {codeview::RegisterId::R10, X86::R10}, 167 {codeview::RegisterId::R11, X86::R11}, 168 {codeview::RegisterId::R12, X86::R12}, 169 {codeview::RegisterId::R13, X86::R13}, 170 {codeview::RegisterId::R14, X86::R14}, 171 {codeview::RegisterId::R15, X86::R15}, 172 {codeview::RegisterId::R8B, X86::R8B}, 173 {codeview::RegisterId::R9B, X86::R9B}, 174 {codeview::RegisterId::R10B, X86::R10B}, 175 {codeview::RegisterId::R11B, X86::R11B}, 176 {codeview::RegisterId::R12B, X86::R12B}, 177 {codeview::RegisterId::R13B, X86::R13B}, 178 {codeview::RegisterId::R14B, X86::R14B}, 179 {codeview::RegisterId::R15B, X86::R15B}, 180 {codeview::RegisterId::R8W, X86::R8W}, 181 {codeview::RegisterId::R9W, X86::R9W}, 182 {codeview::RegisterId::R10W, X86::R10W}, 183 {codeview::RegisterId::R11W, X86::R11W}, 184 {codeview::RegisterId::R12W, X86::R12W}, 185 {codeview::RegisterId::R13W, X86::R13W}, 186 {codeview::RegisterId::R14W, X86::R14W}, 187 {codeview::RegisterId::R15W, X86::R15W}, 188 {codeview::RegisterId::R8D, X86::R8D}, 189 {codeview::RegisterId::R9D, X86::R9D}, 190 {codeview::RegisterId::R10D, X86::R10D}, 191 {codeview::RegisterId::R11D, X86::R11D}, 192 {codeview::RegisterId::R12D, X86::R12D}, 193 {codeview::RegisterId::R13D, X86::R13D}, 194 {codeview::RegisterId::R14D, X86::R14D}, 195 {codeview::RegisterId::R15D, X86::R15D}, 196 {codeview::RegisterId::AMD64_YMM0, X86::YMM0}, 197 {codeview::RegisterId::AMD64_YMM1, X86::YMM1}, 198 {codeview::RegisterId::AMD64_YMM2, X86::YMM2}, 199 {codeview::RegisterId::AMD64_YMM3, X86::YMM3}, 200 {codeview::RegisterId::AMD64_YMM4, X86::YMM4}, 201 {codeview::RegisterId::AMD64_YMM5, X86::YMM5}, 202 {codeview::RegisterId::AMD64_YMM6, X86::YMM6}, 203 {codeview::RegisterId::AMD64_YMM7, X86::YMM7}, 204 {codeview::RegisterId::AMD64_YMM8, X86::YMM8}, 205 {codeview::RegisterId::AMD64_YMM9, X86::YMM9}, 206 {codeview::RegisterId::AMD64_YMM10, X86::YMM10}, 207 {codeview::RegisterId::AMD64_YMM11, X86::YMM11}, 208 {codeview::RegisterId::AMD64_YMM12, X86::YMM12}, 209 {codeview::RegisterId::AMD64_YMM13, X86::YMM13}, 210 {codeview::RegisterId::AMD64_YMM14, X86::YMM14}, 211 {codeview::RegisterId::AMD64_YMM15, X86::YMM15}, 212 {codeview::RegisterId::AMD64_YMM16, X86::YMM16}, 213 {codeview::RegisterId::AMD64_YMM17, X86::YMM17}, 214 {codeview::RegisterId::AMD64_YMM18, X86::YMM18}, 215 {codeview::RegisterId::AMD64_YMM19, X86::YMM19}, 216 {codeview::RegisterId::AMD64_YMM20, X86::YMM20}, 217 {codeview::RegisterId::AMD64_YMM21, X86::YMM21}, 218 {codeview::RegisterId::AMD64_YMM22, X86::YMM22}, 219 {codeview::RegisterId::AMD64_YMM23, X86::YMM23}, 220 {codeview::RegisterId::AMD64_YMM24, X86::YMM24}, 221 {codeview::RegisterId::AMD64_YMM25, X86::YMM25}, 222 {codeview::RegisterId::AMD64_YMM26, X86::YMM26}, 223 {codeview::RegisterId::AMD64_YMM27, X86::YMM27}, 224 {codeview::RegisterId::AMD64_YMM28, X86::YMM28}, 225 {codeview::RegisterId::AMD64_YMM29, X86::YMM29}, 226 {codeview::RegisterId::AMD64_YMM30, X86::YMM30}, 227 {codeview::RegisterId::AMD64_YMM31, X86::YMM31}, 228 {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0}, 229 {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1}, 230 {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2}, 231 {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3}, 232 {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4}, 233 {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5}, 234 {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6}, 235 {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7}, 236 {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8}, 237 {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9}, 238 {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10}, 239 {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11}, 240 {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12}, 241 {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13}, 242 {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14}, 243 {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15}, 244 {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16}, 245 {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17}, 246 {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18}, 247 {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19}, 248 {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20}, 249 {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21}, 250 {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22}, 251 {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23}, 252 {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24}, 253 {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25}, 254 {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26}, 255 {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27}, 256 {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28}, 257 {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29}, 258 {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30}, 259 {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31}, 260 {codeview::RegisterId::AMD64_K0, X86::K0}, 261 {codeview::RegisterId::AMD64_K1, X86::K1}, 262 {codeview::RegisterId::AMD64_K2, X86::K2}, 263 {codeview::RegisterId::AMD64_K3, X86::K3}, 264 {codeview::RegisterId::AMD64_K4, X86::K4}, 265 {codeview::RegisterId::AMD64_K5, X86::K5}, 266 {codeview::RegisterId::AMD64_K6, X86::K6}, 267 {codeview::RegisterId::AMD64_K7, X86::K7}, 268 {codeview::RegisterId::AMD64_XMM16, X86::XMM16}, 269 {codeview::RegisterId::AMD64_XMM17, X86::XMM17}, 270 {codeview::RegisterId::AMD64_XMM18, X86::XMM18}, 271 {codeview::RegisterId::AMD64_XMM19, X86::XMM19}, 272 {codeview::RegisterId::AMD64_XMM20, X86::XMM20}, 273 {codeview::RegisterId::AMD64_XMM21, X86::XMM21}, 274 {codeview::RegisterId::AMD64_XMM22, X86::XMM22}, 275 {codeview::RegisterId::AMD64_XMM23, X86::XMM23}, 276 {codeview::RegisterId::AMD64_XMM24, X86::XMM24}, 277 {codeview::RegisterId::AMD64_XMM25, X86::XMM25}, 278 {codeview::RegisterId::AMD64_XMM26, X86::XMM26}, 279 {codeview::RegisterId::AMD64_XMM27, X86::XMM27}, 280 {codeview::RegisterId::AMD64_XMM28, X86::XMM28}, 281 {codeview::RegisterId::AMD64_XMM29, X86::XMM29}, 282 {codeview::RegisterId::AMD64_XMM30, X86::XMM30}, 283 {codeview::RegisterId::AMD64_XMM31, X86::XMM31}, 284 285 }; 286 for (unsigned I = 0; I < array_lengthof(RegMap); ++I) 287 MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg)); 288 } 289 290 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT, 291 StringRef CPU, StringRef FS) { 292 std::string ArchFS = X86_MC::ParseX86Triple(TT); 293 assert(!ArchFS.empty() && "Failed to parse X86 triple"); 294 if (!FS.empty()) 295 ArchFS = (Twine(ArchFS) + "," + FS).str(); 296 297 std::string CPUName = CPU; 298 if (CPUName.empty()) 299 CPUName = "generic"; 300 301 return createX86MCSubtargetInfoImpl(TT, CPUName, ArchFS); 302 } 303 304 static MCInstrInfo *createX86MCInstrInfo() { 305 MCInstrInfo *X = new MCInstrInfo(); 306 InitX86MCInstrInfo(X); 307 return X; 308 } 309 310 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) { 311 unsigned RA = (TT.getArch() == Triple::x86_64) 312 ? X86::RIP // Should have dwarf #16. 313 : X86::EIP; // Should have dwarf #8. 314 315 MCRegisterInfo *X = new MCRegisterInfo(); 316 InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false), 317 X86_MC::getDwarfRegFlavour(TT, true), RA); 318 X86_MC::initLLVMToSEHAndCVRegMapping(X); 319 return X; 320 } 321 322 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI, 323 const Triple &TheTriple, 324 const MCTargetOptions &Options) { 325 bool is64Bit = TheTriple.getArch() == Triple::x86_64; 326 327 MCAsmInfo *MAI; 328 if (TheTriple.isOSBinFormatMachO()) { 329 if (is64Bit) 330 MAI = new X86_64MCAsmInfoDarwin(TheTriple); 331 else 332 MAI = new X86MCAsmInfoDarwin(TheTriple); 333 } else if (TheTriple.isOSBinFormatELF()) { 334 // Force the use of an ELF container. 335 MAI = new X86ELFMCAsmInfo(TheTriple); 336 } else if (TheTriple.isWindowsMSVCEnvironment() || 337 TheTriple.isWindowsCoreCLREnvironment()) { 338 MAI = new X86MCAsmInfoMicrosoft(TheTriple); 339 } else if (TheTriple.isOSCygMing() || 340 TheTriple.isWindowsItaniumEnvironment()) { 341 MAI = new X86MCAsmInfoGNUCOFF(TheTriple); 342 } else { 343 // The default is ELF. 344 MAI = new X86ELFMCAsmInfo(TheTriple); 345 } 346 347 // Initialize initial frame state. 348 // Calculate amount of bytes used for return address storing 349 int stackGrowth = is64Bit ? -8 : -4; 350 351 // Initial state of the frame pointer is esp+stackGrowth. 352 unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP; 353 MCCFIInstruction Inst = MCCFIInstruction::createDefCfa( 354 nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth); 355 MAI->addInitialFrameState(Inst); 356 357 // Add return address to move list 358 unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP; 359 MCCFIInstruction Inst2 = MCCFIInstruction::createOffset( 360 nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth); 361 MAI->addInitialFrameState(Inst2); 362 363 return MAI; 364 } 365 366 static MCInstPrinter *createX86MCInstPrinter(const Triple &T, 367 unsigned SyntaxVariant, 368 const MCAsmInfo &MAI, 369 const MCInstrInfo &MII, 370 const MCRegisterInfo &MRI) { 371 if (SyntaxVariant == 0) 372 return new X86ATTInstPrinter(MAI, MII, MRI); 373 if (SyntaxVariant == 1) 374 return new X86IntelInstPrinter(MAI, MII, MRI); 375 return nullptr; 376 } 377 378 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple, 379 MCContext &Ctx) { 380 // Default to the stock relocation info. 381 return llvm::createMCRelocationInfo(TheTriple, Ctx); 382 } 383 384 namespace llvm { 385 namespace X86_MC { 386 387 class X86MCInstrAnalysis : public MCInstrAnalysis { 388 X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete; 389 X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete; 390 virtual ~X86MCInstrAnalysis() = default; 391 392 public: 393 X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {} 394 395 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS 396 #include "X86GenSubtargetInfo.inc" 397 398 bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, 399 APInt &Mask) const override; 400 std::vector<std::pair<uint64_t, uint64_t>> 401 findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, 402 uint64_t GotSectionVA, 403 const Triple &TargetTriple) const override; 404 Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst, 405 uint64_t Addr, 406 uint64_t Size) const override; 407 }; 408 409 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS 410 #include "X86GenSubtargetInfo.inc" 411 412 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI, 413 const MCInst &Inst, 414 APInt &Mask) const { 415 const MCInstrDesc &Desc = Info->get(Inst.getOpcode()); 416 unsigned NumDefs = Desc.getNumDefs(); 417 unsigned NumImplicitDefs = Desc.getNumImplicitDefs(); 418 assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs && 419 "Unexpected number of bits in the mask!"); 420 421 bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX; 422 bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX; 423 bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP; 424 425 const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID); 426 const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID); 427 const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID); 428 429 auto ClearsSuperReg = [=](unsigned RegID) { 430 // On X86-64, a general purpose integer register is viewed as a 64-bit 431 // register internal to the processor. 432 // An update to the lower 32 bits of a 64 bit integer register is 433 // architecturally defined to zero extend the upper 32 bits. 434 if (GR32RC.contains(RegID)) 435 return true; 436 437 // Early exit if this instruction has no vex/evex/xop prefix. 438 if (!HasEVEX && !HasVEX && !HasXOP) 439 return false; 440 441 // All VEX and EVEX encoded instructions are defined to zero the high bits 442 // of the destination register up to VLMAX (i.e. the maximum vector register 443 // width pertaining to the instruction). 444 // We assume the same behavior for XOP instructions too. 445 return VR128XRC.contains(RegID) || VR256XRC.contains(RegID); 446 }; 447 448 Mask.clearAllBits(); 449 for (unsigned I = 0, E = NumDefs; I < E; ++I) { 450 const MCOperand &Op = Inst.getOperand(I); 451 if (ClearsSuperReg(Op.getReg())) 452 Mask.setBit(I); 453 } 454 455 for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) { 456 const MCPhysReg Reg = Desc.getImplicitDefs()[I]; 457 if (ClearsSuperReg(Reg)) 458 Mask.setBit(NumDefs + I); 459 } 460 461 return Mask.getBoolValue(); 462 } 463 464 static std::vector<std::pair<uint64_t, uint64_t>> 465 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, 466 uint64_t GotPltSectionVA) { 467 // Do a lightweight parsing of PLT entries. 468 std::vector<std::pair<uint64_t, uint64_t>> Result; 469 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) { 470 // Recognize a jmp. 471 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) { 472 // The jmp instruction at the beginning of each PLT entry jumps to the 473 // address of the base of the .got.plt section plus the immediate. 474 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2); 475 Result.push_back( 476 std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm)); 477 Byte += 6; 478 } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) { 479 // The jmp instruction at the beginning of each PLT entry jumps to the 480 // immediate. 481 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2); 482 Result.push_back(std::make_pair(PltSectionVA + Byte, Imm)); 483 Byte += 6; 484 } else 485 Byte++; 486 } 487 return Result; 488 } 489 490 static std::vector<std::pair<uint64_t, uint64_t>> 491 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) { 492 // Do a lightweight parsing of PLT entries. 493 std::vector<std::pair<uint64_t, uint64_t>> Result; 494 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) { 495 // Recognize a jmp. 496 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) { 497 // The jmp instruction at the beginning of each PLT entry jumps to the 498 // address of the next instruction plus the immediate. 499 uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2); 500 Result.push_back( 501 std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm)); 502 Byte += 6; 503 } else 504 Byte++; 505 } 506 return Result; 507 } 508 509 std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries( 510 uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, 511 uint64_t GotPltSectionVA, const Triple &TargetTriple) const { 512 switch (TargetTriple.getArch()) { 513 case Triple::x86: 514 return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA); 515 case Triple::x86_64: 516 return findX86_64PltEntries(PltSectionVA, PltContents); 517 default: 518 return {}; 519 } 520 } 521 522 Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress( 523 const MCInst &Inst, uint64_t Addr, uint64_t Size) const { 524 const MCInstrDesc &MCID = Info->get(Inst.getOpcode()); 525 int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags); 526 if (MemOpStart == -1) 527 return None; 528 MemOpStart += X86II::getOperandBias(MCID); 529 530 const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg); 531 const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg); 532 const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg); 533 const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt); 534 const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp); 535 if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || 536 !Disp.isImm()) 537 return None; 538 539 // RIP-relative addressing. 540 if (BaseReg.getReg() == X86::RIP) 541 return Addr + Size + Disp.getImm(); 542 543 return None; 544 } 545 546 } // end of namespace X86_MC 547 548 } // end of namespace llvm 549 550 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) { 551 return new X86_MC::X86MCInstrAnalysis(Info); 552 } 553 554 // Force static initialization. 555 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() { 556 for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) { 557 // Register the MC asm info. 558 RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo); 559 560 // Register the MC instruction info. 561 TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo); 562 563 // Register the MC register info. 564 TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo); 565 566 // Register the MC subtarget info. 567 TargetRegistry::RegisterMCSubtargetInfo(*T, 568 X86_MC::createX86MCSubtargetInfo); 569 570 // Register the MC instruction analyzer. 571 TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis); 572 573 // Register the code emitter. 574 TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter); 575 576 // Register the obj target streamer. 577 TargetRegistry::RegisterObjectTargetStreamer(*T, 578 createX86ObjectTargetStreamer); 579 580 // Register the asm target streamer. 581 TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer); 582 583 TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer); 584 585 // Register the MCInstPrinter. 586 TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter); 587 588 // Register the MC relocation info. 589 TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo); 590 } 591 592 // Register the asm backend. 593 TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(), 594 createX86_32AsmBackend); 595 TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(), 596 createX86_64AsmBackend); 597 } 598 599 MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size, 600 bool High) { 601 switch (Size) { 602 default: return X86::NoRegister; 603 case 8: 604 if (High) { 605 switch (Reg.id()) { 606 default: return getX86SubSuperRegisterOrZero(Reg, 64); 607 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 608 return X86::SI; 609 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 610 return X86::DI; 611 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 612 return X86::BP; 613 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 614 return X86::SP; 615 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 616 return X86::AH; 617 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 618 return X86::DH; 619 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 620 return X86::CH; 621 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 622 return X86::BH; 623 } 624 } else { 625 switch (Reg.id()) { 626 default: return X86::NoRegister; 627 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 628 return X86::AL; 629 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 630 return X86::DL; 631 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 632 return X86::CL; 633 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 634 return X86::BL; 635 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 636 return X86::SIL; 637 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 638 return X86::DIL; 639 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 640 return X86::BPL; 641 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 642 return X86::SPL; 643 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 644 return X86::R8B; 645 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 646 return X86::R9B; 647 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 648 return X86::R10B; 649 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 650 return X86::R11B; 651 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 652 return X86::R12B; 653 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 654 return X86::R13B; 655 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 656 return X86::R14B; 657 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 658 return X86::R15B; 659 } 660 } 661 case 16: 662 switch (Reg.id()) { 663 default: return X86::NoRegister; 664 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 665 return X86::AX; 666 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 667 return X86::DX; 668 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 669 return X86::CX; 670 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 671 return X86::BX; 672 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 673 return X86::SI; 674 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 675 return X86::DI; 676 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 677 return X86::BP; 678 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 679 return X86::SP; 680 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 681 return X86::R8W; 682 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 683 return X86::R9W; 684 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 685 return X86::R10W; 686 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 687 return X86::R11W; 688 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 689 return X86::R12W; 690 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 691 return X86::R13W; 692 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 693 return X86::R14W; 694 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 695 return X86::R15W; 696 } 697 case 32: 698 switch (Reg.id()) { 699 default: return X86::NoRegister; 700 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 701 return X86::EAX; 702 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 703 return X86::EDX; 704 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 705 return X86::ECX; 706 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 707 return X86::EBX; 708 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 709 return X86::ESI; 710 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 711 return X86::EDI; 712 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 713 return X86::EBP; 714 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 715 return X86::ESP; 716 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 717 return X86::R8D; 718 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 719 return X86::R9D; 720 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 721 return X86::R10D; 722 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 723 return X86::R11D; 724 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 725 return X86::R12D; 726 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 727 return X86::R13D; 728 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 729 return X86::R14D; 730 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 731 return X86::R15D; 732 } 733 case 64: 734 switch (Reg.id()) { 735 default: return 0; 736 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 737 return X86::RAX; 738 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 739 return X86::RDX; 740 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 741 return X86::RCX; 742 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 743 return X86::RBX; 744 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 745 return X86::RSI; 746 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 747 return X86::RDI; 748 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 749 return X86::RBP; 750 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 751 return X86::RSP; 752 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 753 return X86::R8; 754 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 755 return X86::R9; 756 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 757 return X86::R10; 758 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 759 return X86::R11; 760 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 761 return X86::R12; 762 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 763 return X86::R13; 764 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 765 return X86::R14; 766 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 767 return X86::R15; 768 } 769 } 770 } 771 772 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) { 773 MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High); 774 assert(Res != X86::NoRegister && "Unexpected register or VT"); 775 return Res; 776 } 777 778 779