xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "X86TargetStreamer.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/DebugInfo/CodeView/CodeView.h"
23 #include "llvm/MC/MCDwarf.h"
24 #include "llvm/MC/MCInstrAnalysis.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/MC/MCStreamer.h"
28 #include "llvm/MC/MCSubtargetInfo.h"
29 #include "llvm/MC/MachineLocation.h"
30 #include "llvm/MC/TargetRegistry.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/Host.h"
33 
34 using namespace llvm;
35 
36 #define GET_REGINFO_MC_DESC
37 #include "X86GenRegisterInfo.inc"
38 
39 #define GET_INSTRINFO_MC_DESC
40 #define GET_INSTRINFO_MC_HELPERS
41 #define ENABLE_INSTR_PREDICATE_VERIFIER
42 #include "X86GenInstrInfo.inc"
43 
44 #define GET_SUBTARGETINFO_MC_DESC
45 #include "X86GenSubtargetInfo.inc"
46 
47 std::string X86_MC::ParseX86Triple(const Triple &TT) {
48   std::string FS;
49   // SSE2 should default to enabled in 64-bit mode, but can be turned off
50   // explicitly.
51   if (TT.isArch64Bit())
52     FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
53   else if (TT.getEnvironment() != Triple::CODE16)
54     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
55   else
56     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
57 
58   return FS;
59 }
60 
61 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
62   if (TT.getArch() == Triple::x86_64)
63     return DWARFFlavour::X86_64;
64 
65   if (TT.isOSDarwin())
66     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
67   if (TT.isOSCygMing())
68     // Unsupported by now, just quick fallback
69     return DWARFFlavour::X86_32_Generic;
70   return DWARFFlavour::X86_32_Generic;
71 }
72 
73 bool X86_MC::hasLockPrefix(const MCInst &MI) {
74   return MI.getFlags() & X86::IP_HAS_LOCK;
75 }
76 
77 static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
78   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
79   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
80   const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
81 
82   return (Base.isReg() && Base.getReg() != 0 && RC.contains(Base.getReg())) ||
83          (Index.isReg() && Index.getReg() != 0 && RC.contains(Index.getReg()));
84 }
85 
86 bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
87                                const MCSubtargetInfo &STI) {
88   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
89   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
90 
91   if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && Base.getReg() == 0 &&
92       Index.isReg() && Index.getReg() == 0)
93     return true;
94   return isMemOperand(MI, Op, X86::GR16RegClassID);
95 }
96 
97 bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
98   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
99   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
100   if (Base.isReg() && Base.getReg() == X86::EIP) {
101     assert(Index.isReg() && Index.getReg() == 0 && "Invalid eip-based address");
102     return true;
103   }
104   if (Index.isReg() && Index.getReg() == X86::EIZ)
105     return true;
106   return isMemOperand(MI, Op, X86::GR32RegClassID);
107 }
108 
109 #ifndef NDEBUG
110 bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
111   return isMemOperand(MI, Op, X86::GR64RegClassID);
112 }
113 #endif
114 
115 bool X86_MC::needsAddressSizeOverride(const MCInst &MI,
116                                       const MCSubtargetInfo &STI,
117                                       int MemoryOperand, uint64_t TSFlags) {
118   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
119   bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
120   bool Is32BitMode = STI.hasFeature(X86::Is32Bit);
121   bool Is64BitMode = STI.hasFeature(X86::Is64Bit);
122   if ((Is16BitMode && AdSize == X86II::AdSize32) ||
123       (Is32BitMode && AdSize == X86II::AdSize16) ||
124       (Is64BitMode && AdSize == X86II::AdSize32))
125     return true;
126   uint64_t Form = TSFlags & X86II::FormMask;
127   switch (Form) {
128   default:
129     break;
130   case X86II::RawFrmDstSrc: {
131     unsigned siReg = MI.getOperand(1).getReg();
132     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
133             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
134             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
135            "SI and DI register sizes do not match");
136     return (!Is32BitMode && siReg == X86::ESI) ||
137            (Is32BitMode && siReg == X86::SI);
138   }
139   case X86II::RawFrmSrc: {
140     unsigned siReg = MI.getOperand(0).getReg();
141     return (!Is32BitMode && siReg == X86::ESI) ||
142            (Is32BitMode && siReg == X86::SI);
143   }
144   case X86II::RawFrmDst: {
145     unsigned siReg = MI.getOperand(0).getReg();
146     return (!Is32BitMode && siReg == X86::EDI) ||
147            (Is32BitMode && siReg == X86::DI);
148   }
149   }
150 
151   // Determine where the memory operand starts, if present.
152   if (MemoryOperand < 0)
153     return false;
154 
155   if (STI.hasFeature(X86::Is64Bit)) {
156     assert(!is16BitMemOperand(MI, MemoryOperand, STI));
157     return is32BitMemOperand(MI, MemoryOperand);
158   }
159   if (STI.hasFeature(X86::Is32Bit)) {
160     assert(!is64BitMemOperand(MI, MemoryOperand));
161     return is16BitMemOperand(MI, MemoryOperand, STI);
162   }
163   assert(STI.hasFeature(X86::Is16Bit));
164   assert(!is64BitMemOperand(MI, MemoryOperand));
165   return !is16BitMemOperand(MI, MemoryOperand, STI);
166 }
167 
168 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
169   // FIXME: TableGen these.
170   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
171     unsigned SEH = MRI->getEncodingValue(Reg);
172     MRI->mapLLVMRegToSEHReg(Reg, SEH);
173   }
174 
175   // Mapping from CodeView to MC register id.
176   static const struct {
177     codeview::RegisterId CVReg;
178     MCPhysReg Reg;
179   } RegMap[] = {
180       {codeview::RegisterId::AL, X86::AL},
181       {codeview::RegisterId::CL, X86::CL},
182       {codeview::RegisterId::DL, X86::DL},
183       {codeview::RegisterId::BL, X86::BL},
184       {codeview::RegisterId::AH, X86::AH},
185       {codeview::RegisterId::CH, X86::CH},
186       {codeview::RegisterId::DH, X86::DH},
187       {codeview::RegisterId::BH, X86::BH},
188       {codeview::RegisterId::AX, X86::AX},
189       {codeview::RegisterId::CX, X86::CX},
190       {codeview::RegisterId::DX, X86::DX},
191       {codeview::RegisterId::BX, X86::BX},
192       {codeview::RegisterId::SP, X86::SP},
193       {codeview::RegisterId::BP, X86::BP},
194       {codeview::RegisterId::SI, X86::SI},
195       {codeview::RegisterId::DI, X86::DI},
196       {codeview::RegisterId::EAX, X86::EAX},
197       {codeview::RegisterId::ECX, X86::ECX},
198       {codeview::RegisterId::EDX, X86::EDX},
199       {codeview::RegisterId::EBX, X86::EBX},
200       {codeview::RegisterId::ESP, X86::ESP},
201       {codeview::RegisterId::EBP, X86::EBP},
202       {codeview::RegisterId::ESI, X86::ESI},
203       {codeview::RegisterId::EDI, X86::EDI},
204 
205       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
206 
207       {codeview::RegisterId::ST0, X86::ST0},
208       {codeview::RegisterId::ST1, X86::ST1},
209       {codeview::RegisterId::ST2, X86::ST2},
210       {codeview::RegisterId::ST3, X86::ST3},
211       {codeview::RegisterId::ST4, X86::ST4},
212       {codeview::RegisterId::ST5, X86::ST5},
213       {codeview::RegisterId::ST6, X86::ST6},
214       {codeview::RegisterId::ST7, X86::ST7},
215 
216       {codeview::RegisterId::ST0, X86::FP0},
217       {codeview::RegisterId::ST1, X86::FP1},
218       {codeview::RegisterId::ST2, X86::FP2},
219       {codeview::RegisterId::ST3, X86::FP3},
220       {codeview::RegisterId::ST4, X86::FP4},
221       {codeview::RegisterId::ST5, X86::FP5},
222       {codeview::RegisterId::ST6, X86::FP6},
223       {codeview::RegisterId::ST7, X86::FP7},
224 
225       {codeview::RegisterId::MM0, X86::MM0},
226       {codeview::RegisterId::MM1, X86::MM1},
227       {codeview::RegisterId::MM2, X86::MM2},
228       {codeview::RegisterId::MM3, X86::MM3},
229       {codeview::RegisterId::MM4, X86::MM4},
230       {codeview::RegisterId::MM5, X86::MM5},
231       {codeview::RegisterId::MM6, X86::MM6},
232       {codeview::RegisterId::MM7, X86::MM7},
233 
234       {codeview::RegisterId::XMM0, X86::XMM0},
235       {codeview::RegisterId::XMM1, X86::XMM1},
236       {codeview::RegisterId::XMM2, X86::XMM2},
237       {codeview::RegisterId::XMM3, X86::XMM3},
238       {codeview::RegisterId::XMM4, X86::XMM4},
239       {codeview::RegisterId::XMM5, X86::XMM5},
240       {codeview::RegisterId::XMM6, X86::XMM6},
241       {codeview::RegisterId::XMM7, X86::XMM7},
242 
243       {codeview::RegisterId::XMM8, X86::XMM8},
244       {codeview::RegisterId::XMM9, X86::XMM9},
245       {codeview::RegisterId::XMM10, X86::XMM10},
246       {codeview::RegisterId::XMM11, X86::XMM11},
247       {codeview::RegisterId::XMM12, X86::XMM12},
248       {codeview::RegisterId::XMM13, X86::XMM13},
249       {codeview::RegisterId::XMM14, X86::XMM14},
250       {codeview::RegisterId::XMM15, X86::XMM15},
251 
252       {codeview::RegisterId::SIL, X86::SIL},
253       {codeview::RegisterId::DIL, X86::DIL},
254       {codeview::RegisterId::BPL, X86::BPL},
255       {codeview::RegisterId::SPL, X86::SPL},
256       {codeview::RegisterId::RAX, X86::RAX},
257       {codeview::RegisterId::RBX, X86::RBX},
258       {codeview::RegisterId::RCX, X86::RCX},
259       {codeview::RegisterId::RDX, X86::RDX},
260       {codeview::RegisterId::RSI, X86::RSI},
261       {codeview::RegisterId::RDI, X86::RDI},
262       {codeview::RegisterId::RBP, X86::RBP},
263       {codeview::RegisterId::RSP, X86::RSP},
264       {codeview::RegisterId::R8, X86::R8},
265       {codeview::RegisterId::R9, X86::R9},
266       {codeview::RegisterId::R10, X86::R10},
267       {codeview::RegisterId::R11, X86::R11},
268       {codeview::RegisterId::R12, X86::R12},
269       {codeview::RegisterId::R13, X86::R13},
270       {codeview::RegisterId::R14, X86::R14},
271       {codeview::RegisterId::R15, X86::R15},
272       {codeview::RegisterId::R8B, X86::R8B},
273       {codeview::RegisterId::R9B, X86::R9B},
274       {codeview::RegisterId::R10B, X86::R10B},
275       {codeview::RegisterId::R11B, X86::R11B},
276       {codeview::RegisterId::R12B, X86::R12B},
277       {codeview::RegisterId::R13B, X86::R13B},
278       {codeview::RegisterId::R14B, X86::R14B},
279       {codeview::RegisterId::R15B, X86::R15B},
280       {codeview::RegisterId::R8W, X86::R8W},
281       {codeview::RegisterId::R9W, X86::R9W},
282       {codeview::RegisterId::R10W, X86::R10W},
283       {codeview::RegisterId::R11W, X86::R11W},
284       {codeview::RegisterId::R12W, X86::R12W},
285       {codeview::RegisterId::R13W, X86::R13W},
286       {codeview::RegisterId::R14W, X86::R14W},
287       {codeview::RegisterId::R15W, X86::R15W},
288       {codeview::RegisterId::R8D, X86::R8D},
289       {codeview::RegisterId::R9D, X86::R9D},
290       {codeview::RegisterId::R10D, X86::R10D},
291       {codeview::RegisterId::R11D, X86::R11D},
292       {codeview::RegisterId::R12D, X86::R12D},
293       {codeview::RegisterId::R13D, X86::R13D},
294       {codeview::RegisterId::R14D, X86::R14D},
295       {codeview::RegisterId::R15D, X86::R15D},
296       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
297       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
298       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
299       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
300       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
301       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
302       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
303       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
304       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
305       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
306       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
307       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
308       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
309       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
310       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
311       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
312       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
313       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
314       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
315       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
316       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
317       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
318       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
319       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
320       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
321       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
322       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
323       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
324       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
325       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
326       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
327       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
328       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
329       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
330       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
331       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
332       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
333       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
334       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
335       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
336       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
337       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
338       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
339       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
340       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
341       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
342       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
343       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
344       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
345       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
346       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
347       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
348       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
349       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
350       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
351       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
352       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
353       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
354       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
355       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
356       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
357       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
358       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
359       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
360       {codeview::RegisterId::AMD64_K0, X86::K0},
361       {codeview::RegisterId::AMD64_K1, X86::K1},
362       {codeview::RegisterId::AMD64_K2, X86::K2},
363       {codeview::RegisterId::AMD64_K3, X86::K3},
364       {codeview::RegisterId::AMD64_K4, X86::K4},
365       {codeview::RegisterId::AMD64_K5, X86::K5},
366       {codeview::RegisterId::AMD64_K6, X86::K6},
367       {codeview::RegisterId::AMD64_K7, X86::K7},
368       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
369       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
370       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
371       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
372       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
373       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
374       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
375       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
376       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
377       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
378       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
379       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
380       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
381       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
382       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
383       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
384 
385   };
386   for (const auto &I : RegMap)
387     MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
388 }
389 
390 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
391                                                   StringRef CPU, StringRef FS) {
392   std::string ArchFS = X86_MC::ParseX86Triple(TT);
393   assert(!ArchFS.empty() && "Failed to parse X86 triple");
394   if (!FS.empty())
395     ArchFS = (Twine(ArchFS) + "," + FS).str();
396 
397   if (CPU.empty())
398     CPU = "generic";
399 
400   return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
401 }
402 
403 static MCInstrInfo *createX86MCInstrInfo() {
404   MCInstrInfo *X = new MCInstrInfo();
405   InitX86MCInstrInfo(X);
406   return X;
407 }
408 
409 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
410   unsigned RA = (TT.getArch() == Triple::x86_64)
411                     ? X86::RIP  // Should have dwarf #16.
412                     : X86::EIP; // Should have dwarf #8.
413 
414   MCRegisterInfo *X = new MCRegisterInfo();
415   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
416                         X86_MC::getDwarfRegFlavour(TT, true), RA);
417   X86_MC::initLLVMToSEHAndCVRegMapping(X);
418   return X;
419 }
420 
421 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
422                                      const Triple &TheTriple,
423                                      const MCTargetOptions &Options) {
424   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
425 
426   MCAsmInfo *MAI;
427   if (TheTriple.isOSBinFormatMachO()) {
428     if (is64Bit)
429       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
430     else
431       MAI = new X86MCAsmInfoDarwin(TheTriple);
432   } else if (TheTriple.isOSBinFormatELF()) {
433     // Force the use of an ELF container.
434     MAI = new X86ELFMCAsmInfo(TheTriple);
435   } else if (TheTriple.isWindowsMSVCEnvironment() ||
436              TheTriple.isWindowsCoreCLREnvironment()) {
437     if (Options.getAssemblyLanguage().equals_insensitive("masm"))
438       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
439     else
440       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
441   } else if (TheTriple.isOSCygMing() ||
442              TheTriple.isWindowsItaniumEnvironment()) {
443     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
444   } else {
445     // The default is ELF.
446     MAI = new X86ELFMCAsmInfo(TheTriple);
447   }
448 
449   // Initialize initial frame state.
450   // Calculate amount of bytes used for return address storing
451   int stackGrowth = is64Bit ? -8 : -4;
452 
453   // Initial state of the frame pointer is esp+stackGrowth.
454   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
455   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
456       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
457   MAI->addInitialFrameState(Inst);
458 
459   // Add return address to move list
460   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
461   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
462       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
463   MAI->addInitialFrameState(Inst2);
464 
465   return MAI;
466 }
467 
468 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
469                                              unsigned SyntaxVariant,
470                                              const MCAsmInfo &MAI,
471                                              const MCInstrInfo &MII,
472                                              const MCRegisterInfo &MRI) {
473   if (SyntaxVariant == 0)
474     return new X86ATTInstPrinter(MAI, MII, MRI);
475   if (SyntaxVariant == 1)
476     return new X86IntelInstPrinter(MAI, MII, MRI);
477   return nullptr;
478 }
479 
480 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
481                                                    MCContext &Ctx) {
482   // Default to the stock relocation info.
483   return llvm::createMCRelocationInfo(TheTriple, Ctx);
484 }
485 
486 namespace llvm {
487 namespace X86_MC {
488 
489 class X86MCInstrAnalysis : public MCInstrAnalysis {
490   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
491   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
492   virtual ~X86MCInstrAnalysis() = default;
493 
494 public:
495   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
496 
497 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
498 #include "X86GenSubtargetInfo.inc"
499 
500   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
501                             APInt &Mask) const override;
502   std::vector<std::pair<uint64_t, uint64_t>>
503   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
504                  uint64_t GotSectionVA,
505                  const Triple &TargetTriple) const override;
506 
507   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
508                       uint64_t &Target) const override;
509   std::optional<uint64_t>
510   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
511                                uint64_t Addr, uint64_t Size) const override;
512   std::optional<uint64_t>
513   getMemoryOperandRelocationOffset(const MCInst &Inst,
514                                    uint64_t Size) const override;
515 };
516 
517 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
518 #include "X86GenSubtargetInfo.inc"
519 
520 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
521                                               const MCInst &Inst,
522                                               APInt &Mask) const {
523   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
524   unsigned NumDefs = Desc.getNumDefs();
525   unsigned NumImplicitDefs = Desc.implicit_defs().size();
526   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
527          "Unexpected number of bits in the mask!");
528 
529   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
530   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
531   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
532 
533   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
534   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
535   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
536 
537   auto ClearsSuperReg = [=](unsigned RegID) {
538     // On X86-64, a general purpose integer register is viewed as a 64-bit
539     // register internal to the processor.
540     // An update to the lower 32 bits of a 64 bit integer register is
541     // architecturally defined to zero extend the upper 32 bits.
542     if (GR32RC.contains(RegID))
543       return true;
544 
545     // Early exit if this instruction has no vex/evex/xop prefix.
546     if (!HasEVEX && !HasVEX && !HasXOP)
547       return false;
548 
549     // All VEX and EVEX encoded instructions are defined to zero the high bits
550     // of the destination register up to VLMAX (i.e. the maximum vector register
551     // width pertaining to the instruction).
552     // We assume the same behavior for XOP instructions too.
553     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
554   };
555 
556   Mask.clearAllBits();
557   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
558     const MCOperand &Op = Inst.getOperand(I);
559     if (ClearsSuperReg(Op.getReg()))
560       Mask.setBit(I);
561   }
562 
563   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
564     const MCPhysReg Reg = Desc.implicit_defs()[I];
565     if (ClearsSuperReg(Reg))
566       Mask.setBit(NumDefs + I);
567   }
568 
569   return Mask.getBoolValue();
570 }
571 
572 static std::vector<std::pair<uint64_t, uint64_t>>
573 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
574                   uint64_t GotPltSectionVA) {
575   // Do a lightweight parsing of PLT entries.
576   std::vector<std::pair<uint64_t, uint64_t>> Result;
577   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
578     // Recognize a jmp.
579     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
580       // The jmp instruction at the beginning of each PLT entry jumps to the
581       // address of the base of the .got.plt section plus the immediate.
582       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
583       Result.push_back(
584           std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
585       Byte += 6;
586     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
587       // The jmp instruction at the beginning of each PLT entry jumps to the
588       // immediate.
589       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
590       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
591       Byte += 6;
592     } else
593       Byte++;
594   }
595   return Result;
596 }
597 
598 static std::vector<std::pair<uint64_t, uint64_t>>
599 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
600   // Do a lightweight parsing of PLT entries.
601   std::vector<std::pair<uint64_t, uint64_t>> Result;
602   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
603     // Recognize a jmp.
604     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
605       // The jmp instruction at the beginning of each PLT entry jumps to the
606       // address of the next instruction plus the immediate.
607       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
608       Result.push_back(
609           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
610       Byte += 6;
611     } else
612       Byte++;
613   }
614   return Result;
615 }
616 
617 std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
618     uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
619     uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
620   switch (TargetTriple.getArch()) {
621     case Triple::x86:
622       return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
623     case Triple::x86_64:
624       return findX86_64PltEntries(PltSectionVA, PltContents);
625     default:
626       return {};
627     }
628 }
629 
630 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
631                                         uint64_t Size, uint64_t &Target) const {
632   if (Inst.getNumOperands() == 0 ||
633       Info->get(Inst.getOpcode()).operands()[0].OperandType !=
634           MCOI::OPERAND_PCREL)
635     return false;
636   Target = Addr + Size + Inst.getOperand(0).getImm();
637   return true;
638 }
639 
640 std::optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
641     const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
642     uint64_t Size) const {
643   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
644   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
645   if (MemOpStart == -1)
646     return std::nullopt;
647   MemOpStart += X86II::getOperandBias(MCID);
648 
649   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
650   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
651   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
652   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
653   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
654   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
655       !Disp.isImm())
656     return std::nullopt;
657 
658   // RIP-relative addressing.
659   if (BaseReg.getReg() == X86::RIP)
660     return Addr + Size + Disp.getImm();
661 
662   return std::nullopt;
663 }
664 
665 std::optional<uint64_t>
666 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
667                                                      uint64_t Size) const {
668   if (Inst.getOpcode() != X86::LEA64r)
669     return std::nullopt;
670   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
671   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
672   if (MemOpStart == -1)
673     return std::nullopt;
674   MemOpStart += X86II::getOperandBias(MCID);
675   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
676   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
677   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
678   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
679   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
680   // Must be a simple rip-relative address.
681   if (BaseReg.getReg() != X86::RIP || SegReg.getReg() != 0 ||
682       IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || !Disp.isImm())
683     return std::nullopt;
684   // rip-relative ModR/M immediate is 32 bits.
685   assert(Size > 4 && "invalid instruction size for rip-relative lea");
686   return Size - 4;
687 }
688 
689 } // end of namespace X86_MC
690 
691 } // end of namespace llvm
692 
693 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
694   return new X86_MC::X86MCInstrAnalysis(Info);
695 }
696 
697 // Force static initialization.
698 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
699   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
700     // Register the MC asm info.
701     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
702 
703     // Register the MC instruction info.
704     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
705 
706     // Register the MC register info.
707     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
708 
709     // Register the MC subtarget info.
710     TargetRegistry::RegisterMCSubtargetInfo(*T,
711                                             X86_MC::createX86MCSubtargetInfo);
712 
713     // Register the MC instruction analyzer.
714     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
715 
716     // Register the code emitter.
717     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
718 
719     // Register the obj target streamer.
720     TargetRegistry::RegisterObjectTargetStreamer(*T,
721                                                  createX86ObjectTargetStreamer);
722 
723     // Register the asm target streamer.
724     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
725 
726     // Register the null streamer.
727     TargetRegistry::RegisterNullTargetStreamer(*T, createX86NullTargetStreamer);
728 
729     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
730 
731     // Register the MCInstPrinter.
732     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
733 
734     // Register the MC relocation info.
735     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
736   }
737 
738   // Register the asm backend.
739   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
740                                        createX86_32AsmBackend);
741   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
742                                        createX86_64AsmBackend);
743 }
744 
745 MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
746                                               bool High) {
747   switch (Size) {
748   default: return X86::NoRegister;
749   case 8:
750     if (High) {
751       switch (Reg.id()) {
752       default: return getX86SubSuperRegisterOrZero(Reg, 64);
753       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
754         return X86::SI;
755       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
756         return X86::DI;
757       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
758         return X86::BP;
759       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
760         return X86::SP;
761       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
762         return X86::AH;
763       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
764         return X86::DH;
765       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
766         return X86::CH;
767       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
768         return X86::BH;
769       }
770     } else {
771       switch (Reg.id()) {
772       default: return X86::NoRegister;
773       case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
774         return X86::AL;
775       case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
776         return X86::DL;
777       case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
778         return X86::CL;
779       case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
780         return X86::BL;
781       case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
782         return X86::SIL;
783       case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
784         return X86::DIL;
785       case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
786         return X86::BPL;
787       case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
788         return X86::SPL;
789       case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
790         return X86::R8B;
791       case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
792         return X86::R9B;
793       case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
794         return X86::R10B;
795       case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
796         return X86::R11B;
797       case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
798         return X86::R12B;
799       case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
800         return X86::R13B;
801       case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
802         return X86::R14B;
803       case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
804         return X86::R15B;
805       }
806     }
807   case 16:
808     switch (Reg.id()) {
809     default: return X86::NoRegister;
810     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
811       return X86::AX;
812     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
813       return X86::DX;
814     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
815       return X86::CX;
816     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
817       return X86::BX;
818     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
819       return X86::SI;
820     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
821       return X86::DI;
822     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
823       return X86::BP;
824     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
825       return X86::SP;
826     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
827       return X86::R8W;
828     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
829       return X86::R9W;
830     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
831       return X86::R10W;
832     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
833       return X86::R11W;
834     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
835       return X86::R12W;
836     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
837       return X86::R13W;
838     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
839       return X86::R14W;
840     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
841       return X86::R15W;
842     }
843   case 32:
844     switch (Reg.id()) {
845     default: return X86::NoRegister;
846     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
847       return X86::EAX;
848     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
849       return X86::EDX;
850     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
851       return X86::ECX;
852     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
853       return X86::EBX;
854     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
855       return X86::ESI;
856     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
857       return X86::EDI;
858     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
859       return X86::EBP;
860     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
861       return X86::ESP;
862     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
863       return X86::R8D;
864     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
865       return X86::R9D;
866     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
867       return X86::R10D;
868     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
869       return X86::R11D;
870     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
871       return X86::R12D;
872     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
873       return X86::R13D;
874     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
875       return X86::R14D;
876     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
877       return X86::R15D;
878     }
879   case 64:
880     switch (Reg.id()) {
881     default: return 0;
882     case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
883       return X86::RAX;
884     case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
885       return X86::RDX;
886     case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
887       return X86::RCX;
888     case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
889       return X86::RBX;
890     case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
891       return X86::RSI;
892     case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
893       return X86::RDI;
894     case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
895       return X86::RBP;
896     case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
897       return X86::RSP;
898     case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
899       return X86::R8;
900     case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
901       return X86::R9;
902     case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
903       return X86::R10;
904     case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
905       return X86::R11;
906     case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
907       return X86::R12;
908     case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
909       return X86::R13;
910     case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
911       return X86::R14;
912     case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
913       return X86::R15;
914     }
915   }
916 }
917 
918 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
919   MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
920   assert(Res != X86::NoRegister && "Unexpected register or VT");
921   return Res;
922 }
923 
924 
925