xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp (revision 59144db3fca192c4637637dfe6b5a5d98632cd47)
1 //===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides X86 specific target descriptions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86MCTargetDesc.h"
14 #include "TargetInfo/X86TargetInfo.h"
15 #include "X86ATTInstPrinter.h"
16 #include "X86BaseInfo.h"
17 #include "X86IntelInstPrinter.h"
18 #include "X86MCAsmInfo.h"
19 #include "X86TargetStreamer.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/DebugInfo/CodeView/CodeView.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCInstrAnalysis.h"
24 #include "llvm/MC/MCInstrInfo.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MachineLocation.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/TargetParser/Host.h"
32 #include "llvm/TargetParser/Triple.h"
33 
34 using namespace llvm;
35 
36 #define GET_REGINFO_MC_DESC
37 #include "X86GenRegisterInfo.inc"
38 
39 #define GET_INSTRINFO_MC_DESC
40 #define GET_INSTRINFO_MC_HELPERS
41 #define ENABLE_INSTR_PREDICATE_VERIFIER
42 #include "X86GenInstrInfo.inc"
43 
44 #define GET_SUBTARGETINFO_MC_DESC
45 #include "X86GenSubtargetInfo.inc"
46 
47 std::string X86_MC::ParseX86Triple(const Triple &TT) {
48   std::string FS;
49   // SSE2 should default to enabled in 64-bit mode, but can be turned off
50   // explicitly.
51   if (TT.isArch64Bit())
52     FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
53   else if (TT.getEnvironment() != Triple::CODE16)
54     FS = "-64bit-mode,+32bit-mode,-16bit-mode";
55   else
56     FS = "-64bit-mode,-32bit-mode,+16bit-mode";
57 
58   return FS;
59 }
60 
61 unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
62   if (TT.getArch() == Triple::x86_64)
63     return DWARFFlavour::X86_64;
64 
65   if (TT.isOSDarwin())
66     return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
67   if (TT.isOSCygMing())
68     // Unsupported by now, just quick fallback
69     return DWARFFlavour::X86_32_Generic;
70   return DWARFFlavour::X86_32_Generic;
71 }
72 
73 bool X86_MC::hasLockPrefix(const MCInst &MI) {
74   return MI.getFlags() & X86::IP_HAS_LOCK;
75 }
76 
77 static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
78   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
79   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
80   const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
81 
82   return (Base.isReg() && Base.getReg() != 0 && RC.contains(Base.getReg())) ||
83          (Index.isReg() && Index.getReg() != 0 && RC.contains(Index.getReg()));
84 }
85 
86 bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
87                                const MCSubtargetInfo &STI) {
88   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
89   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
90 
91   if (STI.hasFeature(X86::Is16Bit) && Base.isReg() && Base.getReg() == 0 &&
92       Index.isReg() && Index.getReg() == 0)
93     return true;
94   return isMemOperand(MI, Op, X86::GR16RegClassID);
95 }
96 
97 bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
98   const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
99   const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg);
100   if (Base.isReg() && Base.getReg() == X86::EIP) {
101     assert(Index.isReg() && Index.getReg() == 0 && "Invalid eip-based address");
102     return true;
103   }
104   if (Index.isReg() && Index.getReg() == X86::EIZ)
105     return true;
106   return isMemOperand(MI, Op, X86::GR32RegClassID);
107 }
108 
109 #ifndef NDEBUG
110 bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
111   return isMemOperand(MI, Op, X86::GR64RegClassID);
112 }
113 #endif
114 
115 bool X86_MC::needsAddressSizeOverride(const MCInst &MI,
116                                       const MCSubtargetInfo &STI,
117                                       int MemoryOperand, uint64_t TSFlags) {
118   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
119   bool Is16BitMode = STI.hasFeature(X86::Is16Bit);
120   bool Is32BitMode = STI.hasFeature(X86::Is32Bit);
121   bool Is64BitMode = STI.hasFeature(X86::Is64Bit);
122   if ((Is16BitMode && AdSize == X86II::AdSize32) ||
123       (Is32BitMode && AdSize == X86II::AdSize16) ||
124       (Is64BitMode && AdSize == X86II::AdSize32))
125     return true;
126   uint64_t Form = TSFlags & X86II::FormMask;
127   switch (Form) {
128   default:
129     break;
130   case X86II::RawFrmDstSrc: {
131     unsigned siReg = MI.getOperand(1).getReg();
132     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
133             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
134             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
135            "SI and DI register sizes do not match");
136     return (!Is32BitMode && siReg == X86::ESI) ||
137            (Is32BitMode && siReg == X86::SI);
138   }
139   case X86II::RawFrmSrc: {
140     unsigned siReg = MI.getOperand(0).getReg();
141     return (!Is32BitMode && siReg == X86::ESI) ||
142            (Is32BitMode && siReg == X86::SI);
143   }
144   case X86II::RawFrmDst: {
145     unsigned siReg = MI.getOperand(0).getReg();
146     return (!Is32BitMode && siReg == X86::EDI) ||
147            (Is32BitMode && siReg == X86::DI);
148   }
149   }
150 
151   // Determine where the memory operand starts, if present.
152   if (MemoryOperand < 0)
153     return false;
154 
155   if (STI.hasFeature(X86::Is64Bit)) {
156     assert(!is16BitMemOperand(MI, MemoryOperand, STI));
157     return is32BitMemOperand(MI, MemoryOperand);
158   }
159   if (STI.hasFeature(X86::Is32Bit)) {
160     assert(!is64BitMemOperand(MI, MemoryOperand));
161     return is16BitMemOperand(MI, MemoryOperand, STI);
162   }
163   assert(STI.hasFeature(X86::Is16Bit));
164   assert(!is64BitMemOperand(MI, MemoryOperand));
165   return !is16BitMemOperand(MI, MemoryOperand, STI);
166 }
167 
168 void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
169   // FIXME: TableGen these.
170   for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
171     unsigned SEH = MRI->getEncodingValue(Reg);
172     MRI->mapLLVMRegToSEHReg(Reg, SEH);
173   }
174 
175   // Mapping from CodeView to MC register id.
176   static const struct {
177     codeview::RegisterId CVReg;
178     MCPhysReg Reg;
179   } RegMap[] = {
180       {codeview::RegisterId::AL, X86::AL},
181       {codeview::RegisterId::CL, X86::CL},
182       {codeview::RegisterId::DL, X86::DL},
183       {codeview::RegisterId::BL, X86::BL},
184       {codeview::RegisterId::AH, X86::AH},
185       {codeview::RegisterId::CH, X86::CH},
186       {codeview::RegisterId::DH, X86::DH},
187       {codeview::RegisterId::BH, X86::BH},
188       {codeview::RegisterId::AX, X86::AX},
189       {codeview::RegisterId::CX, X86::CX},
190       {codeview::RegisterId::DX, X86::DX},
191       {codeview::RegisterId::BX, X86::BX},
192       {codeview::RegisterId::SP, X86::SP},
193       {codeview::RegisterId::BP, X86::BP},
194       {codeview::RegisterId::SI, X86::SI},
195       {codeview::RegisterId::DI, X86::DI},
196       {codeview::RegisterId::EAX, X86::EAX},
197       {codeview::RegisterId::ECX, X86::ECX},
198       {codeview::RegisterId::EDX, X86::EDX},
199       {codeview::RegisterId::EBX, X86::EBX},
200       {codeview::RegisterId::ESP, X86::ESP},
201       {codeview::RegisterId::EBP, X86::EBP},
202       {codeview::RegisterId::ESI, X86::ESI},
203       {codeview::RegisterId::EDI, X86::EDI},
204 
205       {codeview::RegisterId::EFLAGS, X86::EFLAGS},
206 
207       {codeview::RegisterId::ST0, X86::ST0},
208       {codeview::RegisterId::ST1, X86::ST1},
209       {codeview::RegisterId::ST2, X86::ST2},
210       {codeview::RegisterId::ST3, X86::ST3},
211       {codeview::RegisterId::ST4, X86::ST4},
212       {codeview::RegisterId::ST5, X86::ST5},
213       {codeview::RegisterId::ST6, X86::ST6},
214       {codeview::RegisterId::ST7, X86::ST7},
215 
216       {codeview::RegisterId::ST0, X86::FP0},
217       {codeview::RegisterId::ST1, X86::FP1},
218       {codeview::RegisterId::ST2, X86::FP2},
219       {codeview::RegisterId::ST3, X86::FP3},
220       {codeview::RegisterId::ST4, X86::FP4},
221       {codeview::RegisterId::ST5, X86::FP5},
222       {codeview::RegisterId::ST6, X86::FP6},
223       {codeview::RegisterId::ST7, X86::FP7},
224 
225       {codeview::RegisterId::MM0, X86::MM0},
226       {codeview::RegisterId::MM1, X86::MM1},
227       {codeview::RegisterId::MM2, X86::MM2},
228       {codeview::RegisterId::MM3, X86::MM3},
229       {codeview::RegisterId::MM4, X86::MM4},
230       {codeview::RegisterId::MM5, X86::MM5},
231       {codeview::RegisterId::MM6, X86::MM6},
232       {codeview::RegisterId::MM7, X86::MM7},
233 
234       {codeview::RegisterId::XMM0, X86::XMM0},
235       {codeview::RegisterId::XMM1, X86::XMM1},
236       {codeview::RegisterId::XMM2, X86::XMM2},
237       {codeview::RegisterId::XMM3, X86::XMM3},
238       {codeview::RegisterId::XMM4, X86::XMM4},
239       {codeview::RegisterId::XMM5, X86::XMM5},
240       {codeview::RegisterId::XMM6, X86::XMM6},
241       {codeview::RegisterId::XMM7, X86::XMM7},
242 
243       {codeview::RegisterId::XMM8, X86::XMM8},
244       {codeview::RegisterId::XMM9, X86::XMM9},
245       {codeview::RegisterId::XMM10, X86::XMM10},
246       {codeview::RegisterId::XMM11, X86::XMM11},
247       {codeview::RegisterId::XMM12, X86::XMM12},
248       {codeview::RegisterId::XMM13, X86::XMM13},
249       {codeview::RegisterId::XMM14, X86::XMM14},
250       {codeview::RegisterId::XMM15, X86::XMM15},
251 
252       {codeview::RegisterId::SIL, X86::SIL},
253       {codeview::RegisterId::DIL, X86::DIL},
254       {codeview::RegisterId::BPL, X86::BPL},
255       {codeview::RegisterId::SPL, X86::SPL},
256       {codeview::RegisterId::RAX, X86::RAX},
257       {codeview::RegisterId::RBX, X86::RBX},
258       {codeview::RegisterId::RCX, X86::RCX},
259       {codeview::RegisterId::RDX, X86::RDX},
260       {codeview::RegisterId::RSI, X86::RSI},
261       {codeview::RegisterId::RDI, X86::RDI},
262       {codeview::RegisterId::RBP, X86::RBP},
263       {codeview::RegisterId::RSP, X86::RSP},
264       {codeview::RegisterId::R8, X86::R8},
265       {codeview::RegisterId::R9, X86::R9},
266       {codeview::RegisterId::R10, X86::R10},
267       {codeview::RegisterId::R11, X86::R11},
268       {codeview::RegisterId::R12, X86::R12},
269       {codeview::RegisterId::R13, X86::R13},
270       {codeview::RegisterId::R14, X86::R14},
271       {codeview::RegisterId::R15, X86::R15},
272       {codeview::RegisterId::R8B, X86::R8B},
273       {codeview::RegisterId::R9B, X86::R9B},
274       {codeview::RegisterId::R10B, X86::R10B},
275       {codeview::RegisterId::R11B, X86::R11B},
276       {codeview::RegisterId::R12B, X86::R12B},
277       {codeview::RegisterId::R13B, X86::R13B},
278       {codeview::RegisterId::R14B, X86::R14B},
279       {codeview::RegisterId::R15B, X86::R15B},
280       {codeview::RegisterId::R8W, X86::R8W},
281       {codeview::RegisterId::R9W, X86::R9W},
282       {codeview::RegisterId::R10W, X86::R10W},
283       {codeview::RegisterId::R11W, X86::R11W},
284       {codeview::RegisterId::R12W, X86::R12W},
285       {codeview::RegisterId::R13W, X86::R13W},
286       {codeview::RegisterId::R14W, X86::R14W},
287       {codeview::RegisterId::R15W, X86::R15W},
288       {codeview::RegisterId::R8D, X86::R8D},
289       {codeview::RegisterId::R9D, X86::R9D},
290       {codeview::RegisterId::R10D, X86::R10D},
291       {codeview::RegisterId::R11D, X86::R11D},
292       {codeview::RegisterId::R12D, X86::R12D},
293       {codeview::RegisterId::R13D, X86::R13D},
294       {codeview::RegisterId::R14D, X86::R14D},
295       {codeview::RegisterId::R15D, X86::R15D},
296       {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
297       {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
298       {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
299       {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
300       {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
301       {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
302       {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
303       {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
304       {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
305       {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
306       {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
307       {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
308       {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
309       {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
310       {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
311       {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
312       {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
313       {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
314       {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
315       {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
316       {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
317       {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
318       {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
319       {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
320       {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
321       {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
322       {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
323       {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
324       {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
325       {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
326       {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
327       {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
328       {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
329       {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
330       {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
331       {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
332       {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
333       {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
334       {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
335       {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
336       {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
337       {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
338       {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
339       {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
340       {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
341       {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
342       {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
343       {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
344       {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
345       {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
346       {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
347       {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
348       {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
349       {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
350       {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
351       {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
352       {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
353       {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
354       {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
355       {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
356       {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
357       {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
358       {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
359       {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
360       {codeview::RegisterId::AMD64_K0, X86::K0},
361       {codeview::RegisterId::AMD64_K1, X86::K1},
362       {codeview::RegisterId::AMD64_K2, X86::K2},
363       {codeview::RegisterId::AMD64_K3, X86::K3},
364       {codeview::RegisterId::AMD64_K4, X86::K4},
365       {codeview::RegisterId::AMD64_K5, X86::K5},
366       {codeview::RegisterId::AMD64_K6, X86::K6},
367       {codeview::RegisterId::AMD64_K7, X86::K7},
368       {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
369       {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
370       {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
371       {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
372       {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
373       {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
374       {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
375       {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
376       {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
377       {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
378       {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
379       {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
380       {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
381       {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
382       {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
383       {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
384 
385   };
386   for (const auto &I : RegMap)
387     MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
388 }
389 
390 MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
391                                                   StringRef CPU, StringRef FS) {
392   std::string ArchFS = X86_MC::ParseX86Triple(TT);
393   assert(!ArchFS.empty() && "Failed to parse X86 triple");
394   if (!FS.empty())
395     ArchFS = (Twine(ArchFS) + "," + FS).str();
396 
397   if (CPU.empty())
398     CPU = "generic";
399 
400   size_t posNoEVEX512 = FS.rfind("-evex512");
401   // Make sure we won't be cheated by "-avx512fp16".
402   size_t posNoAVX512F =
403       FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,");
404   size_t posEVEX512 = FS.rfind("+evex512");
405   size_t posAVX512F = FS.rfind("+avx512"); // Any AVX512XXX will enable AVX512F.
406 
407   if (posAVX512F != StringRef::npos &&
408       (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
409     if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
410       ArchFS += ",+evex512";
411 
412   return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
413 }
414 
415 static MCInstrInfo *createX86MCInstrInfo() {
416   MCInstrInfo *X = new MCInstrInfo();
417   InitX86MCInstrInfo(X);
418   return X;
419 }
420 
421 static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
422   unsigned RA = (TT.getArch() == Triple::x86_64)
423                     ? X86::RIP  // Should have dwarf #16.
424                     : X86::EIP; // Should have dwarf #8.
425 
426   MCRegisterInfo *X = new MCRegisterInfo();
427   InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
428                         X86_MC::getDwarfRegFlavour(TT, true), RA);
429   X86_MC::initLLVMToSEHAndCVRegMapping(X);
430   return X;
431 }
432 
433 static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
434                                      const Triple &TheTriple,
435                                      const MCTargetOptions &Options) {
436   bool is64Bit = TheTriple.getArch() == Triple::x86_64;
437 
438   MCAsmInfo *MAI;
439   if (TheTriple.isOSBinFormatMachO()) {
440     if (is64Bit)
441       MAI = new X86_64MCAsmInfoDarwin(TheTriple);
442     else
443       MAI = new X86MCAsmInfoDarwin(TheTriple);
444   } else if (TheTriple.isOSBinFormatELF()) {
445     // Force the use of an ELF container.
446     MAI = new X86ELFMCAsmInfo(TheTriple);
447   } else if (TheTriple.isWindowsMSVCEnvironment() ||
448              TheTriple.isWindowsCoreCLREnvironment()) {
449     if (Options.getAssemblyLanguage().equals_insensitive("masm"))
450       MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
451     else
452       MAI = new X86MCAsmInfoMicrosoft(TheTriple);
453   } else if (TheTriple.isOSCygMing() ||
454              TheTriple.isWindowsItaniumEnvironment()) {
455     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
456   } else if (TheTriple.isUEFI()) {
457     MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
458   } else {
459     // The default is ELF.
460     MAI = new X86ELFMCAsmInfo(TheTriple);
461   }
462 
463   // Initialize initial frame state.
464   // Calculate amount of bytes used for return address storing
465   int stackGrowth = is64Bit ? -8 : -4;
466 
467   // Initial state of the frame pointer is esp+stackGrowth.
468   unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
469   MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
470       nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
471   MAI->addInitialFrameState(Inst);
472 
473   // Add return address to move list
474   unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
475   MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
476       nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
477   MAI->addInitialFrameState(Inst2);
478 
479   return MAI;
480 }
481 
482 static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
483                                              unsigned SyntaxVariant,
484                                              const MCAsmInfo &MAI,
485                                              const MCInstrInfo &MII,
486                                              const MCRegisterInfo &MRI) {
487   if (SyntaxVariant == 0)
488     return new X86ATTInstPrinter(MAI, MII, MRI);
489   if (SyntaxVariant == 1)
490     return new X86IntelInstPrinter(MAI, MII, MRI);
491   return nullptr;
492 }
493 
494 static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
495                                                    MCContext &Ctx) {
496   // Default to the stock relocation info.
497   return llvm::createMCRelocationInfo(TheTriple, Ctx);
498 }
499 
500 namespace llvm {
501 namespace X86_MC {
502 
503 class X86MCInstrAnalysis : public MCInstrAnalysis {
504   X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
505   X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
506   virtual ~X86MCInstrAnalysis() = default;
507 
508 public:
509   X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
510 
511 #define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
512 #include "X86GenSubtargetInfo.inc"
513 
514   bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
515                             APInt &Mask) const override;
516   std::vector<std::pair<uint64_t, uint64_t>>
517   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
518                  const Triple &TargetTriple) const override;
519 
520   bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
521                       uint64_t &Target) const override;
522   std::optional<uint64_t>
523   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
524                                uint64_t Addr, uint64_t Size) const override;
525   std::optional<uint64_t>
526   getMemoryOperandRelocationOffset(const MCInst &Inst,
527                                    uint64_t Size) const override;
528 };
529 
530 #define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
531 #include "X86GenSubtargetInfo.inc"
532 
533 bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
534                                               const MCInst &Inst,
535                                               APInt &Mask) const {
536   const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
537   unsigned NumDefs = Desc.getNumDefs();
538   unsigned NumImplicitDefs = Desc.implicit_defs().size();
539   assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
540          "Unexpected number of bits in the mask!");
541 
542   bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
543   bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
544   bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
545 
546   const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
547   const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
548   const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
549 
550   auto ClearsSuperReg = [=](unsigned RegID) {
551     // On X86-64, a general purpose integer register is viewed as a 64-bit
552     // register internal to the processor.
553     // An update to the lower 32 bits of a 64 bit integer register is
554     // architecturally defined to zero extend the upper 32 bits.
555     if (GR32RC.contains(RegID))
556       return true;
557 
558     // Early exit if this instruction has no vex/evex/xop prefix.
559     if (!HasEVEX && !HasVEX && !HasXOP)
560       return false;
561 
562     // All VEX and EVEX encoded instructions are defined to zero the high bits
563     // of the destination register up to VLMAX (i.e. the maximum vector register
564     // width pertaining to the instruction).
565     // We assume the same behavior for XOP instructions too.
566     return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
567   };
568 
569   Mask.clearAllBits();
570   for (unsigned I = 0, E = NumDefs; I < E; ++I) {
571     const MCOperand &Op = Inst.getOperand(I);
572     if (ClearsSuperReg(Op.getReg()))
573       Mask.setBit(I);
574   }
575 
576   for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
577     const MCPhysReg Reg = Desc.implicit_defs()[I];
578     if (ClearsSuperReg(Reg))
579       Mask.setBit(NumDefs + I);
580   }
581 
582   return Mask.getBoolValue();
583 }
584 
585 static std::vector<std::pair<uint64_t, uint64_t>>
586 findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
587   // Do a lightweight parsing of PLT entries.
588   std::vector<std::pair<uint64_t, uint64_t>> Result;
589   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
590     // Recognize a jmp.
591     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
592       // The jmp instruction at the beginning of each PLT entry jumps to the
593       // address of the base of the .got.plt section plus the immediate.
594       // Set the 1 << 32 bit to let ELFObjectFileBase::getPltEntries convert the
595       // offset to an address. Imm may be a negative int32_t if the GOT entry is
596       // in .got.
597       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
598       Result.emplace_back(PltSectionVA + Byte, Imm | (uint64_t(1) << 32));
599       Byte += 6;
600     } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
601       // The jmp instruction at the beginning of each PLT entry jumps to the
602       // immediate.
603       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
604       Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
605       Byte += 6;
606     } else
607       Byte++;
608   }
609   return Result;
610 }
611 
612 static std::vector<std::pair<uint64_t, uint64_t>>
613 findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
614   // Do a lightweight parsing of PLT entries.
615   std::vector<std::pair<uint64_t, uint64_t>> Result;
616   for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
617     // Recognize a jmp.
618     if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
619       // The jmp instruction at the beginning of each PLT entry jumps to the
620       // address of the next instruction plus the immediate.
621       uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
622       Result.push_back(
623           std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
624       Byte += 6;
625     } else
626       Byte++;
627   }
628   return Result;
629 }
630 
631 std::vector<std::pair<uint64_t, uint64_t>>
632 X86MCInstrAnalysis::findPltEntries(uint64_t PltSectionVA,
633                                    ArrayRef<uint8_t> PltContents,
634                                    const Triple &TargetTriple) const {
635   switch (TargetTriple.getArch()) {
636   case Triple::x86:
637     return findX86PltEntries(PltSectionVA, PltContents);
638   case Triple::x86_64:
639     return findX86_64PltEntries(PltSectionVA, PltContents);
640   default:
641     return {};
642   }
643 }
644 
645 bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
646                                         uint64_t Size, uint64_t &Target) const {
647   if (Inst.getNumOperands() == 0 ||
648       Info->get(Inst.getOpcode()).operands()[0].OperandType !=
649           MCOI::OPERAND_PCREL)
650     return false;
651   Target = Addr + Size + Inst.getOperand(0).getImm();
652   return true;
653 }
654 
655 std::optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
656     const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
657     uint64_t Size) const {
658   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
659   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
660   if (MemOpStart == -1)
661     return std::nullopt;
662   MemOpStart += X86II::getOperandBias(MCID);
663 
664   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
665   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
666   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
667   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
668   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
669   if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
670       !Disp.isImm())
671     return std::nullopt;
672 
673   // RIP-relative addressing.
674   if (BaseReg.getReg() == X86::RIP)
675     return Addr + Size + Disp.getImm();
676 
677   return std::nullopt;
678 }
679 
680 std::optional<uint64_t>
681 X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
682                                                      uint64_t Size) const {
683   if (Inst.getOpcode() != X86::LEA64r)
684     return std::nullopt;
685   const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
686   int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
687   if (MemOpStart == -1)
688     return std::nullopt;
689   MemOpStart += X86II::getOperandBias(MCID);
690   const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
691   const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
692   const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
693   const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
694   const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
695   // Must be a simple rip-relative address.
696   if (BaseReg.getReg() != X86::RIP || SegReg.getReg() != 0 ||
697       IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 || !Disp.isImm())
698     return std::nullopt;
699   // rip-relative ModR/M immediate is 32 bits.
700   assert(Size > 4 && "invalid instruction size for rip-relative lea");
701   return Size - 4;
702 }
703 
704 } // end of namespace X86_MC
705 
706 } // end of namespace llvm
707 
708 static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
709   return new X86_MC::X86MCInstrAnalysis(Info);
710 }
711 
712 // Force static initialization.
713 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
714   for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
715     // Register the MC asm info.
716     RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
717 
718     // Register the MC instruction info.
719     TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
720 
721     // Register the MC register info.
722     TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
723 
724     // Register the MC subtarget info.
725     TargetRegistry::RegisterMCSubtargetInfo(*T,
726                                             X86_MC::createX86MCSubtargetInfo);
727 
728     // Register the MC instruction analyzer.
729     TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
730 
731     // Register the code emitter.
732     TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
733 
734     // Register the obj target streamer.
735     TargetRegistry::RegisterObjectTargetStreamer(*T,
736                                                  createX86ObjectTargetStreamer);
737 
738     // Register the asm target streamer.
739     TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
740 
741     // Register the null streamer.
742     TargetRegistry::RegisterNullTargetStreamer(*T, createX86NullTargetStreamer);
743 
744     TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
745 
746     // Register the MCInstPrinter.
747     TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
748 
749     // Register the MC relocation info.
750     TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
751   }
752 
753   // Register the asm backend.
754   TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
755                                        createX86_32AsmBackend);
756   TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
757                                        createX86_64AsmBackend);
758 }
759 
760 MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size,
761                                         bool High) {
762 #define DEFAULT_NOREG                                                          \
763   default:                                                                     \
764     return X86::NoRegister;
765 #define SUB_SUPER(R1, R2, R3, R4, R)                                           \
766   case X86::R1:                                                                \
767   case X86::R2:                                                                \
768   case X86::R3:                                                                \
769   case X86::R4:                                                                \
770     return X86::R;
771 #define A_SUB_SUPER(R)                                                         \
772   case X86::AH:                                                                \
773     SUB_SUPER(AL, AX, EAX, RAX, R)
774 #define D_SUB_SUPER(R)                                                         \
775   case X86::DH:                                                                \
776     SUB_SUPER(DL, DX, EDX, RDX, R)
777 #define C_SUB_SUPER(R)                                                         \
778   case X86::CH:                                                                \
779     SUB_SUPER(CL, CX, ECX, RCX, R)
780 #define B_SUB_SUPER(R)                                                         \
781   case X86::BH:                                                                \
782     SUB_SUPER(BL, BX, EBX, RBX, R)
783 #define SI_SUB_SUPER(R) SUB_SUPER(SIL, SI, ESI, RSI, R)
784 #define DI_SUB_SUPER(R) SUB_SUPER(DIL, DI, EDI, RDI, R)
785 #define BP_SUB_SUPER(R) SUB_SUPER(BPL, BP, EBP, RBP, R)
786 #define SP_SUB_SUPER(R) SUB_SUPER(SPL, SP, ESP, RSP, R)
787 #define NO_SUB_SUPER(NO, REG)                                                  \
788   SUB_SUPER(R##NO##B, R##NO##W, R##NO##D, R##NO, REG)
789 #define NO_SUB_SUPER_B(NO) NO_SUB_SUPER(NO, R##NO##B)
790 #define NO_SUB_SUPER_W(NO) NO_SUB_SUPER(NO, R##NO##W)
791 #define NO_SUB_SUPER_D(NO) NO_SUB_SUPER(NO, R##NO##D)
792 #define NO_SUB_SUPER_Q(NO) NO_SUB_SUPER(NO, R##NO)
793   switch (Size) {
794   default:
795     llvm_unreachable("illegal register size");
796   case 8:
797     if (High) {
798       switch (Reg.id()) {
799         DEFAULT_NOREG
800         A_SUB_SUPER(AH)
801         D_SUB_SUPER(DH)
802         C_SUB_SUPER(CH)
803         B_SUB_SUPER(BH)
804       }
805     } else {
806       switch (Reg.id()) {
807         DEFAULT_NOREG
808         A_SUB_SUPER(AL)
809         D_SUB_SUPER(DL)
810         C_SUB_SUPER(CL)
811         B_SUB_SUPER(BL)
812         SI_SUB_SUPER(SIL)
813         DI_SUB_SUPER(DIL)
814         BP_SUB_SUPER(BPL)
815         SP_SUB_SUPER(SPL)
816         NO_SUB_SUPER_B(8)
817         NO_SUB_SUPER_B(9)
818         NO_SUB_SUPER_B(10)
819         NO_SUB_SUPER_B(11)
820         NO_SUB_SUPER_B(12)
821         NO_SUB_SUPER_B(13)
822         NO_SUB_SUPER_B(14)
823         NO_SUB_SUPER_B(15)
824         NO_SUB_SUPER_B(16)
825         NO_SUB_SUPER_B(17)
826         NO_SUB_SUPER_B(18)
827         NO_SUB_SUPER_B(19)
828         NO_SUB_SUPER_B(20)
829         NO_SUB_SUPER_B(21)
830         NO_SUB_SUPER_B(22)
831         NO_SUB_SUPER_B(23)
832         NO_SUB_SUPER_B(24)
833         NO_SUB_SUPER_B(25)
834         NO_SUB_SUPER_B(26)
835         NO_SUB_SUPER_B(27)
836         NO_SUB_SUPER_B(28)
837         NO_SUB_SUPER_B(29)
838         NO_SUB_SUPER_B(30)
839         NO_SUB_SUPER_B(31)
840       }
841     }
842   case 16:
843     switch (Reg.id()) {
844       DEFAULT_NOREG
845       A_SUB_SUPER(AX)
846       D_SUB_SUPER(DX)
847       C_SUB_SUPER(CX)
848       B_SUB_SUPER(BX)
849       SI_SUB_SUPER(SI)
850       DI_SUB_SUPER(DI)
851       BP_SUB_SUPER(BP)
852       SP_SUB_SUPER(SP)
853       NO_SUB_SUPER_W(8)
854       NO_SUB_SUPER_W(9)
855       NO_SUB_SUPER_W(10)
856       NO_SUB_SUPER_W(11)
857       NO_SUB_SUPER_W(12)
858       NO_SUB_SUPER_W(13)
859       NO_SUB_SUPER_W(14)
860       NO_SUB_SUPER_W(15)
861       NO_SUB_SUPER_W(16)
862       NO_SUB_SUPER_W(17)
863       NO_SUB_SUPER_W(18)
864       NO_SUB_SUPER_W(19)
865       NO_SUB_SUPER_W(20)
866       NO_SUB_SUPER_W(21)
867       NO_SUB_SUPER_W(22)
868       NO_SUB_SUPER_W(23)
869       NO_SUB_SUPER_W(24)
870       NO_SUB_SUPER_W(25)
871       NO_SUB_SUPER_W(26)
872       NO_SUB_SUPER_W(27)
873       NO_SUB_SUPER_W(28)
874       NO_SUB_SUPER_W(29)
875       NO_SUB_SUPER_W(30)
876       NO_SUB_SUPER_W(31)
877     }
878   case 32:
879     switch (Reg.id()) {
880       DEFAULT_NOREG
881       A_SUB_SUPER(EAX)
882       D_SUB_SUPER(EDX)
883       C_SUB_SUPER(ECX)
884       B_SUB_SUPER(EBX)
885       SI_SUB_SUPER(ESI)
886       DI_SUB_SUPER(EDI)
887       BP_SUB_SUPER(EBP)
888       SP_SUB_SUPER(ESP)
889       NO_SUB_SUPER_D(8)
890       NO_SUB_SUPER_D(9)
891       NO_SUB_SUPER_D(10)
892       NO_SUB_SUPER_D(11)
893       NO_SUB_SUPER_D(12)
894       NO_SUB_SUPER_D(13)
895       NO_SUB_SUPER_D(14)
896       NO_SUB_SUPER_D(15)
897       NO_SUB_SUPER_D(16)
898       NO_SUB_SUPER_D(17)
899       NO_SUB_SUPER_D(18)
900       NO_SUB_SUPER_D(19)
901       NO_SUB_SUPER_D(20)
902       NO_SUB_SUPER_D(21)
903       NO_SUB_SUPER_D(22)
904       NO_SUB_SUPER_D(23)
905       NO_SUB_SUPER_D(24)
906       NO_SUB_SUPER_D(25)
907       NO_SUB_SUPER_D(26)
908       NO_SUB_SUPER_D(27)
909       NO_SUB_SUPER_D(28)
910       NO_SUB_SUPER_D(29)
911       NO_SUB_SUPER_D(30)
912       NO_SUB_SUPER_D(31)
913     }
914   case 64:
915     switch (Reg.id()) {
916       DEFAULT_NOREG
917       A_SUB_SUPER(RAX)
918       D_SUB_SUPER(RDX)
919       C_SUB_SUPER(RCX)
920       B_SUB_SUPER(RBX)
921       SI_SUB_SUPER(RSI)
922       DI_SUB_SUPER(RDI)
923       BP_SUB_SUPER(RBP)
924       SP_SUB_SUPER(RSP)
925       NO_SUB_SUPER_Q(8)
926       NO_SUB_SUPER_Q(9)
927       NO_SUB_SUPER_Q(10)
928       NO_SUB_SUPER_Q(11)
929       NO_SUB_SUPER_Q(12)
930       NO_SUB_SUPER_Q(13)
931       NO_SUB_SUPER_Q(14)
932       NO_SUB_SUPER_Q(15)
933       NO_SUB_SUPER_Q(16)
934       NO_SUB_SUPER_Q(17)
935       NO_SUB_SUPER_Q(18)
936       NO_SUB_SUPER_Q(19)
937       NO_SUB_SUPER_Q(20)
938       NO_SUB_SUPER_Q(21)
939       NO_SUB_SUPER_Q(22)
940       NO_SUB_SUPER_Q(23)
941       NO_SUB_SUPER_Q(24)
942       NO_SUB_SUPER_Q(25)
943       NO_SUB_SUPER_Q(26)
944       NO_SUB_SUPER_Q(27)
945       NO_SUB_SUPER_Q(28)
946       NO_SUB_SUPER_Q(29)
947       NO_SUB_SUPER_Q(30)
948       NO_SUB_SUPER_Q(31)
949     }
950   }
951 }
952