xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86EncodingOptimization.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===-- X86EncodingOptimization.cpp - X86 Encoding optimization -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the X86 encoding optimization
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86EncodingOptimization.h"
14 #include "X86BaseInfo.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MC/MCInstrDesc.h"
18 #include "llvm/Support/Casting.h"
19 
20 using namespace llvm;
21 
22 bool X86::optimizeInstFromVEX3ToVEX2(MCInst &MI, const MCInstrDesc &Desc) {
23   unsigned OpIdx1, OpIdx2;
24   unsigned Opcode = MI.getOpcode();
25   unsigned NewOpc = 0;
26 #define FROM_TO(FROM, TO, IDX1, IDX2)                                          \
27   case X86::FROM:                                                              \
28     NewOpc = X86::TO;                                                          \
29     OpIdx1 = IDX1;                                                             \
30     OpIdx2 = IDX2;                                                             \
31     break;
32 #define TO_REV(FROM) FROM_TO(FROM, FROM##_REV, 0, 1)
33   switch (Opcode) {
34   default: {
35     // If the instruction is a commutable arithmetic instruction we might be
36     // able to commute the operands to get a 2 byte VEX prefix.
37     uint64_t TSFlags = Desc.TSFlags;
38     if (!Desc.isCommutable() || (TSFlags & X86II::EncodingMask) != X86II::VEX ||
39         (TSFlags & X86II::OpMapMask) != X86II::TB ||
40         (TSFlags & X86II::FormMask) != X86II::MRMSrcReg ||
41         (TSFlags & X86II::REX_W) || !(TSFlags & X86II::VEX_4V) ||
42         MI.getNumOperands() != 3)
43       return false;
44     // These two are not truly commutable.
45     if (Opcode == X86::VMOVHLPSrr || Opcode == X86::VUNPCKHPDrr)
46       return false;
47     OpIdx1 = 1;
48     OpIdx2 = 2;
49     break;
50   }
51   case X86::VCMPPDrri:
52   case X86::VCMPPDYrri:
53   case X86::VCMPPSrri:
54   case X86::VCMPPSYrri:
55   case X86::VCMPSDrr:
56   case X86::VCMPSSrr: {
57     switch (MI.getOperand(3).getImm() & 0x7) {
58     default:
59       return false;
60     case 0x00: // EQUAL
61     case 0x03: // UNORDERED
62     case 0x04: // NOT EQUAL
63     case 0x07: // ORDERED
64       OpIdx1 = 1;
65       OpIdx2 = 2;
66       break;
67     }
68     break;
69   }
70     // Commute operands to get a smaller encoding by using VEX.R instead of
71     // VEX.B if one of the registers is extended, but other isn't.
72     FROM_TO(VMOVZPQILo2PQIrr, VMOVPQI2QIrr, 0, 1)
73     TO_REV(VMOVAPDrr)
74     TO_REV(VMOVAPDYrr)
75     TO_REV(VMOVAPSrr)
76     TO_REV(VMOVAPSYrr)
77     TO_REV(VMOVDQArr)
78     TO_REV(VMOVDQAYrr)
79     TO_REV(VMOVDQUrr)
80     TO_REV(VMOVDQUYrr)
81     TO_REV(VMOVUPDrr)
82     TO_REV(VMOVUPDYrr)
83     TO_REV(VMOVUPSrr)
84     TO_REV(VMOVUPSYrr)
85 #undef TO_REV
86 #define TO_REV(FROM) FROM_TO(FROM, FROM##_REV, 0, 2)
87     TO_REV(VMOVSDrr)
88     TO_REV(VMOVSSrr)
89 #undef TO_REV
90 #undef FROM_TO
91   }
92   if (X86II::isX86_64ExtendedReg(MI.getOperand(OpIdx1).getReg()) ||
93       !X86II::isX86_64ExtendedReg(MI.getOperand(OpIdx2).getReg()))
94     return false;
95   if (NewOpc)
96     MI.setOpcode(NewOpc);
97   else
98     std::swap(MI.getOperand(OpIdx1), MI.getOperand(OpIdx2));
99   return true;
100 }
101 
102 // NOTE: We may write this as an InstAlias if it's only used by AsmParser. See
103 // validateTargetOperandClass.
104 bool X86::optimizeShiftRotateWithImmediateOne(MCInst &MI) {
105   unsigned NewOpc;
106 #define TO_IMM1(FROM)                                                          \
107   case X86::FROM##i:                                                           \
108     NewOpc = X86::FROM##1;                                                     \
109     break;
110   switch (MI.getOpcode()) {
111   default:
112     return false;
113     TO_IMM1(RCR8r)
114     TO_IMM1(RCR16r)
115     TO_IMM1(RCR32r)
116     TO_IMM1(RCR64r)
117     TO_IMM1(RCL8r)
118     TO_IMM1(RCL16r)
119     TO_IMM1(RCL32r)
120     TO_IMM1(RCL64r)
121     TO_IMM1(ROR8r)
122     TO_IMM1(ROR16r)
123     TO_IMM1(ROR32r)
124     TO_IMM1(ROR64r)
125     TO_IMM1(ROL8r)
126     TO_IMM1(ROL16r)
127     TO_IMM1(ROL32r)
128     TO_IMM1(ROL64r)
129     TO_IMM1(SAR8r)
130     TO_IMM1(SAR16r)
131     TO_IMM1(SAR32r)
132     TO_IMM1(SAR64r)
133     TO_IMM1(SHR8r)
134     TO_IMM1(SHR16r)
135     TO_IMM1(SHR32r)
136     TO_IMM1(SHR64r)
137     TO_IMM1(SHL8r)
138     TO_IMM1(SHL16r)
139     TO_IMM1(SHL32r)
140     TO_IMM1(SHL64r)
141     TO_IMM1(RCR8m)
142     TO_IMM1(RCR16m)
143     TO_IMM1(RCR32m)
144     TO_IMM1(RCR64m)
145     TO_IMM1(RCL8m)
146     TO_IMM1(RCL16m)
147     TO_IMM1(RCL32m)
148     TO_IMM1(RCL64m)
149     TO_IMM1(ROR8m)
150     TO_IMM1(ROR16m)
151     TO_IMM1(ROR32m)
152     TO_IMM1(ROR64m)
153     TO_IMM1(ROL8m)
154     TO_IMM1(ROL16m)
155     TO_IMM1(ROL32m)
156     TO_IMM1(ROL64m)
157     TO_IMM1(SAR8m)
158     TO_IMM1(SAR16m)
159     TO_IMM1(SAR32m)
160     TO_IMM1(SAR64m)
161     TO_IMM1(SHR8m)
162     TO_IMM1(SHR16m)
163     TO_IMM1(SHR32m)
164     TO_IMM1(SHR64m)
165     TO_IMM1(SHL8m)
166     TO_IMM1(SHL16m)
167     TO_IMM1(SHL32m)
168     TO_IMM1(SHL64m)
169 #undef TO_IMM1
170   }
171   MCOperand &LastOp = MI.getOperand(MI.getNumOperands() - 1);
172   if (!LastOp.isImm() || LastOp.getImm() != 1)
173     return false;
174   MI.setOpcode(NewOpc);
175   MI.erase(&LastOp);
176   return true;
177 }
178 
179 bool X86::optimizeVPCMPWithImmediateOneOrSix(MCInst &MI) {
180   unsigned Opc1;
181   unsigned Opc2;
182 #define FROM_TO(FROM, TO1, TO2)                                                \
183   case X86::FROM:                                                              \
184     Opc1 = X86::TO1;                                                           \
185     Opc2 = X86::TO2;                                                           \
186     break;
187   switch (MI.getOpcode()) {
188   default:
189     return false;
190     FROM_TO(VPCMPBZ128rmi, VPCMPEQBZ128rm, VPCMPGTBZ128rm)
191     FROM_TO(VPCMPBZ128rmik, VPCMPEQBZ128rmk, VPCMPGTBZ128rmk)
192     FROM_TO(VPCMPBZ128rri, VPCMPEQBZ128rr, VPCMPGTBZ128rr)
193     FROM_TO(VPCMPBZ128rrik, VPCMPEQBZ128rrk, VPCMPGTBZ128rrk)
194     FROM_TO(VPCMPBZ256rmi, VPCMPEQBZ256rm, VPCMPGTBZ256rm)
195     FROM_TO(VPCMPBZ256rmik, VPCMPEQBZ256rmk, VPCMPGTBZ256rmk)
196     FROM_TO(VPCMPBZ256rri, VPCMPEQBZ256rr, VPCMPGTBZ256rr)
197     FROM_TO(VPCMPBZ256rrik, VPCMPEQBZ256rrk, VPCMPGTBZ256rrk)
198     FROM_TO(VPCMPBZrmi, VPCMPEQBZrm, VPCMPGTBZrm)
199     FROM_TO(VPCMPBZrmik, VPCMPEQBZrmk, VPCMPGTBZrmk)
200     FROM_TO(VPCMPBZrri, VPCMPEQBZrr, VPCMPGTBZrr)
201     FROM_TO(VPCMPBZrrik, VPCMPEQBZrrk, VPCMPGTBZrrk)
202     FROM_TO(VPCMPDZ128rmi, VPCMPEQDZ128rm, VPCMPGTDZ128rm)
203     FROM_TO(VPCMPDZ128rmib, VPCMPEQDZ128rmb, VPCMPGTDZ128rmb)
204     FROM_TO(VPCMPDZ128rmibk, VPCMPEQDZ128rmbk, VPCMPGTDZ128rmbk)
205     FROM_TO(VPCMPDZ128rmik, VPCMPEQDZ128rmk, VPCMPGTDZ128rmk)
206     FROM_TO(VPCMPDZ128rri, VPCMPEQDZ128rr, VPCMPGTDZ128rr)
207     FROM_TO(VPCMPDZ128rrik, VPCMPEQDZ128rrk, VPCMPGTDZ128rrk)
208     FROM_TO(VPCMPDZ256rmi, VPCMPEQDZ256rm, VPCMPGTDZ256rm)
209     FROM_TO(VPCMPDZ256rmib, VPCMPEQDZ256rmb, VPCMPGTDZ256rmb)
210     FROM_TO(VPCMPDZ256rmibk, VPCMPEQDZ256rmbk, VPCMPGTDZ256rmbk)
211     FROM_TO(VPCMPDZ256rmik, VPCMPEQDZ256rmk, VPCMPGTDZ256rmk)
212     FROM_TO(VPCMPDZ256rri, VPCMPEQDZ256rr, VPCMPGTDZ256rr)
213     FROM_TO(VPCMPDZ256rrik, VPCMPEQDZ256rrk, VPCMPGTDZ256rrk)
214     FROM_TO(VPCMPDZrmi, VPCMPEQDZrm, VPCMPGTDZrm)
215     FROM_TO(VPCMPDZrmib, VPCMPEQDZrmb, VPCMPGTDZrmb)
216     FROM_TO(VPCMPDZrmibk, VPCMPEQDZrmbk, VPCMPGTDZrmbk)
217     FROM_TO(VPCMPDZrmik, VPCMPEQDZrmk, VPCMPGTDZrmk)
218     FROM_TO(VPCMPDZrri, VPCMPEQDZrr, VPCMPGTDZrr)
219     FROM_TO(VPCMPDZrrik, VPCMPEQDZrrk, VPCMPGTDZrrk)
220     FROM_TO(VPCMPQZ128rmi, VPCMPEQQZ128rm, VPCMPGTQZ128rm)
221     FROM_TO(VPCMPQZ128rmib, VPCMPEQQZ128rmb, VPCMPGTQZ128rmb)
222     FROM_TO(VPCMPQZ128rmibk, VPCMPEQQZ128rmbk, VPCMPGTQZ128rmbk)
223     FROM_TO(VPCMPQZ128rmik, VPCMPEQQZ128rmk, VPCMPGTQZ128rmk)
224     FROM_TO(VPCMPQZ128rri, VPCMPEQQZ128rr, VPCMPGTQZ128rr)
225     FROM_TO(VPCMPQZ128rrik, VPCMPEQQZ128rrk, VPCMPGTQZ128rrk)
226     FROM_TO(VPCMPQZ256rmi, VPCMPEQQZ256rm, VPCMPGTQZ256rm)
227     FROM_TO(VPCMPQZ256rmib, VPCMPEQQZ256rmb, VPCMPGTQZ256rmb)
228     FROM_TO(VPCMPQZ256rmibk, VPCMPEQQZ256rmbk, VPCMPGTQZ256rmbk)
229     FROM_TO(VPCMPQZ256rmik, VPCMPEQQZ256rmk, VPCMPGTQZ256rmk)
230     FROM_TO(VPCMPQZ256rri, VPCMPEQQZ256rr, VPCMPGTQZ256rr)
231     FROM_TO(VPCMPQZ256rrik, VPCMPEQQZ256rrk, VPCMPGTQZ256rrk)
232     FROM_TO(VPCMPQZrmi, VPCMPEQQZrm, VPCMPGTQZrm)
233     FROM_TO(VPCMPQZrmib, VPCMPEQQZrmb, VPCMPGTQZrmb)
234     FROM_TO(VPCMPQZrmibk, VPCMPEQQZrmbk, VPCMPGTQZrmbk)
235     FROM_TO(VPCMPQZrmik, VPCMPEQQZrmk, VPCMPGTQZrmk)
236     FROM_TO(VPCMPQZrri, VPCMPEQQZrr, VPCMPGTQZrr)
237     FROM_TO(VPCMPQZrrik, VPCMPEQQZrrk, VPCMPGTQZrrk)
238     FROM_TO(VPCMPWZ128rmi, VPCMPEQWZ128rm, VPCMPGTWZ128rm)
239     FROM_TO(VPCMPWZ128rmik, VPCMPEQWZ128rmk, VPCMPGTWZ128rmk)
240     FROM_TO(VPCMPWZ128rri, VPCMPEQWZ128rr, VPCMPGTWZ128rr)
241     FROM_TO(VPCMPWZ128rrik, VPCMPEQWZ128rrk, VPCMPGTWZ128rrk)
242     FROM_TO(VPCMPWZ256rmi, VPCMPEQWZ256rm, VPCMPGTWZ256rm)
243     FROM_TO(VPCMPWZ256rmik, VPCMPEQWZ256rmk, VPCMPGTWZ256rmk)
244     FROM_TO(VPCMPWZ256rri, VPCMPEQWZ256rr, VPCMPGTWZ256rr)
245     FROM_TO(VPCMPWZ256rrik, VPCMPEQWZ256rrk, VPCMPGTWZ256rrk)
246     FROM_TO(VPCMPWZrmi, VPCMPEQWZrm, VPCMPGTWZrm)
247     FROM_TO(VPCMPWZrmik, VPCMPEQWZrmk, VPCMPGTWZrmk)
248     FROM_TO(VPCMPWZrri, VPCMPEQWZrr, VPCMPGTWZrr)
249     FROM_TO(VPCMPWZrrik, VPCMPEQWZrrk, VPCMPGTWZrrk)
250 #undef FROM_TO
251   }
252   MCOperand &LastOp = MI.getOperand(MI.getNumOperands() - 1);
253   int64_t Imm = LastOp.getImm();
254   unsigned NewOpc;
255   if (Imm == 0)
256     NewOpc = Opc1;
257   else if(Imm == 6)
258     NewOpc = Opc2;
259   else
260     return false;
261   MI.setOpcode(NewOpc);
262   MI.erase(&LastOp);
263   return true;
264 }
265 
266 bool X86::optimizeMOVSX(MCInst &MI) {
267   unsigned NewOpc;
268 #define FROM_TO(FROM, TO, R0, R1)                                              \
269   case X86::FROM:                                                              \
270     if (MI.getOperand(0).getReg() != X86::R0 ||                                \
271         MI.getOperand(1).getReg() != X86::R1)                                  \
272       return false;                                                            \
273     NewOpc = X86::TO;                                                          \
274     break;
275   switch (MI.getOpcode()) {
276   default:
277     return false;
278     FROM_TO(MOVSX16rr8, CBW, AX, AL)     // movsbw %al, %ax   --> cbtw
279     FROM_TO(MOVSX32rr16, CWDE, EAX, AX)  // movswl %ax, %eax  --> cwtl
280     FROM_TO(MOVSX64rr32, CDQE, RAX, EAX) // movslq %eax, %rax --> cltq
281 #undef FROM_TO
282   }
283   MI.clear();
284   MI.setOpcode(NewOpc);
285   return true;
286 }
287 
288 bool X86::optimizeINCDEC(MCInst &MI, bool In64BitMode) {
289   if (In64BitMode)
290     return false;
291   unsigned NewOpc;
292   // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
293 #define FROM_TO(FROM, TO)                                                      \
294   case X86::FROM:                                                              \
295     NewOpc = X86::TO;                                                          \
296     break;
297   switch (MI.getOpcode()) {
298   default:
299     return false;
300     FROM_TO(DEC16r, DEC16r_alt)
301     FROM_TO(DEC32r, DEC32r_alt)
302     FROM_TO(INC16r, INC16r_alt)
303     FROM_TO(INC32r, INC32r_alt)
304   }
305   MI.setOpcode(NewOpc);
306   return true;
307 }
308 
309 static bool isARegister(unsigned Reg) {
310   return Reg == X86::AL || Reg == X86::AX || Reg == X86::EAX || Reg == X86::RAX;
311 }
312 
313 /// Simplify things like MOV32rm to MOV32o32a.
314 bool X86::optimizeMOV(MCInst &MI, bool In64BitMode) {
315   // Don't make these simplifications in 64-bit mode; other assemblers don't
316   // perform them because they make the code larger.
317   if (In64BitMode)
318     return false;
319   unsigned NewOpc;
320   // We don't currently select the correct instruction form for instructions
321   // which have a short %eax, etc. form. Handle this by custom lowering, for
322   // now.
323   //
324   // Note, we are currently not handling the following instructions:
325   // MOV64ao8, MOV64o8a
326   // XCHG16ar, XCHG32ar, XCHG64ar
327   switch (MI.getOpcode()) {
328   default:
329     return false;
330     FROM_TO(MOV8mr_NOREX, MOV8o32a)
331     FROM_TO(MOV8mr, MOV8o32a)
332     FROM_TO(MOV8rm_NOREX, MOV8ao32)
333     FROM_TO(MOV8rm, MOV8ao32)
334     FROM_TO(MOV16mr, MOV16o32a)
335     FROM_TO(MOV16rm, MOV16ao32)
336     FROM_TO(MOV32mr, MOV32o32a)
337     FROM_TO(MOV32rm, MOV32ao32)
338   }
339   bool IsStore = MI.getOperand(0).isReg() && MI.getOperand(1).isReg();
340   unsigned AddrBase = IsStore;
341   unsigned RegOp = IsStore ? 0 : 5;
342   unsigned AddrOp = AddrBase + 3;
343   // Check whether the destination register can be fixed.
344   unsigned Reg = MI.getOperand(RegOp).getReg();
345   if (!isARegister(Reg))
346     return false;
347   // Check whether this is an absolute address.
348   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
349   // to do this here.
350   bool Absolute = true;
351   if (MI.getOperand(AddrOp).isExpr()) {
352     const MCExpr *MCE = MI.getOperand(AddrOp).getExpr();
353     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
354       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
355         Absolute = false;
356   }
357   if (Absolute && (MI.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
358                    MI.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
359                    MI.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
360     return false;
361   // If so, rewrite the instruction.
362   MCOperand Saved = MI.getOperand(AddrOp);
363   MCOperand Seg = MI.getOperand(AddrBase + X86::AddrSegmentReg);
364   MI.clear();
365   MI.setOpcode(NewOpc);
366   MI.addOperand(Saved);
367   MI.addOperand(Seg);
368   return true;
369 }
370 
371 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
372 /// a short fixed-register form.
373 static bool optimizeToFixedRegisterForm(MCInst &MI) {
374   unsigned NewOpc;
375   switch (MI.getOpcode()) {
376   default:
377     return false;
378     FROM_TO(ADC8ri, ADC8i8)
379     FROM_TO(ADC16ri, ADC16i16)
380     FROM_TO(ADC32ri, ADC32i32)
381     FROM_TO(ADC64ri32, ADC64i32)
382     FROM_TO(ADD8ri, ADD8i8)
383     FROM_TO(ADD16ri, ADD16i16)
384     FROM_TO(ADD32ri, ADD32i32)
385     FROM_TO(ADD64ri32, ADD64i32)
386     FROM_TO(AND8ri, AND8i8)
387     FROM_TO(AND16ri, AND16i16)
388     FROM_TO(AND32ri, AND32i32)
389     FROM_TO(AND64ri32, AND64i32)
390     FROM_TO(CMP8ri, CMP8i8)
391     FROM_TO(CMP16ri, CMP16i16)
392     FROM_TO(CMP32ri, CMP32i32)
393     FROM_TO(CMP64ri32, CMP64i32)
394     FROM_TO(OR8ri, OR8i8)
395     FROM_TO(OR16ri, OR16i16)
396     FROM_TO(OR32ri, OR32i32)
397     FROM_TO(OR64ri32, OR64i32)
398     FROM_TO(SBB8ri, SBB8i8)
399     FROM_TO(SBB16ri, SBB16i16)
400     FROM_TO(SBB32ri, SBB32i32)
401     FROM_TO(SBB64ri32, SBB64i32)
402     FROM_TO(SUB8ri, SUB8i8)
403     FROM_TO(SUB16ri, SUB16i16)
404     FROM_TO(SUB32ri, SUB32i32)
405     FROM_TO(SUB64ri32, SUB64i32)
406     FROM_TO(TEST8ri, TEST8i8)
407     FROM_TO(TEST16ri, TEST16i16)
408     FROM_TO(TEST32ri, TEST32i32)
409     FROM_TO(TEST64ri32, TEST64i32)
410     FROM_TO(XOR8ri, XOR8i8)
411     FROM_TO(XOR16ri, XOR16i16)
412     FROM_TO(XOR32ri, XOR32i32)
413     FROM_TO(XOR64ri32, XOR64i32)
414   }
415   // Check whether the destination register can be fixed.
416   unsigned Reg = MI.getOperand(0).getReg();
417   if (!isARegister(Reg))
418     return false;
419 
420   // If so, rewrite the instruction.
421   MCOperand Saved = MI.getOperand(MI.getNumOperands() - 1);
422   MI.clear();
423   MI.setOpcode(NewOpc);
424   MI.addOperand(Saved);
425   return true;
426 }
427 
428 unsigned X86::getOpcodeForShortImmediateForm(unsigned Opcode) {
429 #define ENTRY(LONG, SHORT)                                                     \
430   case X86::LONG:                                                              \
431     return X86::SHORT;
432   switch (Opcode) {
433   default:
434     return Opcode;
435 #include "X86EncodingOptimizationForImmediate.def"
436   }
437 }
438 
439 unsigned X86::getOpcodeForLongImmediateForm(unsigned Opcode) {
440 #define ENTRY(LONG, SHORT)                                                     \
441   case X86::SHORT:                                                             \
442     return X86::LONG;
443   switch (Opcode) {
444   default:
445     return Opcode;
446 #include "X86EncodingOptimizationForImmediate.def"
447   }
448 }
449 
450 static bool optimizeToShortImmediateForm(MCInst &MI) {
451   unsigned NewOpc;
452 #define ENTRY(LONG, SHORT)                                                     \
453   case X86::LONG:                                                              \
454     NewOpc = X86::SHORT;                                                       \
455     break;
456   switch (MI.getOpcode()) {
457   default:
458     return false;
459 #include "X86EncodingOptimizationForImmediate.def"
460   }
461   MCOperand &LastOp = MI.getOperand(MI.getNumOperands() - 1);
462   if (LastOp.isExpr()) {
463     const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(LastOp.getExpr());
464     if (!SRE || SRE->getKind() != MCSymbolRefExpr::VK_X86_ABS8)
465       return false;
466   } else if (LastOp.isImm()) {
467     if (!isInt<8>(LastOp.getImm()))
468       return false;
469   }
470   MI.setOpcode(NewOpc);
471   return true;
472 }
473 
474 bool X86::optimizeToFixedRegisterOrShortImmediateForm(MCInst &MI) {
475   // We may optimize twice here.
476   bool ShortImm = optimizeToShortImmediateForm(MI);
477   bool FixedReg = optimizeToFixedRegisterForm(MI);
478   return ShortImm || FixedReg;
479 }
480