1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the X86MCCodeEmitter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/X86BaseInfo.h" 14 #include "MCTargetDesc/X86FixupKinds.h" 15 #include "MCTargetDesc/X86MCTargetDesc.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/MC/MCCodeEmitter.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCFixup.h" 21 #include "llvm/MC/MCInst.h" 22 #include "llvm/MC/MCInstrDesc.h" 23 #include "llvm/MC/MCInstrInfo.h" 24 #include "llvm/MC/MCRegisterInfo.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/MC/MCSymbol.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <cassert> 30 #include <cstdint> 31 #include <cstdlib> 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "mccodeemitter" 36 37 namespace { 38 39 class X86MCCodeEmitter : public MCCodeEmitter { 40 const MCInstrInfo &MCII; 41 MCContext &Ctx; 42 43 public: 44 X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx) 45 : MCII(mcii), Ctx(ctx) {} 46 X86MCCodeEmitter(const X86MCCodeEmitter &) = delete; 47 X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete; 48 ~X86MCCodeEmitter() override = default; 49 50 void emitPrefix(const MCInst &MI, raw_ostream &OS, 51 const MCSubtargetInfo &STI) const override; 52 53 void encodeInstruction(const MCInst &MI, raw_ostream &OS, 54 SmallVectorImpl<MCFixup> &Fixups, 55 const MCSubtargetInfo &STI) const override; 56 57 private: 58 unsigned getX86RegNum(const MCOperand &MO) const; 59 60 unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const; 61 62 /// \param MI a single low-level machine instruction. 63 /// \param OpNum the operand #. 64 /// \returns true if the OpNumth operand of MI require a bit to be set in 65 /// REX prefix. 66 bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const; 67 68 void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize, 69 MCFixupKind FixupKind, uint64_t StartByte, raw_ostream &OS, 70 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const; 71 72 void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, 73 raw_ostream &OS) const; 74 75 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base, 76 raw_ostream &OS) const; 77 78 void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, 79 uint64_t TSFlags, bool HasREX, uint64_t StartByte, 80 raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, 81 const MCSubtargetInfo &STI, 82 bool ForceSIB = false) const; 83 84 bool emitPrefixImpl(unsigned &CurOp, const MCInst &MI, 85 const MCSubtargetInfo &STI, raw_ostream &OS) const; 86 87 void emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, 88 raw_ostream &OS) const; 89 90 void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI, 91 raw_ostream &OS) const; 92 93 bool emitOpcodePrefix(int MemOperand, const MCInst &MI, 94 const MCSubtargetInfo &STI, raw_ostream &OS) const; 95 96 bool emitREXPrefix(int MemOperand, const MCInst &MI, 97 const MCSubtargetInfo &STI, raw_ostream &OS) const; 98 }; 99 100 } // end anonymous namespace 101 102 static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { 103 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); 104 return RM | (RegOpcode << 3) | (Mod << 6); 105 } 106 107 static void emitByte(uint8_t C, raw_ostream &OS) { OS << static_cast<char>(C); } 108 109 static void emitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) { 110 // Output the constant in little endian byte order. 111 for (unsigned i = 0; i != Size; ++i) { 112 emitByte(Val & 255, OS); 113 Val >>= 8; 114 } 115 } 116 117 /// Determine if this immediate can fit in a disp8 or a compressed disp8 for 118 /// EVEX instructions. \p will be set to the value to pass to the ImmOffset 119 /// parameter of emitImmediate. 120 static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) { 121 bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; 122 123 int CD8_Scale = 124 (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift; 125 if (!HasEVEX || CD8_Scale == 0) 126 return isInt<8>(Value); 127 128 assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!"); 129 if (Value & (CD8_Scale - 1)) // Unaligned offset 130 return false; 131 132 int CDisp8 = Value / CD8_Scale; 133 if (!isInt<8>(CDisp8)) 134 return false; 135 136 // ImmOffset will be added to Value in emitImmediate leaving just CDisp8. 137 ImmOffset = CDisp8 - Value; 138 return true; 139 } 140 141 /// \returns the appropriate fixup kind to use for an immediate in an 142 /// instruction with the specified TSFlags. 143 static MCFixupKind getImmFixupKind(uint64_t TSFlags) { 144 unsigned Size = X86II::getSizeOfImm(TSFlags); 145 bool isPCRel = X86II::isImmPCRel(TSFlags); 146 147 if (X86II::isImmSigned(TSFlags)) { 148 switch (Size) { 149 default: 150 llvm_unreachable("Unsupported signed fixup size!"); 151 case 4: 152 return MCFixupKind(X86::reloc_signed_4byte); 153 } 154 } 155 return MCFixup::getKindForSize(Size, isPCRel); 156 } 157 158 /// \param Op operand # of the memory operand. 159 /// 160 /// \returns true if the specified instruction has a 16-bit memory operand. 161 static bool is16BitMemOperand(const MCInst &MI, unsigned Op, 162 const MCSubtargetInfo &STI) { 163 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg); 164 const MCOperand &Index = MI.getOperand(Op + X86::AddrIndexReg); 165 166 unsigned BaseReg = Base.getReg(); 167 unsigned IndexReg = Index.getReg(); 168 169 if (STI.hasFeature(X86::Mode16Bit) && BaseReg == 0 && IndexReg == 0) 170 return true; 171 if ((BaseReg != 0 && 172 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) || 173 (IndexReg != 0 && 174 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))) 175 return true; 176 return false; 177 } 178 179 /// \param Op operand # of the memory operand. 180 /// 181 /// \returns true if the specified instruction has a 32-bit memory operand. 182 static bool is32BitMemOperand(const MCInst &MI, unsigned Op) { 183 const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg); 184 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg); 185 186 if ((BaseReg.getReg() != 0 && 187 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || 188 (IndexReg.getReg() != 0 && 189 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) 190 return true; 191 if (BaseReg.getReg() == X86::EIP) { 192 assert(IndexReg.getReg() == 0 && "Invalid eip-based address."); 193 return true; 194 } 195 if (IndexReg.getReg() == X86::EIZ) 196 return true; 197 return false; 198 } 199 200 /// \param Op operand # of the memory operand. 201 /// 202 /// \returns true if the specified instruction has a 64-bit memory operand. 203 #ifndef NDEBUG 204 static bool is64BitMemOperand(const MCInst &MI, unsigned Op) { 205 const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg); 206 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg); 207 208 if ((BaseReg.getReg() != 0 && 209 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) || 210 (IndexReg.getReg() != 0 && 211 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg()))) 212 return true; 213 return false; 214 } 215 #endif 216 217 enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff }; 218 219 /// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is 220 /// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on 221 /// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that 222 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a 223 /// binary expression. 224 static GlobalOffsetTableExprKind 225 startsWithGlobalOffsetTable(const MCExpr *Expr) { 226 const MCExpr *RHS = nullptr; 227 if (Expr->getKind() == MCExpr::Binary) { 228 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr); 229 Expr = BE->getLHS(); 230 RHS = BE->getRHS(); 231 } 232 233 if (Expr->getKind() != MCExpr::SymbolRef) 234 return GOT_None; 235 236 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); 237 const MCSymbol &S = Ref->getSymbol(); 238 if (S.getName() != "_GLOBAL_OFFSET_TABLE_") 239 return GOT_None; 240 if (RHS && RHS->getKind() == MCExpr::SymbolRef) 241 return GOT_SymDiff; 242 return GOT_Normal; 243 } 244 245 static bool hasSecRelSymbolRef(const MCExpr *Expr) { 246 if (Expr->getKind() == MCExpr::SymbolRef) { 247 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); 248 return Ref->getKind() == MCSymbolRefExpr::VK_SECREL; 249 } 250 return false; 251 } 252 253 static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) { 254 unsigned Opcode = MI.getOpcode(); 255 const MCInstrDesc &Desc = MCII.get(Opcode); 256 if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 && 257 Opcode != X86::JCC_4) || 258 getImmFixupKind(Desc.TSFlags) != FK_PCRel_4) 259 return false; 260 261 unsigned CurOp = X86II::getOperandBias(Desc); 262 const MCOperand &Op = MI.getOperand(CurOp); 263 if (!Op.isExpr()) 264 return false; 265 266 const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr()); 267 return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None; 268 } 269 270 unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const { 271 return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7; 272 } 273 274 unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI, 275 unsigned OpNum) const { 276 return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg()); 277 } 278 279 /// \param MI a single low-level machine instruction. 280 /// \param OpNum the operand #. 281 /// \returns true if the OpNumth operand of MI require a bit to be set in 282 /// REX prefix. 283 bool X86MCCodeEmitter::isREXExtendedReg(const MCInst &MI, 284 unsigned OpNum) const { 285 return (getX86RegEncoding(MI, OpNum) >> 3) & 1; 286 } 287 288 void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc, 289 unsigned Size, MCFixupKind FixupKind, 290 uint64_t StartByte, raw_ostream &OS, 291 SmallVectorImpl<MCFixup> &Fixups, 292 int ImmOffset) const { 293 const MCExpr *Expr = nullptr; 294 if (DispOp.isImm()) { 295 // If this is a simple integer displacement that doesn't require a 296 // relocation, emit it now. 297 if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 && 298 FixupKind != FK_PCRel_4) { 299 emitConstant(DispOp.getImm() + ImmOffset, Size, OS); 300 return; 301 } 302 Expr = MCConstantExpr::create(DispOp.getImm(), Ctx); 303 } else { 304 Expr = DispOp.getExpr(); 305 } 306 307 // If we have an immoffset, add it to the expression. 308 if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 || 309 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { 310 GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr); 311 if (Kind != GOT_None) { 312 assert(ImmOffset == 0); 313 314 if (Size == 8) { 315 FixupKind = MCFixupKind(X86::reloc_global_offset_table8); 316 } else { 317 assert(Size == 4); 318 FixupKind = MCFixupKind(X86::reloc_global_offset_table); 319 } 320 321 if (Kind == GOT_Normal) 322 ImmOffset = static_cast<int>(OS.tell() - StartByte); 323 } else if (Expr->getKind() == MCExpr::SymbolRef) { 324 if (hasSecRelSymbolRef(Expr)) { 325 FixupKind = MCFixupKind(FK_SecRel_4); 326 } 327 } else if (Expr->getKind() == MCExpr::Binary) { 328 const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr); 329 if (hasSecRelSymbolRef(Bin->getLHS()) || 330 hasSecRelSymbolRef(Bin->getRHS())) { 331 FixupKind = MCFixupKind(FK_SecRel_4); 332 } 333 } 334 } 335 336 // If the fixup is pc-relative, we need to bias the value to be relative to 337 // the start of the field, not the end of the field. 338 if (FixupKind == FK_PCRel_4 || 339 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || 340 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) || 341 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) || 342 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) || 343 FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) { 344 ImmOffset -= 4; 345 // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_: 346 // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15 347 // this needs to be a GOTPC32 relocation. 348 if (startsWithGlobalOffsetTable(Expr) != GOT_None) 349 FixupKind = MCFixupKind(X86::reloc_global_offset_table); 350 } 351 if (FixupKind == FK_PCRel_2) 352 ImmOffset -= 2; 353 if (FixupKind == FK_PCRel_1) 354 ImmOffset -= 1; 355 356 if (ImmOffset) 357 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx), 358 Ctx); 359 360 // Emit a symbolic constant as a fixup and 4 zeros. 361 Fixups.push_back(MCFixup::create(static_cast<uint32_t>(OS.tell() - StartByte), 362 Expr, FixupKind, Loc)); 363 emitConstant(0, Size, OS); 364 } 365 366 void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg, 367 unsigned RegOpcodeFld, 368 raw_ostream &OS) const { 369 emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), OS); 370 } 371 372 void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base, 373 raw_ostream &OS) const { 374 // SIB byte is in the same format as the modRMByte. 375 emitByte(modRMByte(SS, Index, Base), OS); 376 } 377 378 void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op, 379 unsigned RegOpcodeField, 380 uint64_t TSFlags, bool HasREX, 381 uint64_t StartByte, raw_ostream &OS, 382 SmallVectorImpl<MCFixup> &Fixups, 383 const MCSubtargetInfo &STI, 384 bool ForceSIB) const { 385 const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp); 386 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg); 387 const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt); 388 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg); 389 unsigned BaseReg = Base.getReg(); 390 391 // Handle %rip relative addressing. 392 if (BaseReg == X86::RIP || 393 BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode 394 assert(STI.hasFeature(X86::Mode64Bit) && 395 "Rip-relative addressing requires 64-bit mode"); 396 assert(IndexReg.getReg() == 0 && !ForceSIB && 397 "Invalid rip-relative address"); 398 emitByte(modRMByte(0, RegOpcodeField, 5), OS); 399 400 unsigned Opcode = MI.getOpcode(); 401 unsigned FixupKind = [&]() { 402 // Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a 403 // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4). 404 if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Disp.getExpr()))) 405 return X86::reloc_riprel_4byte; 406 407 // Certain loads for GOT references can be relocated against the symbol 408 // directly if the symbol ends up in the same linkage unit. 409 switch (Opcode) { 410 default: 411 return X86::reloc_riprel_4byte; 412 case X86::MOV64rm: 413 // movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a 414 // special case because COFF and Mach-O don't support ELF's more 415 // flexible R_X86_64_REX_GOTPCRELX relaxation. 416 assert(HasREX); 417 return X86::reloc_riprel_4byte_movq_load; 418 case X86::ADC32rm: 419 case X86::ADD32rm: 420 case X86::AND32rm: 421 case X86::CMP32rm: 422 case X86::MOV32rm: 423 case X86::OR32rm: 424 case X86::SBB32rm: 425 case X86::SUB32rm: 426 case X86::TEST32mr: 427 case X86::XOR32rm: 428 case X86::CALL64m: 429 case X86::JMP64m: 430 case X86::TAILJMPm64: 431 case X86::TEST64mr: 432 case X86::ADC64rm: 433 case X86::ADD64rm: 434 case X86::AND64rm: 435 case X86::CMP64rm: 436 case X86::OR64rm: 437 case X86::SBB64rm: 438 case X86::SUB64rm: 439 case X86::XOR64rm: 440 return HasREX ? X86::reloc_riprel_4byte_relax_rex 441 : X86::reloc_riprel_4byte_relax; 442 } 443 }(); 444 445 // rip-relative addressing is actually relative to the *next* instruction. 446 // Since an immediate can follow the mod/rm byte for an instruction, this 447 // means that we need to bias the displacement field of the instruction with 448 // the size of the immediate field. If we have this case, add it into the 449 // expression to emit. 450 // Note: rip-relative addressing using immediate displacement values should 451 // not be adjusted, assuming it was the user's intent. 452 int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags) 453 ? X86II::getSizeOfImm(TSFlags) 454 : 0; 455 456 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS, 457 Fixups, -ImmSize); 458 return; 459 } 460 461 unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U; 462 463 // 16-bit addressing forms of the ModR/M byte have a different encoding for 464 // the R/M field and are far more limited in which registers can be used. 465 if (is16BitMemOperand(MI, Op, STI)) { 466 if (BaseReg) { 467 // For 32-bit addressing, the row and column values in Table 2-2 are 468 // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with 469 // some special cases. And getX86RegNum reflects that numbering. 470 // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A, 471 // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only 472 // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order, 473 // while values 0-3 indicate the allowed combinations (base+index) of 474 // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI. 475 // 476 // R16Table[] is a lookup from the normal RegNo, to the row values from 477 // Table 2-1 for 16-bit addressing modes. Where zero means disallowed. 478 static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5}; 479 unsigned RMfield = R16Table[BaseRegNo]; 480 481 assert(RMfield && "invalid 16-bit base register"); 482 483 if (IndexReg.getReg()) { 484 unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)]; 485 486 assert(IndexReg16 && "invalid 16-bit index register"); 487 // We must have one of SI/DI (4,5), and one of BP/BX (6,7). 488 assert(((IndexReg16 ^ RMfield) & 2) && 489 "invalid 16-bit base/index register combination"); 490 assert(Scale.getImm() == 1 && 491 "invalid scale for 16-bit memory reference"); 492 493 // Allow base/index to appear in either order (although GAS doesn't). 494 if (IndexReg16 & 2) 495 RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1); 496 else 497 RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1); 498 } 499 500 if (Disp.isImm() && isInt<8>(Disp.getImm())) { 501 if (Disp.getImm() == 0 && RMfield != 6) { 502 // There is no displacement; just the register. 503 emitByte(modRMByte(0, RegOpcodeField, RMfield), OS); 504 return; 505 } 506 // Use the [REG]+disp8 form, including for [BP] which cannot be encoded. 507 emitByte(modRMByte(1, RegOpcodeField, RMfield), OS); 508 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups); 509 return; 510 } 511 // This is the [REG]+disp16 case. 512 emitByte(modRMByte(2, RegOpcodeField, RMfield), OS); 513 } else { 514 assert(IndexReg.getReg() == 0 && "Unexpected index register!"); 515 // There is no BaseReg; this is the plain [disp16] case. 516 emitByte(modRMByte(0, RegOpcodeField, 6), OS); 517 } 518 519 // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases. 520 emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, OS, Fixups); 521 return; 522 } 523 524 // Check for presence of {disp8} or {disp32} pseudo prefixes. 525 bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8; 526 bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32; 527 528 // We only allow no displacement if no pseudo prefix is present. 529 bool AllowNoDisp = !UseDisp8 && !UseDisp32; 530 // Disp8 is allowed unless the {disp32} prefix is present. 531 bool AllowDisp8 = !UseDisp32; 532 533 // Determine whether a SIB byte is needed. 534 if (// The SIB byte must be used if there is an index register or the 535 // encoding requires a SIB byte. 536 !ForceSIB && IndexReg.getReg() == 0 && 537 // The SIB byte must be used if the base is ESP/RSP/R12, all of which 538 // encode to an R/M value of 4, which indicates that a SIB byte is 539 // present. 540 BaseRegNo != N86::ESP && 541 // If there is no base register and we're in 64-bit mode, we need a SIB 542 // byte to emit an addr that is just 'disp32' (the non-RIP relative form). 543 (!STI.hasFeature(X86::Mode64Bit) || BaseReg != 0)) { 544 545 if (BaseReg == 0) { // [disp32] in X86-32 mode 546 emitByte(modRMByte(0, RegOpcodeField, 5), OS); 547 emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, OS, Fixups); 548 return; 549 } 550 551 // If the base is not EBP/ESP/R12/R13 and there is no displacement, use 552 // simple indirect register encoding, this handles addresses like [EAX]. 553 // The encoding for [EBP] or[R13] with no displacement means [disp32] so we 554 // handle it by emitting a displacement of 0 later. 555 if (BaseRegNo != N86::EBP) { 556 if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) { 557 emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS); 558 return; 559 } 560 561 // If the displacement is @tlscall, treat it as a zero. 562 if (Disp.isExpr()) { 563 auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr()); 564 if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) { 565 // This is exclusively used by call *a@tlscall(base). The relocation 566 // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning. 567 Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc())); 568 emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS); 569 return; 570 } 571 } 572 } 573 574 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. 575 // Including a compressed disp8 for EVEX instructions that support it. 576 // This also handles the 0 displacement for [EBP] or [R13]. We can't use 577 // disp8 if the {disp32} pseudo prefix is present. 578 if (Disp.isImm() && AllowDisp8) { 579 int ImmOffset = 0; 580 if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) { 581 emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), OS); 582 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups, 583 ImmOffset); 584 return; 585 } 586 } 587 588 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]. 589 // Displacement may be 0 for [EBP] or [R13] case if {disp32} pseudo prefix 590 // prevented using disp8 above. 591 emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), OS); 592 unsigned Opcode = MI.getOpcode(); 593 unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax 594 : X86::reloc_signed_4byte; 595 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS, 596 Fixups); 597 return; 598 } 599 600 // We need a SIB byte, so start by outputting the ModR/M byte first 601 assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && 602 "Cannot use ESP as index reg!"); 603 604 bool ForceDisp32 = false; 605 bool ForceDisp8 = false; 606 int ImmOffset = 0; 607 if (BaseReg == 0) { 608 // If there is no base register, we emit the special case SIB byte with 609 // MOD=0, BASE=5, to JUST get the index, scale, and displacement. 610 BaseRegNo = 5; 611 emitByte(modRMByte(0, RegOpcodeField, 4), OS); 612 ForceDisp32 = true; 613 } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp && 614 // Base reg can't be EBP/RBP/R13 as that would end up with '5' as 615 // the base field, but that is the magic [*] nomenclature that 616 // indicates no base when mod=0. For these cases we'll emit a 0 617 // displacement instead. 618 BaseRegNo != N86::EBP) { 619 // Emit no displacement ModR/M byte 620 emitByte(modRMByte(0, RegOpcodeField, 4), OS); 621 } else if (Disp.isImm() && AllowDisp8 && 622 isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) { 623 // Displacement fits in a byte or matches an EVEX compressed disp8, use 624 // disp8 encoding. This also handles EBP/R13 base with 0 displacement unless 625 // {disp32} pseudo prefix was used. 626 emitByte(modRMByte(1, RegOpcodeField, 4), OS); 627 ForceDisp8 = true; 628 } else { 629 // Otherwise, emit the normal disp32 encoding. 630 emitByte(modRMByte(2, RegOpcodeField, 4), OS); 631 ForceDisp32 = true; 632 } 633 634 // Calculate what the SS field value should be... 635 static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3}; 636 unsigned SS = SSTable[Scale.getImm()]; 637 638 unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4; 639 640 emitSIBByte(SS, IndexRegNo, BaseRegNo, OS); 641 642 // Do we need to output a displacement? 643 if (ForceDisp8) 644 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups, 645 ImmOffset); 646 else if (ForceDisp32) 647 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), 648 StartByte, OS, Fixups); 649 } 650 651 /// Emit all instruction prefixes. 652 /// 653 /// \returns true if REX prefix is used, otherwise returns false. 654 bool X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI, 655 const MCSubtargetInfo &STI, 656 raw_ostream &OS) const { 657 uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags; 658 // Determine where the memory operand starts, if present. 659 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); 660 // Emit segment override opcode prefix as needed. 661 if (MemoryOperand != -1) { 662 MemoryOperand += CurOp; 663 emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, OS); 664 } 665 666 // Emit the repeat opcode prefix as needed. 667 unsigned Flags = MI.getFlags(); 668 if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT) 669 emitByte(0xF3, OS); 670 if (Flags & X86::IP_HAS_REPEAT_NE) 671 emitByte(0xF2, OS); 672 673 // Emit the address size opcode prefix as needed. 674 bool NeedAddressOverride; 675 uint64_t AdSize = TSFlags & X86II::AdSizeMask; 676 if ((STI.hasFeature(X86::Mode16Bit) && AdSize == X86II::AdSize32) || 677 (STI.hasFeature(X86::Mode32Bit) && AdSize == X86II::AdSize16) || 678 (STI.hasFeature(X86::Mode64Bit) && AdSize == X86II::AdSize32)) { 679 NeedAddressOverride = true; 680 } else if (MemoryOperand < 0) { 681 NeedAddressOverride = false; 682 } else if (STI.hasFeature(X86::Mode64Bit)) { 683 assert(!is16BitMemOperand(MI, MemoryOperand, STI)); 684 NeedAddressOverride = is32BitMemOperand(MI, MemoryOperand); 685 } else if (STI.hasFeature(X86::Mode32Bit)) { 686 assert(!is64BitMemOperand(MI, MemoryOperand)); 687 NeedAddressOverride = is16BitMemOperand(MI, MemoryOperand, STI); 688 } else { 689 assert(STI.hasFeature(X86::Mode16Bit)); 690 assert(!is64BitMemOperand(MI, MemoryOperand)); 691 NeedAddressOverride = !is16BitMemOperand(MI, MemoryOperand, STI); 692 } 693 694 if (NeedAddressOverride) 695 emitByte(0x67, OS); 696 697 // Encoding type for this instruction. 698 uint64_t Encoding = TSFlags & X86II::EncodingMask; 699 bool HasREX = false; 700 if (Encoding) 701 emitVEXOpcodePrefix(MemoryOperand, MI, OS); 702 else 703 HasREX = emitOpcodePrefix(MemoryOperand, MI, STI, OS); 704 705 uint64_t Form = TSFlags & X86II::FormMask; 706 switch (Form) { 707 default: 708 break; 709 case X86II::RawFrmDstSrc: { 710 unsigned siReg = MI.getOperand(1).getReg(); 711 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) || 712 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) || 713 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) && 714 "SI and DI register sizes do not match"); 715 // Emit segment override opcode prefix as needed (not for %ds). 716 if (MI.getOperand(2).getReg() != X86::DS) 717 emitSegmentOverridePrefix(2, MI, OS); 718 // Emit AdSize prefix as needed. 719 if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) || 720 (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI)) 721 emitByte(0x67, OS); 722 CurOp += 3; // Consume operands. 723 break; 724 } 725 case X86II::RawFrmSrc: { 726 unsigned siReg = MI.getOperand(0).getReg(); 727 // Emit segment override opcode prefix as needed (not for %ds). 728 if (MI.getOperand(1).getReg() != X86::DS) 729 emitSegmentOverridePrefix(1, MI, OS); 730 // Emit AdSize prefix as needed. 731 if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) || 732 (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI)) 733 emitByte(0x67, OS); 734 CurOp += 2; // Consume operands. 735 break; 736 } 737 case X86II::RawFrmDst: { 738 unsigned siReg = MI.getOperand(0).getReg(); 739 // Emit AdSize prefix as needed. 740 if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::EDI) || 741 (STI.hasFeature(X86::Mode32Bit) && siReg == X86::DI)) 742 emitByte(0x67, OS); 743 ++CurOp; // Consume operand. 744 break; 745 } 746 case X86II::RawFrmMemOffs: { 747 // Emit segment override opcode prefix as needed. 748 emitSegmentOverridePrefix(1, MI, OS); 749 break; 750 } 751 } 752 753 return HasREX; 754 } 755 756 /// AVX instructions are encoded using a opcode prefix called VEX. 757 void X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI, 758 raw_ostream &OS) const { 759 const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); 760 uint64_t TSFlags = Desc.TSFlags; 761 762 assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX."); 763 764 uint64_t Encoding = TSFlags & X86II::EncodingMask; 765 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 766 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 767 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; 768 769 // VEX_R: opcode externsion equivalent to REX.R in 770 // 1's complement (inverted) form 771 // 772 // 1: Same as REX_R=0 (must be 1 in 32-bit mode) 773 // 0: Same as REX_R=1 (64 bit mode only) 774 // 775 uint8_t VEX_R = 0x1; 776 uint8_t EVEX_R2 = 0x1; 777 778 // VEX_X: equivalent to REX.X, only used when a 779 // register is used for index in SIB Byte. 780 // 781 // 1: Same as REX.X=0 (must be 1 in 32-bit mode) 782 // 0: Same as REX.X=1 (64-bit mode only) 783 uint8_t VEX_X = 0x1; 784 785 // VEX_B: 786 // 787 // 1: Same as REX_B=0 (ignored in 32-bit mode) 788 // 0: Same as REX_B=1 (64 bit mode only) 789 // 790 uint8_t VEX_B = 0x1; 791 792 // VEX_W: opcode specific (use like REX.W, or used for 793 // opcode extension, or ignored, depending on the opcode byte) 794 uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0; 795 796 // VEX_5M (VEX m-mmmmm field): 797 // 798 // 0b00000: Reserved for future use 799 // 0b00001: implied 0F leading opcode 800 // 0b00010: implied 0F 38 leading opcode bytes 801 // 0b00011: implied 0F 3A leading opcode bytes 802 // 0b00100-0b11111: Reserved for future use 803 // 0b01000: XOP map select - 08h instructions with imm byte 804 // 0b01001: XOP map select - 09h instructions with no imm byte 805 // 0b01010: XOP map select - 0Ah instructions with imm dword 806 uint8_t VEX_5M; 807 switch (TSFlags & X86II::OpMapMask) { 808 default: 809 llvm_unreachable("Invalid prefix!"); 810 case X86II::TB: 811 VEX_5M = 0x1; 812 break; // 0F 813 case X86II::T8: 814 VEX_5M = 0x2; 815 break; // 0F 38 816 case X86II::TA: 817 VEX_5M = 0x3; 818 break; // 0F 3A 819 case X86II::XOP8: 820 VEX_5M = 0x8; 821 break; 822 case X86II::XOP9: 823 VEX_5M = 0x9; 824 break; 825 case X86II::XOPA: 826 VEX_5M = 0xA; 827 break; 828 } 829 830 // VEX_4V (VEX vvvv field): a register specifier 831 // (in 1's complement form) or 1111 if unused. 832 uint8_t VEX_4V = 0xf; 833 uint8_t EVEX_V2 = 0x1; 834 835 // EVEX_L2/VEX_L (Vector Length): 836 // 837 // L2 L 838 // 0 0: scalar or 128-bit vector 839 // 0 1: 256-bit vector 840 // 1 0: 512-bit vector 841 // 842 uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0; 843 uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0; 844 845 // VEX_PP: opcode extension providing equivalent 846 // functionality of a SIMD prefix 847 // 848 // 0b00: None 849 // 0b01: 66 850 // 0b10: F3 851 // 0b11: F2 852 // 853 uint8_t VEX_PP = 0; 854 switch (TSFlags & X86II::OpPrefixMask) { 855 case X86II::PD: 856 VEX_PP = 0x1; 857 break; // 66 858 case X86II::XS: 859 VEX_PP = 0x2; 860 break; // F3 861 case X86II::XD: 862 VEX_PP = 0x3; 863 break; // F2 864 } 865 866 // EVEX_U 867 uint8_t EVEX_U = 1; // Always '1' so far 868 869 // EVEX_z 870 uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0; 871 872 // EVEX_b 873 uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0; 874 875 // EVEX_rc 876 uint8_t EVEX_rc = 0; 877 878 // EVEX_aaa 879 uint8_t EVEX_aaa = 0; 880 881 bool EncodeRC = false; 882 883 // Classify VEX_B, VEX_4V, VEX_R, VEX_X 884 unsigned NumOps = Desc.getNumOperands(); 885 unsigned CurOp = X86II::getOperandBias(Desc); 886 887 switch (TSFlags & X86II::FormMask) { 888 default: 889 llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!"); 890 case X86II::MRM_C0: 891 case X86II::RawFrm: 892 case X86II::PrefixByte: 893 break; 894 case X86II::MRMDestMemFSIB: 895 case X86II::MRMDestMem: { 896 // MRMDestMem instructions forms: 897 // MemAddr, src1(ModR/M) 898 // MemAddr, src1(VEX_4V), src2(ModR/M) 899 // MemAddr, src1(ModR/M), imm8 900 // 901 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 902 VEX_B = ~(BaseRegEnc >> 3) & 1; 903 unsigned IndexRegEnc = 904 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); 905 VEX_X = ~(IndexRegEnc >> 3) & 1; 906 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. 907 EVEX_V2 = ~(IndexRegEnc >> 4) & 1; 908 909 CurOp += X86::AddrNumOperands; 910 911 if (HasEVEX_K) 912 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 913 914 if (HasVEX_4V) { 915 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 916 VEX_4V = ~VRegEnc & 0xf; 917 EVEX_V2 = ~(VRegEnc >> 4) & 1; 918 } 919 920 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 921 VEX_R = ~(RegEnc >> 3) & 1; 922 EVEX_R2 = ~(RegEnc >> 4) & 1; 923 break; 924 } 925 case X86II::MRMSrcMemFSIB: 926 case X86II::MRMSrcMem: { 927 // MRMSrcMem instructions forms: 928 // src1(ModR/M), MemAddr 929 // src1(ModR/M), src2(VEX_4V), MemAddr 930 // src1(ModR/M), MemAddr, imm8 931 // src1(ModR/M), MemAddr, src2(Imm[7:4]) 932 // 933 // FMA4: 934 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) 935 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 936 VEX_R = ~(RegEnc >> 3) & 1; 937 EVEX_R2 = ~(RegEnc >> 4) & 1; 938 939 if (HasEVEX_K) 940 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 941 942 if (HasVEX_4V) { 943 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 944 VEX_4V = ~VRegEnc & 0xf; 945 EVEX_V2 = ~(VRegEnc >> 4) & 1; 946 } 947 948 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 949 VEX_B = ~(BaseRegEnc >> 3) & 1; 950 unsigned IndexRegEnc = 951 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); 952 VEX_X = ~(IndexRegEnc >> 3) & 1; 953 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. 954 EVEX_V2 = ~(IndexRegEnc >> 4) & 1; 955 956 break; 957 } 958 case X86II::MRMSrcMem4VOp3: { 959 // Instruction format for 4VOp3: 960 // src1(ModR/M), MemAddr, src3(VEX_4V) 961 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 962 VEX_R = ~(RegEnc >> 3) & 1; 963 964 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 965 VEX_B = ~(BaseRegEnc >> 3) & 1; 966 unsigned IndexRegEnc = 967 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); 968 VEX_X = ~(IndexRegEnc >> 3) & 1; 969 970 VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf; 971 break; 972 } 973 case X86II::MRMSrcMemOp4: { 974 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), 975 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 976 VEX_R = ~(RegEnc >> 3) & 1; 977 978 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 979 VEX_4V = ~VRegEnc & 0xf; 980 981 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 982 VEX_B = ~(BaseRegEnc >> 3) & 1; 983 unsigned IndexRegEnc = 984 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); 985 VEX_X = ~(IndexRegEnc >> 3) & 1; 986 break; 987 } 988 case X86II::MRM0m: 989 case X86II::MRM1m: 990 case X86II::MRM2m: 991 case X86II::MRM3m: 992 case X86II::MRM4m: 993 case X86II::MRM5m: 994 case X86II::MRM6m: 995 case X86II::MRM7m: { 996 // MRM[0-9]m instructions forms: 997 // MemAddr 998 // src1(VEX_4V), MemAddr 999 if (HasVEX_4V) { 1000 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 1001 VEX_4V = ~VRegEnc & 0xf; 1002 EVEX_V2 = ~(VRegEnc >> 4) & 1; 1003 } 1004 1005 if (HasEVEX_K) 1006 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 1007 1008 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg); 1009 VEX_B = ~(BaseRegEnc >> 3) & 1; 1010 unsigned IndexRegEnc = 1011 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg); 1012 VEX_X = ~(IndexRegEnc >> 3) & 1; 1013 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV. 1014 EVEX_V2 = ~(IndexRegEnc >> 4) & 1; 1015 1016 break; 1017 } 1018 case X86II::MRMSrcReg: { 1019 // MRMSrcReg instructions forms: 1020 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4]) 1021 // dst(ModR/M), src1(ModR/M) 1022 // dst(ModR/M), src1(ModR/M), imm8 1023 // 1024 // FMA4: 1025 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), 1026 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 1027 VEX_R = ~(RegEnc >> 3) & 1; 1028 EVEX_R2 = ~(RegEnc >> 4) & 1; 1029 1030 if (HasEVEX_K) 1031 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 1032 1033 if (HasVEX_4V) { 1034 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 1035 VEX_4V = ~VRegEnc & 0xf; 1036 EVEX_V2 = ~(VRegEnc >> 4) & 1; 1037 } 1038 1039 RegEnc = getX86RegEncoding(MI, CurOp++); 1040 VEX_B = ~(RegEnc >> 3) & 1; 1041 VEX_X = ~(RegEnc >> 4) & 1; 1042 1043 if (EVEX_b) { 1044 if (HasEVEX_RC) { 1045 unsigned RcOperand = NumOps - 1; 1046 assert(RcOperand >= CurOp); 1047 EVEX_rc = MI.getOperand(RcOperand).getImm(); 1048 assert(EVEX_rc <= 3 && "Invalid rounding control!"); 1049 } 1050 EncodeRC = true; 1051 } 1052 break; 1053 } 1054 case X86II::MRMSrcReg4VOp3: { 1055 // Instruction format for 4VOp3: 1056 // src1(ModR/M), src2(ModR/M), src3(VEX_4V) 1057 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 1058 VEX_R = ~(RegEnc >> 3) & 1; 1059 1060 RegEnc = getX86RegEncoding(MI, CurOp++); 1061 VEX_B = ~(RegEnc >> 3) & 1; 1062 1063 VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf; 1064 break; 1065 } 1066 case X86II::MRMSrcRegOp4: { 1067 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M), 1068 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 1069 VEX_R = ~(RegEnc >> 3) & 1; 1070 1071 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 1072 VEX_4V = ~VRegEnc & 0xf; 1073 1074 // Skip second register source (encoded in Imm[7:4]) 1075 ++CurOp; 1076 1077 RegEnc = getX86RegEncoding(MI, CurOp++); 1078 VEX_B = ~(RegEnc >> 3) & 1; 1079 VEX_X = ~(RegEnc >> 4) & 1; 1080 break; 1081 } 1082 case X86II::MRMDestReg: { 1083 // MRMDestReg instructions forms: 1084 // dst(ModR/M), src(ModR/M) 1085 // dst(ModR/M), src(ModR/M), imm8 1086 // dst(ModR/M), src1(VEX_4V), src2(ModR/M) 1087 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 1088 VEX_B = ~(RegEnc >> 3) & 1; 1089 VEX_X = ~(RegEnc >> 4) & 1; 1090 1091 if (HasEVEX_K) 1092 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 1093 1094 if (HasVEX_4V) { 1095 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 1096 VEX_4V = ~VRegEnc & 0xf; 1097 EVEX_V2 = ~(VRegEnc >> 4) & 1; 1098 } 1099 1100 RegEnc = getX86RegEncoding(MI, CurOp++); 1101 VEX_R = ~(RegEnc >> 3) & 1; 1102 EVEX_R2 = ~(RegEnc >> 4) & 1; 1103 if (EVEX_b) 1104 EncodeRC = true; 1105 break; 1106 } 1107 case X86II::MRMr0: { 1108 // MRMr0 instructions forms: 1109 // 11:rrr:000 1110 // dst(ModR/M) 1111 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 1112 VEX_R = ~(RegEnc >> 3) & 1; 1113 EVEX_R2 = ~(RegEnc >> 4) & 1; 1114 break; 1115 } 1116 case X86II::MRM0r: 1117 case X86II::MRM1r: 1118 case X86II::MRM2r: 1119 case X86II::MRM3r: 1120 case X86II::MRM4r: 1121 case X86II::MRM5r: 1122 case X86II::MRM6r: 1123 case X86II::MRM7r: { 1124 // MRM0r-MRM7r instructions forms: 1125 // dst(VEX_4V), src(ModR/M), imm8 1126 if (HasVEX_4V) { 1127 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++); 1128 VEX_4V = ~VRegEnc & 0xf; 1129 EVEX_V2 = ~(VRegEnc >> 4) & 1; 1130 } 1131 if (HasEVEX_K) 1132 EVEX_aaa = getX86RegEncoding(MI, CurOp++); 1133 1134 unsigned RegEnc = getX86RegEncoding(MI, CurOp++); 1135 VEX_B = ~(RegEnc >> 3) & 1; 1136 VEX_X = ~(RegEnc >> 4) & 1; 1137 break; 1138 } 1139 } 1140 1141 if (Encoding == X86II::VEX || Encoding == X86II::XOP) { 1142 // VEX opcode prefix can have 2 or 3 bytes 1143 // 1144 // 3 bytes: 1145 // +-----+ +--------------+ +-------------------+ 1146 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | 1147 // +-----+ +--------------+ +-------------------+ 1148 // 2 bytes: 1149 // +-----+ +-------------------+ 1150 // | C5h | | R | vvvv | L | pp | 1151 // +-----+ +-------------------+ 1152 // 1153 // XOP uses a similar prefix: 1154 // +-----+ +--------------+ +-------------------+ 1155 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | 1156 // +-----+ +--------------+ +-------------------+ 1157 uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); 1158 1159 // Can we use the 2 byte VEX prefix? 1160 if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX && 1161 VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { 1162 emitByte(0xC5, OS); 1163 emitByte(LastByte | (VEX_R << 7), OS); 1164 return; 1165 } 1166 1167 // 3 byte VEX prefix 1168 emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, OS); 1169 emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, OS); 1170 emitByte(LastByte | (VEX_W << 7), OS); 1171 } else { 1172 assert(Encoding == X86II::EVEX && "unknown encoding!"); 1173 // EVEX opcode prefix can have 4 bytes 1174 // 1175 // +-----+ +--------------+ +-------------------+ +------------------------+ 1176 // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa | 1177 // +-----+ +--------------+ +-------------------+ +------------------------+ 1178 assert((VEX_5M & 0x3) == VEX_5M && 1179 "More than 2 significant bits in VEX.m-mmmm fields for EVEX!"); 1180 1181 emitByte(0x62, OS); 1182 emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) | 1183 VEX_5M, 1184 OS); 1185 emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, OS); 1186 if (EncodeRC) 1187 emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) | 1188 EVEX_aaa, 1189 OS); 1190 else 1191 emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) | 1192 (EVEX_V2 << 3) | EVEX_aaa, 1193 OS); 1194 } 1195 } 1196 1197 /// Emit REX prefix which specifies 1198 /// 1) 64-bit instructions, 1199 /// 2) non-default operand size, and 1200 /// 3) use of X86-64 extended registers. 1201 /// 1202 /// \returns true if REX prefix is used, otherwise returns false. 1203 bool X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI, 1204 const MCSubtargetInfo &STI, 1205 raw_ostream &OS) const { 1206 uint8_t REX = [&, MemOperand]() { 1207 uint8_t REX = 0; 1208 bool UsesHighByteReg = false; 1209 1210 const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); 1211 uint64_t TSFlags = Desc.TSFlags; 1212 1213 if (TSFlags & X86II::REX_W) 1214 REX |= 1 << 3; // set REX.W 1215 1216 if (MI.getNumOperands() == 0) 1217 return REX; 1218 1219 unsigned NumOps = MI.getNumOperands(); 1220 unsigned CurOp = X86II::getOperandBias(Desc); 1221 1222 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. 1223 for (unsigned i = CurOp; i != NumOps; ++i) { 1224 const MCOperand &MO = MI.getOperand(i); 1225 if (MO.isReg()) { 1226 unsigned Reg = MO.getReg(); 1227 if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || 1228 Reg == X86::DH) 1229 UsesHighByteReg = true; 1230 if (X86II::isX86_64NonExtLowByteReg(Reg)) 1231 // FIXME: The caller of determineREXPrefix slaps this prefix onto 1232 // anything that returns non-zero. 1233 REX |= 0x40; // REX fixed encoding prefix 1234 } else if (MO.isExpr() && 1235 STI.getTargetTriple().getEnvironment() == Triple::GNUX32) { 1236 // GOTTPOFF and TLSDESC relocations require a REX prefix to allow 1237 // linker optimizations: even if the instructions we see may not require 1238 // any prefix, they may be replaced by instructions that do. This is 1239 // handled as a special case here so that it also works for hand-written 1240 // assembly without the user needing to write REX, as with GNU as. 1241 const auto *Ref = dyn_cast<MCSymbolRefExpr>(MO.getExpr()); 1242 if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF || 1243 Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) { 1244 REX |= 0x40; // REX fixed encoding prefix 1245 } 1246 } 1247 } 1248 1249 switch (TSFlags & X86II::FormMask) { 1250 case X86II::AddRegFrm: 1251 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1252 break; 1253 case X86II::MRMSrcReg: 1254 case X86II::MRMSrcRegCC: 1255 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1256 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1257 break; 1258 case X86II::MRMSrcMem: 1259 case X86II::MRMSrcMemCC: 1260 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1261 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B 1262 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X 1263 CurOp += X86::AddrNumOperands; 1264 break; 1265 case X86II::MRMDestReg: 1266 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1267 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1268 break; 1269 case X86II::MRMDestMem: 1270 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B 1271 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X 1272 CurOp += X86::AddrNumOperands; 1273 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1274 break; 1275 case X86II::MRMXmCC: 1276 case X86II::MRMXm: 1277 case X86II::MRM0m: 1278 case X86II::MRM1m: 1279 case X86II::MRM2m: 1280 case X86II::MRM3m: 1281 case X86II::MRM4m: 1282 case X86II::MRM5m: 1283 case X86II::MRM6m: 1284 case X86II::MRM7m: 1285 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B 1286 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X 1287 break; 1288 case X86II::MRMXrCC: 1289 case X86II::MRMXr: 1290 case X86II::MRM0r: 1291 case X86II::MRM1r: 1292 case X86II::MRM2r: 1293 case X86II::MRM3r: 1294 case X86II::MRM4r: 1295 case X86II::MRM5r: 1296 case X86II::MRM6r: 1297 case X86II::MRM7r: 1298 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B 1299 break; 1300 case X86II::MRMr0: 1301 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R 1302 break; 1303 case X86II::MRMDestMemFSIB: 1304 llvm_unreachable("FSIB format never need REX prefix!"); 1305 } 1306 if (REX && UsesHighByteReg) 1307 report_fatal_error( 1308 "Cannot encode high byte register in REX-prefixed instruction"); 1309 return REX; 1310 }(); 1311 1312 if (!REX) 1313 return false; 1314 1315 emitByte(0x40 | REX, OS); 1316 return true; 1317 } 1318 1319 /// Emit segment override opcode prefix as needed. 1320 void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned SegOperand, 1321 const MCInst &MI, 1322 raw_ostream &OS) const { 1323 // Check for explicit segment override on memory operand. 1324 if (unsigned Reg = MI.getOperand(SegOperand).getReg()) 1325 emitByte(X86::getSegmentOverridePrefixForReg(Reg), OS); 1326 } 1327 1328 /// Emit all instruction prefixes prior to the opcode. 1329 /// 1330 /// \param MemOperand the operand # of the start of a memory operand if present. 1331 /// If not present, it is -1. 1332 /// 1333 /// \returns true if REX prefix is used, otherwise returns false. 1334 bool X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI, 1335 const MCSubtargetInfo &STI, 1336 raw_ostream &OS) const { 1337 const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); 1338 uint64_t TSFlags = Desc.TSFlags; 1339 1340 // Emit the operand size opcode prefix as needed. 1341 if ((TSFlags & X86II::OpSizeMask) == 1342 (STI.hasFeature(X86::Mode16Bit) ? X86II::OpSize32 : X86II::OpSize16)) 1343 emitByte(0x66, OS); 1344 1345 // Emit the LOCK opcode prefix. 1346 if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK) 1347 emitByte(0xF0, OS); 1348 1349 // Emit the NOTRACK opcode prefix. 1350 if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK) 1351 emitByte(0x3E, OS); 1352 1353 switch (TSFlags & X86II::OpPrefixMask) { 1354 case X86II::PD: // 66 1355 emitByte(0x66, OS); 1356 break; 1357 case X86II::XS: // F3 1358 emitByte(0xF3, OS); 1359 break; 1360 case X86II::XD: // F2 1361 emitByte(0xF2, OS); 1362 break; 1363 } 1364 1365 // Handle REX prefix. 1366 assert((STI.hasFeature(X86::Mode64Bit) || !(TSFlags & X86II::REX_W)) && 1367 "REX.W requires 64bit mode."); 1368 bool HasREX = STI.hasFeature(X86::Mode64Bit) 1369 ? emitREXPrefix(MemOperand, MI, STI, OS) 1370 : false; 1371 1372 // 0x0F escape code must be emitted just before the opcode. 1373 switch (TSFlags & X86II::OpMapMask) { 1374 case X86II::TB: // Two-byte opcode map 1375 case X86II::T8: // 0F 38 1376 case X86II::TA: // 0F 3A 1377 case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller. 1378 emitByte(0x0F, OS); 1379 break; 1380 } 1381 1382 switch (TSFlags & X86II::OpMapMask) { 1383 case X86II::T8: // 0F 38 1384 emitByte(0x38, OS); 1385 break; 1386 case X86II::TA: // 0F 3A 1387 emitByte(0x3A, OS); 1388 break; 1389 } 1390 1391 return HasREX; 1392 } 1393 1394 void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS, 1395 const MCSubtargetInfo &STI) const { 1396 unsigned Opcode = MI.getOpcode(); 1397 const MCInstrDesc &Desc = MCII.get(Opcode); 1398 uint64_t TSFlags = Desc.TSFlags; 1399 1400 // Pseudo instructions don't get encoded. 1401 if (X86II::isPseudo(TSFlags)) 1402 return; 1403 1404 unsigned CurOp = X86II::getOperandBias(Desc); 1405 1406 emitPrefixImpl(CurOp, MI, STI, OS); 1407 } 1408 1409 void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS, 1410 SmallVectorImpl<MCFixup> &Fixups, 1411 const MCSubtargetInfo &STI) const { 1412 unsigned Opcode = MI.getOpcode(); 1413 const MCInstrDesc &Desc = MCII.get(Opcode); 1414 uint64_t TSFlags = Desc.TSFlags; 1415 1416 // Pseudo instructions don't get encoded. 1417 if (X86II::isPseudo(TSFlags)) 1418 return; 1419 1420 unsigned NumOps = Desc.getNumOperands(); 1421 unsigned CurOp = X86II::getOperandBias(Desc); 1422 1423 uint64_t StartByte = OS.tell(); 1424 1425 bool HasREX = emitPrefixImpl(CurOp, MI, STI, OS); 1426 1427 // It uses the VEX.VVVV field? 1428 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 1429 bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg; 1430 1431 // It uses the EVEX.aaa field? 1432 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 1433 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; 1434 1435 // Used if a register is encoded in 7:4 of immediate. 1436 unsigned I8RegNum = 0; 1437 1438 uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); 1439 1440 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) 1441 BaseOpcode = 0x0F; // Weird 3DNow! encoding. 1442 1443 unsigned OpcodeOffset = 0; 1444 1445 uint64_t Form = TSFlags & X86II::FormMask; 1446 switch (Form) { 1447 default: 1448 errs() << "FORM: " << Form << "\n"; 1449 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!"); 1450 case X86II::Pseudo: 1451 llvm_unreachable("Pseudo instruction shouldn't be emitted"); 1452 case X86II::RawFrmDstSrc: 1453 case X86II::RawFrmSrc: 1454 case X86II::RawFrmDst: 1455 case X86II::PrefixByte: 1456 emitByte(BaseOpcode, OS); 1457 break; 1458 case X86II::AddCCFrm: { 1459 // This will be added to the opcode in the fallthrough. 1460 OpcodeOffset = MI.getOperand(NumOps - 1).getImm(); 1461 assert(OpcodeOffset < 16 && "Unexpected opcode offset!"); 1462 --NumOps; // Drop the operand from the end. 1463 LLVM_FALLTHROUGH; 1464 case X86II::RawFrm: 1465 emitByte(BaseOpcode + OpcodeOffset, OS); 1466 1467 if (!STI.hasFeature(X86::Mode64Bit) || !isPCRel32Branch(MI, MCII)) 1468 break; 1469 1470 const MCOperand &Op = MI.getOperand(CurOp++); 1471 emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags), 1472 MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, OS, 1473 Fixups); 1474 break; 1475 } 1476 case X86II::RawFrmMemOffs: 1477 emitByte(BaseOpcode, OS); 1478 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1479 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1480 StartByte, OS, Fixups); 1481 ++CurOp; // skip segment operand 1482 break; 1483 case X86II::RawFrmImm8: 1484 emitByte(BaseOpcode, OS); 1485 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1486 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1487 StartByte, OS, Fixups); 1488 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte, 1489 OS, Fixups); 1490 break; 1491 case X86II::RawFrmImm16: 1492 emitByte(BaseOpcode, OS); 1493 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1494 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1495 StartByte, OS, Fixups); 1496 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte, 1497 OS, Fixups); 1498 break; 1499 1500 case X86II::AddRegFrm: 1501 emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), OS); 1502 break; 1503 1504 case X86II::MRMDestReg: { 1505 emitByte(BaseOpcode, OS); 1506 unsigned SrcRegNum = CurOp + 1; 1507 1508 if (HasEVEX_K) // Skip writemask 1509 ++SrcRegNum; 1510 1511 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) 1512 ++SrcRegNum; 1513 1514 emitRegModRMByte(MI.getOperand(CurOp), 1515 getX86RegNum(MI.getOperand(SrcRegNum)), OS); 1516 CurOp = SrcRegNum + 1; 1517 break; 1518 } 1519 case X86II::MRMDestMemFSIB: 1520 case X86II::MRMDestMem: { 1521 emitByte(BaseOpcode, OS); 1522 unsigned SrcRegNum = CurOp + X86::AddrNumOperands; 1523 1524 if (HasEVEX_K) // Skip writemask 1525 ++SrcRegNum; 1526 1527 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) 1528 ++SrcRegNum; 1529 1530 bool ForceSIB = (Form == X86II::MRMDestMemFSIB); 1531 emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags, 1532 HasREX, StartByte, OS, Fixups, STI, ForceSIB); 1533 CurOp = SrcRegNum + 1; 1534 break; 1535 } 1536 case X86II::MRMSrcReg: { 1537 emitByte(BaseOpcode, OS); 1538 unsigned SrcRegNum = CurOp + 1; 1539 1540 if (HasEVEX_K) // Skip writemask 1541 ++SrcRegNum; 1542 1543 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) 1544 ++SrcRegNum; 1545 1546 emitRegModRMByte(MI.getOperand(SrcRegNum), 1547 getX86RegNum(MI.getOperand(CurOp)), OS); 1548 CurOp = SrcRegNum + 1; 1549 if (HasVEX_I8Reg) 1550 I8RegNum = getX86RegEncoding(MI, CurOp++); 1551 // do not count the rounding control operand 1552 if (HasEVEX_RC) 1553 --NumOps; 1554 break; 1555 } 1556 case X86II::MRMSrcReg4VOp3: { 1557 emitByte(BaseOpcode, OS); 1558 unsigned SrcRegNum = CurOp + 1; 1559 1560 emitRegModRMByte(MI.getOperand(SrcRegNum), 1561 getX86RegNum(MI.getOperand(CurOp)), OS); 1562 CurOp = SrcRegNum + 1; 1563 ++CurOp; // Encoded in VEX.VVVV 1564 break; 1565 } 1566 case X86II::MRMSrcRegOp4: { 1567 emitByte(BaseOpcode, OS); 1568 unsigned SrcRegNum = CurOp + 1; 1569 1570 // Skip 1st src (which is encoded in VEX_VVVV) 1571 ++SrcRegNum; 1572 1573 // Capture 2nd src (which is encoded in Imm[7:4]) 1574 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); 1575 I8RegNum = getX86RegEncoding(MI, SrcRegNum++); 1576 1577 emitRegModRMByte(MI.getOperand(SrcRegNum), 1578 getX86RegNum(MI.getOperand(CurOp)), OS); 1579 CurOp = SrcRegNum + 1; 1580 break; 1581 } 1582 case X86II::MRMSrcRegCC: { 1583 unsigned FirstOp = CurOp++; 1584 unsigned SecondOp = CurOp++; 1585 1586 unsigned CC = MI.getOperand(CurOp++).getImm(); 1587 emitByte(BaseOpcode + CC, OS); 1588 1589 emitRegModRMByte(MI.getOperand(SecondOp), 1590 getX86RegNum(MI.getOperand(FirstOp)), OS); 1591 break; 1592 } 1593 case X86II::MRMSrcMemFSIB: 1594 case X86II::MRMSrcMem: { 1595 unsigned FirstMemOp = CurOp + 1; 1596 1597 if (HasEVEX_K) // Skip writemask 1598 ++FirstMemOp; 1599 1600 if (HasVEX_4V) 1601 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). 1602 1603 emitByte(BaseOpcode, OS); 1604 1605 bool ForceSIB = (Form == X86II::MRMSrcMemFSIB); 1606 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), 1607 TSFlags, HasREX, StartByte, OS, Fixups, STI, ForceSIB); 1608 CurOp = FirstMemOp + X86::AddrNumOperands; 1609 if (HasVEX_I8Reg) 1610 I8RegNum = getX86RegEncoding(MI, CurOp++); 1611 break; 1612 } 1613 case X86II::MRMSrcMem4VOp3: { 1614 unsigned FirstMemOp = CurOp + 1; 1615 1616 emitByte(BaseOpcode, OS); 1617 1618 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), 1619 TSFlags, HasREX, StartByte, OS, Fixups, STI); 1620 CurOp = FirstMemOp + X86::AddrNumOperands; 1621 ++CurOp; // Encoded in VEX.VVVV. 1622 break; 1623 } 1624 case X86II::MRMSrcMemOp4: { 1625 unsigned FirstMemOp = CurOp + 1; 1626 1627 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). 1628 1629 // Capture second register source (encoded in Imm[7:4]) 1630 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg"); 1631 I8RegNum = getX86RegEncoding(MI, FirstMemOp++); 1632 1633 emitByte(BaseOpcode, OS); 1634 1635 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)), 1636 TSFlags, HasREX, StartByte, OS, Fixups, STI); 1637 CurOp = FirstMemOp + X86::AddrNumOperands; 1638 break; 1639 } 1640 case X86II::MRMSrcMemCC: { 1641 unsigned RegOp = CurOp++; 1642 unsigned FirstMemOp = CurOp; 1643 CurOp = FirstMemOp + X86::AddrNumOperands; 1644 1645 unsigned CC = MI.getOperand(CurOp++).getImm(); 1646 emitByte(BaseOpcode + CC, OS); 1647 1648 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)), 1649 TSFlags, HasREX, StartByte, OS, Fixups, STI); 1650 break; 1651 } 1652 1653 case X86II::MRMXrCC: { 1654 unsigned RegOp = CurOp++; 1655 1656 unsigned CC = MI.getOperand(CurOp++).getImm(); 1657 emitByte(BaseOpcode + CC, OS); 1658 emitRegModRMByte(MI.getOperand(RegOp), 0, OS); 1659 break; 1660 } 1661 1662 case X86II::MRMXr: 1663 case X86II::MRM0r: 1664 case X86II::MRM1r: 1665 case X86II::MRM2r: 1666 case X86II::MRM3r: 1667 case X86II::MRM4r: 1668 case X86II::MRM5r: 1669 case X86II::MRM6r: 1670 case X86II::MRM7r: 1671 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). 1672 ++CurOp; 1673 if (HasEVEX_K) // Skip writemask 1674 ++CurOp; 1675 emitByte(BaseOpcode, OS); 1676 emitRegModRMByte(MI.getOperand(CurOp++), 1677 (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, OS); 1678 break; 1679 case X86II::MRMr0: 1680 emitByte(BaseOpcode, OS); 1681 emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)),0), OS); 1682 break; 1683 1684 case X86II::MRMXmCC: { 1685 unsigned FirstMemOp = CurOp; 1686 CurOp = FirstMemOp + X86::AddrNumOperands; 1687 1688 unsigned CC = MI.getOperand(CurOp++).getImm(); 1689 emitByte(BaseOpcode + CC, OS); 1690 1691 emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, HasREX, StartByte, OS, Fixups, 1692 STI); 1693 break; 1694 } 1695 1696 case X86II::MRMXm: 1697 case X86II::MRM0m: 1698 case X86II::MRM1m: 1699 case X86II::MRM2m: 1700 case X86II::MRM3m: 1701 case X86II::MRM4m: 1702 case X86II::MRM5m: 1703 case X86II::MRM6m: 1704 case X86II::MRM7m: 1705 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). 1706 ++CurOp; 1707 if (HasEVEX_K) // Skip writemask 1708 ++CurOp; 1709 emitByte(BaseOpcode, OS); 1710 emitMemModRMByte(MI, CurOp, 1711 (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags, 1712 HasREX, StartByte, OS, Fixups, STI); 1713 CurOp += X86::AddrNumOperands; 1714 break; 1715 1716 case X86II::MRM0X: 1717 case X86II::MRM1X: 1718 case X86II::MRM2X: 1719 case X86II::MRM3X: 1720 case X86II::MRM4X: 1721 case X86II::MRM5X: 1722 case X86II::MRM6X: 1723 case X86II::MRM7X: 1724 emitByte(BaseOpcode, OS); 1725 emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), OS); 1726 break; 1727 1728 case X86II::MRM_C0: 1729 case X86II::MRM_C1: 1730 case X86II::MRM_C2: 1731 case X86II::MRM_C3: 1732 case X86II::MRM_C4: 1733 case X86II::MRM_C5: 1734 case X86II::MRM_C6: 1735 case X86II::MRM_C7: 1736 case X86II::MRM_C8: 1737 case X86II::MRM_C9: 1738 case X86II::MRM_CA: 1739 case X86II::MRM_CB: 1740 case X86II::MRM_CC: 1741 case X86II::MRM_CD: 1742 case X86II::MRM_CE: 1743 case X86II::MRM_CF: 1744 case X86II::MRM_D0: 1745 case X86II::MRM_D1: 1746 case X86II::MRM_D2: 1747 case X86II::MRM_D3: 1748 case X86II::MRM_D4: 1749 case X86II::MRM_D5: 1750 case X86II::MRM_D6: 1751 case X86II::MRM_D7: 1752 case X86II::MRM_D8: 1753 case X86II::MRM_D9: 1754 case X86II::MRM_DA: 1755 case X86II::MRM_DB: 1756 case X86II::MRM_DC: 1757 case X86II::MRM_DD: 1758 case X86II::MRM_DE: 1759 case X86II::MRM_DF: 1760 case X86II::MRM_E0: 1761 case X86II::MRM_E1: 1762 case X86II::MRM_E2: 1763 case X86II::MRM_E3: 1764 case X86II::MRM_E4: 1765 case X86II::MRM_E5: 1766 case X86II::MRM_E6: 1767 case X86II::MRM_E7: 1768 case X86II::MRM_E8: 1769 case X86II::MRM_E9: 1770 case X86II::MRM_EA: 1771 case X86II::MRM_EB: 1772 case X86II::MRM_EC: 1773 case X86II::MRM_ED: 1774 case X86II::MRM_EE: 1775 case X86II::MRM_EF: 1776 case X86II::MRM_F0: 1777 case X86II::MRM_F1: 1778 case X86II::MRM_F2: 1779 case X86II::MRM_F3: 1780 case X86II::MRM_F4: 1781 case X86II::MRM_F5: 1782 case X86II::MRM_F6: 1783 case X86II::MRM_F7: 1784 case X86II::MRM_F8: 1785 case X86II::MRM_F9: 1786 case X86II::MRM_FA: 1787 case X86II::MRM_FB: 1788 case X86II::MRM_FC: 1789 case X86II::MRM_FD: 1790 case X86II::MRM_FE: 1791 case X86II::MRM_FF: 1792 emitByte(BaseOpcode, OS); 1793 emitByte(0xC0 + Form - X86II::MRM_C0, OS); 1794 break; 1795 } 1796 1797 if (HasVEX_I8Reg) { 1798 // The last source register of a 4 operand instruction in AVX is encoded 1799 // in bits[7:4] of a immediate byte. 1800 assert(I8RegNum < 16 && "Register encoding out of range"); 1801 I8RegNum <<= 4; 1802 if (CurOp != NumOps) { 1803 unsigned Val = MI.getOperand(CurOp++).getImm(); 1804 assert(Val < 16 && "Immediate operand value out of range"); 1805 I8RegNum |= Val; 1806 } 1807 emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1, 1808 StartByte, OS, Fixups); 1809 } else { 1810 // If there is a remaining operand, it must be a trailing immediate. Emit it 1811 // according to the right size for the instruction. Some instructions 1812 // (SSE4a extrq and insertq) have two trailing immediates. 1813 while (CurOp != NumOps && NumOps - CurOp <= 2) { 1814 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1815 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), 1816 StartByte, OS, Fixups); 1817 } 1818 } 1819 1820 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow) 1821 emitByte(X86II::getBaseOpcodeFor(TSFlags), OS); 1822 1823 assert(OS.tell() - StartByte <= 15 && 1824 "The size of instruction must be no longer than 15."); 1825 #ifndef NDEBUG 1826 // FIXME: Verify. 1827 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { 1828 errs() << "Cannot encode all operands of: "; 1829 MI.dump(); 1830 errs() << '\n'; 1831 abort(); 1832 } 1833 #endif 1834 } 1835 1836 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, 1837 const MCRegisterInfo &MRI, 1838 MCContext &Ctx) { 1839 return new X86MCCodeEmitter(MCII, Ctx); 1840 } 1841