1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains small standalone helper functions and enum definitions for 10 // the X86 target useful for the compiler back-end and the MC libraries. 11 // As such, it deliberately does not include references to LLVM core 12 // code gen types, passes, etc.. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 18 19 #include "X86MCTargetDesc.h" 20 #include "llvm/MC/MCInstrDesc.h" 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/ErrorHandling.h" 23 24 namespace llvm { 25 namespace X86 { 26 // Enums for memory operand decoding. Each memory operand is represented with 27 // a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment] 28 enum { 29 AddrBaseReg = 0, 30 AddrScaleAmt = 1, 31 AddrIndexReg = 2, 32 AddrDisp = 3, 33 // The operand # of the segment in the memory operand. 34 AddrSegmentReg = 4, 35 // Total number of operands in a memory reference. 36 AddrNumOperands = 5 37 }; 38 39 /// AVX512 static rounding constants. These need to match the values in 40 /// avx512fintrin.h. 41 enum STATIC_ROUNDING { 42 TO_NEAREST_INT = 0, 43 TO_NEG_INF = 1, 44 TO_POS_INF = 2, 45 TO_ZERO = 3, 46 CUR_DIRECTION = 4, 47 NO_EXC = 8 48 }; 49 50 /// The constants to describe instr prefixes if there are 51 enum IPREFIXES { 52 IP_NO_PREFIX = 0, 53 IP_HAS_OP_SIZE = 1U << 0, 54 IP_HAS_AD_SIZE = 1U << 1, 55 IP_HAS_REPEAT_NE = 1U << 2, 56 IP_HAS_REPEAT = 1U << 3, 57 IP_HAS_LOCK = 1U << 4, 58 IP_HAS_NOTRACK = 1U << 5, 59 IP_USE_VEX = 1U << 6, 60 IP_USE_VEX2 = 1U << 7, 61 IP_USE_VEX3 = 1U << 8, 62 IP_USE_EVEX = 1U << 9, 63 IP_USE_DISP8 = 1U << 10, 64 IP_USE_DISP32 = 1U << 11, 65 }; 66 67 enum OperandType : unsigned { 68 // AVX512 embedded rounding control. This should only have values 0-3. 69 OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, 70 OPERAND_COND_CODE, 71 }; 72 73 // X86 specific condition code. These correspond to X86_*_COND in 74 // X86InstrInfo.td. They must be kept in synch. 75 enum CondCode { 76 COND_O = 0, 77 COND_NO = 1, 78 COND_B = 2, 79 COND_AE = 3, 80 COND_E = 4, 81 COND_NE = 5, 82 COND_BE = 6, 83 COND_A = 7, 84 COND_S = 8, 85 COND_NS = 9, 86 COND_P = 10, 87 COND_NP = 11, 88 COND_L = 12, 89 COND_GE = 13, 90 COND_LE = 14, 91 COND_G = 15, 92 LAST_VALID_COND = COND_G, 93 // Artificial condition codes. These are used by analyzeBranch 94 // to indicate a block terminated with two conditional branches that together 95 // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, 96 // which can't be represented on x86 with a single condition. These 97 // are never used in MachineInstrs and are inverses of one another. 98 COND_NE_OR_P, 99 COND_E_AND_NP, 100 COND_INVALID 101 }; 102 103 // The classification for the first instruction in macro fusion. 104 // FIXME: Zen 3 support branch fusion for OR/XOR. 105 enum class FirstMacroFusionInstKind { 106 Test, // TEST 107 Cmp, // CMP 108 And, // AND 109 AddSub, // ADD, SUB 110 IncDec, // INC, DEC 111 Invalid // Not valid as a first macro fusion instruction 112 }; 113 114 enum class SecondMacroFusionInstKind { 115 AB, // JA, JB and variants 116 ELG, // JE, JL, JG and variants 117 SPO, // JS, JP, JO and variants 118 Invalid, // Not a fusible jump. 119 }; 120 121 /// \returns the type of the first instruction in macro-fusion. 122 // FIXME: Zen 3 support branch fusion for OR/XOR. 123 inline FirstMacroFusionInstKind 124 classifyFirstOpcodeInMacroFusion(unsigned Opcode) { 125 switch (Opcode) { 126 default: 127 return FirstMacroFusionInstKind::Invalid; 128 // TEST 129 case X86::TEST16i16: 130 case X86::TEST16mr: 131 case X86::TEST16ri: 132 case X86::TEST16rr: 133 case X86::TEST32i32: 134 case X86::TEST32mr: 135 case X86::TEST32ri: 136 case X86::TEST32rr: 137 case X86::TEST64i32: 138 case X86::TEST64mr: 139 case X86::TEST64ri32: 140 case X86::TEST64rr: 141 case X86::TEST8i8: 142 case X86::TEST8mr: 143 case X86::TEST8ri: 144 case X86::TEST8rr: 145 return FirstMacroFusionInstKind::Test; 146 case X86::AND16i16: 147 case X86::AND16ri: 148 case X86::AND16ri8: 149 case X86::AND16rm: 150 case X86::AND16rr: 151 case X86::AND16rr_REV: 152 case X86::AND32i32: 153 case X86::AND32ri: 154 case X86::AND32ri8: 155 case X86::AND32rm: 156 case X86::AND32rr: 157 case X86::AND32rr_REV: 158 case X86::AND64i32: 159 case X86::AND64ri32: 160 case X86::AND64ri8: 161 case X86::AND64rm: 162 case X86::AND64rr: 163 case X86::AND64rr_REV: 164 case X86::AND8i8: 165 case X86::AND8ri: 166 case X86::AND8ri8: 167 case X86::AND8rm: 168 case X86::AND8rr: 169 case X86::AND8rr_REV: 170 return FirstMacroFusionInstKind::And; 171 // CMP 172 case X86::CMP16i16: 173 case X86::CMP16mr: 174 case X86::CMP16ri: 175 case X86::CMP16ri8: 176 case X86::CMP16rm: 177 case X86::CMP16rr: 178 case X86::CMP16rr_REV: 179 case X86::CMP32i32: 180 case X86::CMP32mr: 181 case X86::CMP32ri: 182 case X86::CMP32ri8: 183 case X86::CMP32rm: 184 case X86::CMP32rr: 185 case X86::CMP32rr_REV: 186 case X86::CMP64i32: 187 case X86::CMP64mr: 188 case X86::CMP64ri32: 189 case X86::CMP64ri8: 190 case X86::CMP64rm: 191 case X86::CMP64rr: 192 case X86::CMP64rr_REV: 193 case X86::CMP8i8: 194 case X86::CMP8mr: 195 case X86::CMP8ri: 196 case X86::CMP8ri8: 197 case X86::CMP8rm: 198 case X86::CMP8rr: 199 case X86::CMP8rr_REV: 200 return FirstMacroFusionInstKind::Cmp; 201 // ADD 202 case X86::ADD16i16: 203 case X86::ADD16ri: 204 case X86::ADD16ri8: 205 case X86::ADD16rm: 206 case X86::ADD16rr: 207 case X86::ADD16rr_REV: 208 case X86::ADD32i32: 209 case X86::ADD32ri: 210 case X86::ADD32ri8: 211 case X86::ADD32rm: 212 case X86::ADD32rr: 213 case X86::ADD32rr_REV: 214 case X86::ADD64i32: 215 case X86::ADD64ri32: 216 case X86::ADD64ri8: 217 case X86::ADD64rm: 218 case X86::ADD64rr: 219 case X86::ADD64rr_REV: 220 case X86::ADD8i8: 221 case X86::ADD8ri: 222 case X86::ADD8ri8: 223 case X86::ADD8rm: 224 case X86::ADD8rr: 225 case X86::ADD8rr_REV: 226 // SUB 227 case X86::SUB16i16: 228 case X86::SUB16ri: 229 case X86::SUB16ri8: 230 case X86::SUB16rm: 231 case X86::SUB16rr: 232 case X86::SUB16rr_REV: 233 case X86::SUB32i32: 234 case X86::SUB32ri: 235 case X86::SUB32ri8: 236 case X86::SUB32rm: 237 case X86::SUB32rr: 238 case X86::SUB32rr_REV: 239 case X86::SUB64i32: 240 case X86::SUB64ri32: 241 case X86::SUB64ri8: 242 case X86::SUB64rm: 243 case X86::SUB64rr: 244 case X86::SUB64rr_REV: 245 case X86::SUB8i8: 246 case X86::SUB8ri: 247 case X86::SUB8ri8: 248 case X86::SUB8rm: 249 case X86::SUB8rr: 250 case X86::SUB8rr_REV: 251 return FirstMacroFusionInstKind::AddSub; 252 // INC 253 case X86::INC16r: 254 case X86::INC16r_alt: 255 case X86::INC32r: 256 case X86::INC32r_alt: 257 case X86::INC64r: 258 case X86::INC8r: 259 // DEC 260 case X86::DEC16r: 261 case X86::DEC16r_alt: 262 case X86::DEC32r: 263 case X86::DEC32r_alt: 264 case X86::DEC64r: 265 case X86::DEC8r: 266 return FirstMacroFusionInstKind::IncDec; 267 } 268 } 269 270 /// \returns the type of the second instruction in macro-fusion. 271 inline SecondMacroFusionInstKind 272 classifySecondCondCodeInMacroFusion(X86::CondCode CC) { 273 if (CC == X86::COND_INVALID) 274 return SecondMacroFusionInstKind::Invalid; 275 switch (CC) { 276 default: 277 return SecondMacroFusionInstKind::Invalid; 278 case X86::COND_E: // JE,JZ 279 case X86::COND_NE: // JNE,JNZ 280 case X86::COND_L: // JL,JNGE 281 case X86::COND_LE: // JLE,JNG 282 case X86::COND_G: // JG,JNLE 283 case X86::COND_GE: // JGE,JNL 284 return SecondMacroFusionInstKind::ELG; 285 case X86::COND_B: // JB,JC 286 case X86::COND_BE: // JNA,JBE 287 case X86::COND_A: // JA,JNBE 288 case X86::COND_AE: // JAE,JNC,JNB 289 return SecondMacroFusionInstKind::AB; 290 case X86::COND_S: // JS 291 case X86::COND_NS: // JNS 292 case X86::COND_P: // JP,JPE 293 case X86::COND_NP: // JNP,JPO 294 case X86::COND_O: // JO 295 case X86::COND_NO: // JNO 296 return SecondMacroFusionInstKind::SPO; 297 } 298 } 299 300 /// \param FirstKind kind of the first instruction in macro fusion. 301 /// \param SecondKind kind of the second instruction in macro fusion. 302 /// 303 /// \returns true if the two instruction can be macro fused. 304 inline bool isMacroFused(FirstMacroFusionInstKind FirstKind, 305 SecondMacroFusionInstKind SecondKind) { 306 switch (FirstKind) { 307 case X86::FirstMacroFusionInstKind::Test: 308 case X86::FirstMacroFusionInstKind::And: 309 return true; 310 case X86::FirstMacroFusionInstKind::Cmp: 311 case X86::FirstMacroFusionInstKind::AddSub: 312 return SecondKind == X86::SecondMacroFusionInstKind::AB || 313 SecondKind == X86::SecondMacroFusionInstKind::ELG; 314 case X86::FirstMacroFusionInstKind::IncDec: 315 return SecondKind == X86::SecondMacroFusionInstKind::ELG; 316 case X86::FirstMacroFusionInstKind::Invalid: 317 return false; 318 } 319 llvm_unreachable("unknown fusion type"); 320 } 321 322 /// Defines the possible values of the branch boundary alignment mask. 323 enum AlignBranchBoundaryKind : uint8_t { 324 AlignBranchNone = 0, 325 AlignBranchFused = 1U << 0, 326 AlignBranchJcc = 1U << 1, 327 AlignBranchJmp = 1U << 2, 328 AlignBranchCall = 1U << 3, 329 AlignBranchRet = 1U << 4, 330 AlignBranchIndirect = 1U << 5 331 }; 332 333 /// Defines the encoding values for segment override prefix. 334 enum EncodingOfSegmentOverridePrefix : uint8_t { 335 CS_Encoding = 0x2E, 336 DS_Encoding = 0x3E, 337 ES_Encoding = 0x26, 338 FS_Encoding = 0x64, 339 GS_Encoding = 0x65, 340 SS_Encoding = 0x36 341 }; 342 343 /// Given a segment register, return the encoding of the segment override 344 /// prefix for it. 345 inline EncodingOfSegmentOverridePrefix 346 getSegmentOverridePrefixForReg(unsigned Reg) { 347 switch (Reg) { 348 default: 349 llvm_unreachable("Unknown segment register!"); 350 case X86::CS: 351 return CS_Encoding; 352 case X86::DS: 353 return DS_Encoding; 354 case X86::ES: 355 return ES_Encoding; 356 case X86::FS: 357 return FS_Encoding; 358 case X86::GS: 359 return GS_Encoding; 360 case X86::SS: 361 return SS_Encoding; 362 } 363 } 364 365 } // namespace X86 366 367 /// X86II - This namespace holds all of the target specific flags that 368 /// instruction info tracks. 369 /// 370 namespace X86II { 371 /// Target Operand Flag enum. 372 enum TOF { 373 //===------------------------------------------------------------------===// 374 // X86 Specific MachineOperand flags. 375 // 376 /// MO_NO_FLAG - No flag for the operand 377 MO_NO_FLAG, 378 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a 379 /// relocation of: 380 /// SYMBOL_LABEL + [. - PICBASELABEL] 381 MO_GOT_ABSOLUTE_ADDRESS, 382 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the 383 /// immediate should get the value of the symbol minus the PIC base label: 384 /// SYMBOL_LABEL - PICBASELABEL 385 MO_PIC_BASE_OFFSET, 386 /// MO_GOT - On a symbol operand this indicates that the immediate is the 387 /// offset to the GOT entry for the symbol name from the base of the GOT. 388 /// See the X86-64 ELF ABI supplement for more details. 389 /// SYMBOL_LABEL @GOT 390 MO_GOT, 391 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is 392 /// the offset to the location of the symbol name from the base of the GOT. 393 /// See the X86-64 ELF ABI supplement for more details. 394 /// SYMBOL_LABEL @GOTOFF 395 MO_GOTOFF, 396 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is 397 /// offset to the GOT entry for the symbol name from the current code 398 /// location. 399 /// See the X86-64 ELF ABI supplement for more details. 400 /// SYMBOL_LABEL @GOTPCREL 401 MO_GOTPCREL, 402 /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL 403 /// relocations are guaranteed to be emitted by the integrated assembler 404 /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations. 405 MO_GOTPCREL_NORELAX, 406 /// MO_PLT - On a symbol operand this indicates that the immediate is 407 /// offset to the PLT entry of symbol name from the current code location. 408 /// See the X86-64 ELF ABI supplement for more details. 409 /// SYMBOL_LABEL @PLT 410 MO_PLT, 411 /// MO_TLSGD - On a symbol operand this indicates that the immediate is 412 /// the offset of the GOT entry with the TLS index structure that contains 413 /// the module number and variable offset for the symbol. Used in the 414 /// general dynamic TLS access model. 415 /// See 'ELF Handling for Thread-Local Storage' for more details. 416 /// SYMBOL_LABEL @TLSGD 417 MO_TLSGD, 418 /// MO_TLSLD - On a symbol operand this indicates that the immediate is 419 /// the offset of the GOT entry with the TLS index for the module that 420 /// contains the symbol. When this index is passed to a call to 421 /// __tls_get_addr, the function will return the base address of the TLS 422 /// block for the symbol. Used in the x86-64 local dynamic TLS access model. 423 /// See 'ELF Handling for Thread-Local Storage' for more details. 424 /// SYMBOL_LABEL @TLSLD 425 MO_TLSLD, 426 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is 427 /// the offset of the GOT entry with the TLS index for the module that 428 /// contains the symbol. When this index is passed to a call to 429 /// ___tls_get_addr, the function will return the base address of the TLS 430 /// block for the symbol. Used in the IA32 local dynamic TLS access model. 431 /// See 'ELF Handling for Thread-Local Storage' for more details. 432 /// SYMBOL_LABEL @TLSLDM 433 MO_TLSLDM, 434 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is 435 /// the offset of the GOT entry with the thread-pointer offset for the 436 /// symbol. Used in the x86-64 initial exec TLS access model. 437 /// See 'ELF Handling for Thread-Local Storage' for more details. 438 /// SYMBOL_LABEL @GOTTPOFF 439 MO_GOTTPOFF, 440 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is 441 /// the absolute address of the GOT entry with the negative thread-pointer 442 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access 443 /// model. 444 /// See 'ELF Handling for Thread-Local Storage' for more details. 445 /// SYMBOL_LABEL @INDNTPOFF 446 MO_INDNTPOFF, 447 /// MO_TPOFF - On a symbol operand this indicates that the immediate is 448 /// the thread-pointer offset for the symbol. Used in the x86-64 local 449 /// exec TLS access model. 450 /// See 'ELF Handling for Thread-Local Storage' for more details. 451 /// SYMBOL_LABEL @TPOFF 452 MO_TPOFF, 453 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is 454 /// the offset of the GOT entry with the TLS offset of the symbol. Used 455 /// in the local dynamic TLS access model. 456 /// See 'ELF Handling for Thread-Local Storage' for more details. 457 /// SYMBOL_LABEL @DTPOFF 458 MO_DTPOFF, 459 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is 460 /// the negative thread-pointer offset for the symbol. Used in the IA32 461 /// local exec TLS access model. 462 /// See 'ELF Handling for Thread-Local Storage' for more details. 463 /// SYMBOL_LABEL @NTPOFF 464 MO_NTPOFF, 465 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is 466 /// the offset of the GOT entry with the negative thread-pointer offset for 467 /// the symbol. Used in the PIC IA32 initial exec TLS access model. 468 /// See 'ELF Handling for Thread-Local Storage' for more details. 469 /// SYMBOL_LABEL @GOTNTPOFF 470 MO_GOTNTPOFF, 471 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the 472 /// reference is actually to the "__imp_FOO" symbol. This is used for 473 /// dllimport linkage on windows. 474 MO_DLLIMPORT, 475 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the 476 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a 477 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 478 MO_DARWIN_NONLAZY, 479 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates 480 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is 481 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 482 MO_DARWIN_NONLAZY_PIC_BASE, 483 /// MO_TLVP - On a symbol operand this indicates that the immediate is 484 /// some TLS offset. 485 /// This is the TLS offset for the Darwin TLS mechanism. 486 MO_TLVP, 487 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate 488 /// is some TLS offset from the picbase. 489 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. 490 MO_TLVP_PIC_BASE, 491 /// MO_SECREL - On a symbol operand this indicates that the immediate is 492 /// the offset from beginning of section. 493 /// This is the TLS offset for the COFF/Windows TLS mechanism. 494 MO_SECREL, 495 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known 496 /// to be an absolute symbol in range [0,128), so we can use the @ABS8 497 /// symbol modifier. 498 MO_ABS8, 499 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the 500 /// reference is actually to the ".refptr.FOO" symbol. This is used for 501 /// stub symbols on windows. 502 MO_COFFSTUB, 503 }; 504 505 enum : uint64_t { 506 //===------------------------------------------------------------------===// 507 // Instruction encodings. These are the standard/most common forms for X86 508 // instructions. 509 // 510 /// PseudoFrm - This represents an instruction that is a pseudo instruction 511 /// or one that has not been implemented yet. It is illegal to code generate 512 /// it, but tolerated for intermediate implementation stages. 513 Pseudo = 0, 514 /// Raw - This form is for instructions that don't have any operands, so 515 /// they are just a fixed opcode value, like 'leave'. 516 RawFrm = 1, 517 /// AddRegFrm - This form is used for instructions like 'push r32' that have 518 /// their one register operand added to their opcode. 519 AddRegFrm = 2, 520 /// RawFrmMemOffs - This form is for instructions that store an absolute 521 /// memory offset as an immediate with a possible segment override. 522 RawFrmMemOffs = 3, 523 /// RawFrmSrc - This form is for instructions that use the source index 524 /// register SI/ESI/RSI with a possible segment override. 525 RawFrmSrc = 4, 526 /// RawFrmDst - This form is for instructions that use the destination index 527 /// register DI/EDI/RDI. 528 RawFrmDst = 5, 529 /// RawFrmDstSrc - This form is for instructions that use the source index 530 /// register SI/ESI/RSI with a possible segment override, and also the 531 /// destination index register DI/EDI/RDI. 532 RawFrmDstSrc = 6, 533 /// RawFrmImm8 - This is used for the ENTER instruction, which has two 534 /// immediates, the first of which is a 16-bit immediate (specified by 535 /// the imm encoding) and the second is a 8-bit fixed value. 536 RawFrmImm8 = 7, 537 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two 538 /// immediates, the first of which is a 16 or 32-bit immediate (specified by 539 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD 540 /// manual, this operand is described as pntr16:32 and pntr16:16 541 RawFrmImm16 = 8, 542 /// AddCCFrm - This form is used for Jcc that encode the condition code 543 /// in the lower 4 bits of the opcode. 544 AddCCFrm = 9, 545 /// PrefixByte - This form is used for instructions that represent a prefix 546 /// byte like data16 or rep. 547 PrefixByte = 10, 548 /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM 549 /// byte to specify a destination which in this case is memory and operand 3 550 /// with VEX.VVVV, and also encodes a condition code. 551 MRMDestMem4VOp3CC = 20, 552 /// Instructions operate on a register Reg/Opcode operand not the r/m field. 553 MRMr0 = 21, 554 /// MRMSrcMem - But force to use the SIB field. 555 MRMSrcMemFSIB = 22, 556 /// MRMDestMem - But force to use the SIB field. 557 MRMDestMemFSIB = 23, 558 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte 559 /// to specify a destination, which in this case is memory. 560 MRMDestMem = 24, 561 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte 562 /// to specify a source, which in this case is memory. 563 MRMSrcMem = 25, 564 /// MRMSrcMem4VOp3 - This form is used for instructions that encode 565 /// operand 3 with VEX.VVVV and load from memory. 566 MRMSrcMem4VOp3 = 26, 567 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM 568 /// byte to specify the fourth source, which in this case is memory. 569 MRMSrcMemOp4 = 27, 570 /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM 571 /// byte to specify the operands and also encodes a condition code. 572 MRMSrcMemCC = 28, 573 /// MRMXm - This form is used for instructions that use the Mod/RM byte 574 /// to specify a memory source, but doesn't use the middle field. And has 575 /// a condition code. 576 MRMXmCC = 30, 577 /// MRMXm - This form is used for instructions that use the Mod/RM byte 578 /// to specify a memory source, but doesn't use the middle field. 579 MRMXm = 31, 580 /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use 581 /// reg field to hold extended opcode, which is represented as /0, /1, ... 582 MRM0m = 32, // Format /0 583 MRM1m = 33, // Format /1 584 MRM2m = 34, // Format /2 585 MRM3m = 35, // Format /3 586 MRM4m = 36, // Format /4 587 MRM5m = 37, // Format /5 588 MRM6m = 38, // Format /6 589 MRM7m = 39, // Format /7 590 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte 591 /// to specify a destination, which in this case is a register. 592 MRMDestReg = 40, 593 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte 594 /// to specify a source, which in this case is a register. 595 MRMSrcReg = 41, 596 /// MRMSrcReg4VOp3 - This form is used for instructions that encode 597 /// operand 3 with VEX.VVVV and do not load from memory. 598 MRMSrcReg4VOp3 = 42, 599 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM 600 /// byte to specify the fourth source, which in this case is a register. 601 MRMSrcRegOp4 = 43, 602 /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM 603 /// byte to specify the operands and also encodes a condition code 604 MRMSrcRegCC = 44, 605 /// MRMXCCr - This form is used for instructions that use the Mod/RM byte 606 /// to specify a register source, but doesn't use the middle field. And has 607 /// a condition code. 608 MRMXrCC = 46, 609 /// MRMXr - This form is used for instructions that use the Mod/RM byte 610 /// to specify a register source, but doesn't use the middle field. 611 MRMXr = 47, 612 /// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use 613 /// reg field to hold extended opcode, which is represented as /0, /1, ... 614 MRM0r = 48, // Format /0 615 MRM1r = 49, // Format /1 616 MRM2r = 50, // Format /2 617 MRM3r = 51, // Format /3 618 MRM4r = 52, // Format /4 619 MRM5r = 53, // Format /5 620 MRM6r = 54, // Format /6 621 MRM7r = 55, // Format /7 622 /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but 623 /// ignore r/m. 624 MRM0X = 56, // Format /0 625 MRM1X = 57, // Format /1 626 MRM2X = 58, // Format /2 627 MRM3X = 59, // Format /3 628 MRM4X = 60, // Format /4 629 MRM5X = 61, // Format /5 630 MRM6X = 62, // Format /6 631 MRM7X = 63, // Format /7 632 /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX. 633 MRM_C0 = 64, 634 MRM_C1 = 65, 635 MRM_C2 = 66, 636 MRM_C3 = 67, 637 MRM_C4 = 68, 638 MRM_C5 = 69, 639 MRM_C6 = 70, 640 MRM_C7 = 71, 641 MRM_C8 = 72, 642 MRM_C9 = 73, 643 MRM_CA = 74, 644 MRM_CB = 75, 645 MRM_CC = 76, 646 MRM_CD = 77, 647 MRM_CE = 78, 648 MRM_CF = 79, 649 MRM_D0 = 80, 650 MRM_D1 = 81, 651 MRM_D2 = 82, 652 MRM_D3 = 83, 653 MRM_D4 = 84, 654 MRM_D5 = 85, 655 MRM_D6 = 86, 656 MRM_D7 = 87, 657 MRM_D8 = 88, 658 MRM_D9 = 89, 659 MRM_DA = 90, 660 MRM_DB = 91, 661 MRM_DC = 92, 662 MRM_DD = 93, 663 MRM_DE = 94, 664 MRM_DF = 95, 665 MRM_E0 = 96, 666 MRM_E1 = 97, 667 MRM_E2 = 98, 668 MRM_E3 = 99, 669 MRM_E4 = 100, 670 MRM_E5 = 101, 671 MRM_E6 = 102, 672 MRM_E7 = 103, 673 MRM_E8 = 104, 674 MRM_E9 = 105, 675 MRM_EA = 106, 676 MRM_EB = 107, 677 MRM_EC = 108, 678 MRM_ED = 109, 679 MRM_EE = 110, 680 MRM_EF = 111, 681 MRM_F0 = 112, 682 MRM_F1 = 113, 683 MRM_F2 = 114, 684 MRM_F3 = 115, 685 MRM_F4 = 116, 686 MRM_F5 = 117, 687 MRM_F6 = 118, 688 MRM_F7 = 119, 689 MRM_F8 = 120, 690 MRM_F9 = 121, 691 MRM_FA = 122, 692 MRM_FB = 123, 693 MRM_FC = 124, 694 MRM_FD = 125, 695 MRM_FE = 126, 696 MRM_FF = 127, 697 FormMask = 127, 698 //===------------------------------------------------------------------===// 699 // Actual flags... 700 /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. 701 /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in 702 /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 703 /// prefix in 16-bit mode. 704 OpSizeShift = 7, 705 OpSizeMask = 0x3 << OpSizeShift, 706 OpSizeFixed = 0 << OpSizeShift, 707 OpSize16 = 1 << OpSizeShift, 708 OpSize32 = 2 << OpSizeShift, 709 /// AsSize - AdSizeX implies this instruction determines its need of 0x67 710 /// prefix from a normal ModRM memory operand. The other types indicate that 711 /// an operand is encoded with a specific width and a prefix is needed if 712 /// it differs from the current mode. 713 AdSizeShift = OpSizeShift + 2, 714 AdSizeMask = 0x3 << AdSizeShift, 715 AdSizeX = 0 << AdSizeShift, 716 AdSize16 = 1 << AdSizeShift, 717 AdSize32 = 2 << AdSizeShift, 718 AdSize64 = 3 << AdSizeShift, 719 //===------------------------------------------------------------------===// 720 /// OpPrefix - There are several prefix bytes that are used as opcode 721 /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is 722 /// no prefix. 723 OpPrefixShift = AdSizeShift + 2, 724 OpPrefixMask = 0x3 << OpPrefixShift, 725 /// PD - Prefix code for packed double precision vector floating point 726 /// operations performed in the SSE registers. 727 PD = 1 << OpPrefixShift, 728 /// XS, XD - These prefix codes are for single and double precision scalar 729 /// floating point operations performed in the SSE registers. 730 XS = 2 << OpPrefixShift, 731 XD = 3 << OpPrefixShift, 732 //===------------------------------------------------------------------===// 733 /// OpMap - This field determines which opcode map this instruction 734 /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. 735 OpMapShift = OpPrefixShift + 2, 736 OpMapMask = 0xF << OpMapShift, 737 /// OB - OneByte - Set if this instruction has a one byte opcode. 738 OB = 0 << OpMapShift, 739 /// TB - TwoByte - Set if this instruction has a two byte opcode, which 740 /// starts with a 0x0F byte before the real opcode. 741 TB = 1 << OpMapShift, 742 /// T8, TA - Prefix after the 0x0F prefix. 743 T8 = 2 << OpMapShift, 744 TA = 3 << OpMapShift, 745 /// XOP8 - Prefix to include use of imm byte. 746 XOP8 = 4 << OpMapShift, 747 /// XOP9 - Prefix to exclude use of imm byte. 748 XOP9 = 5 << OpMapShift, 749 /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. 750 XOPA = 6 << OpMapShift, 751 /// ThreeDNow - This indicates that the instruction uses the 752 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents 753 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction 754 /// storing a classifier in the imm8 field. To simplify our implementation, 755 /// we handle this by storeing the classifier in the opcode field and using 756 /// this flag to indicate that the encoder should do the wacky 3DNow! thing. 757 ThreeDNow = 7 << OpMapShift, 758 /// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix. 759 T_MAP4 = 8 << OpMapShift, 760 T_MAP5 = 9 << OpMapShift, 761 T_MAP6 = 10 << OpMapShift, 762 T_MAP7 = 11 << OpMapShift, 763 //===------------------------------------------------------------------===// 764 /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode. 765 /// They are used to specify GPRs and SSE registers, 64-bit operand size, 766 /// etc. We only cares about REX.W and REX.R bits and only the former is 767 /// statically determined. 768 REXShift = OpMapShift + 4, 769 REX_W = 1 << REXShift, 770 //===------------------------------------------------------------------===// 771 // This 4-bit field describes the size of an immediate operand. Zero is 772 // unused so that we can tell if we forgot to set a value. 773 ImmShift = REXShift + 1, 774 Imm8 = 1 << ImmShift, 775 Imm8PCRel = 2 << ImmShift, 776 Imm8Reg = 3 << ImmShift, 777 Imm16 = 4 << ImmShift, 778 Imm16PCRel = 5 << ImmShift, 779 Imm32 = 6 << ImmShift, 780 Imm32PCRel = 7 << ImmShift, 781 Imm32S = 8 << ImmShift, 782 Imm64 = 9 << ImmShift, 783 ImmMask = 15 << ImmShift, 784 //===------------------------------------------------------------------===// 785 /// FP Instruction Classification... Zero is non-fp instruction. 786 /// FPTypeMask - Mask for all of the FP types... 787 FPTypeShift = ImmShift + 4, 788 FPTypeMask = 7 << FPTypeShift, 789 /// NotFP - The default, set for instructions that do not use FP registers. 790 NotFP = 0 << FPTypeShift, 791 /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 792 ZeroArgFP = 1 << FPTypeShift, 793 /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst 794 OneArgFP = 2 << FPTypeShift, 795 /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a 796 /// result back to ST(0). For example, fcos, fsqrt, etc. 797 OneArgFPRW = 3 << FPTypeShift, 798 /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an 799 /// explicit argument, storing the result to either ST(0) or the implicit 800 /// argument. For example: fadd, fsub, fmul, etc... 801 TwoArgFP = 4 << FPTypeShift, 802 /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an 803 /// explicit argument, but have no destination. Example: fucom, fucomi, ... 804 CompareFP = 5 << FPTypeShift, 805 /// CondMovFP - "2 operand" floating point conditional move instructions. 806 CondMovFP = 6 << FPTypeShift, 807 /// SpecialFP - Special instruction forms. Dispatch by opcode explicitly. 808 SpecialFP = 7 << FPTypeShift, 809 /// Lock prefix 810 LOCKShift = FPTypeShift + 3, 811 LOCK = 1 << LOCKShift, 812 /// REP prefix 813 REPShift = LOCKShift + 1, 814 REP = 1 << REPShift, 815 /// Execution domain for SSE instructions. 816 /// 0 means normal, non-SSE instruction. 817 SSEDomainShift = REPShift + 1, 818 /// Encoding 819 EncodingShift = SSEDomainShift + 2, 820 EncodingMask = 0x3 << EncodingShift, 821 /// LEGACY - encoding using REX/REX2 or w/o opcode prefix. 822 LEGACY = 0 << EncodingShift, 823 /// VEX - encoding using 0xC4/0xC5 824 VEX = 1 << EncodingShift, 825 /// XOP - Opcode prefix used by XOP instructions. 826 XOP = 2 << EncodingShift, 827 /// EVEX - Specifies that this instruction use EVEX form which provides 828 /// syntax support up to 32 512-bit register operands and up to 7 16-bit 829 /// mask operands as well as source operand data swizzling/memory operand 830 /// conversion, eviction hint, and rounding mode. 831 EVEX = 3 << EncodingShift, 832 /// Opcode 833 OpcodeShift = EncodingShift + 2, 834 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 835 /// address instructions in SSE are represented as 3 address ones in AVX 836 /// and the additional register is encoded in VEX_VVVV prefix. 837 VEX_4VShift = OpcodeShift + 8, 838 VEX_4V = 1ULL << VEX_4VShift, 839 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current 840 /// instruction uses 256-bit wide registers. This is usually auto detected 841 /// if a VR256 register is used, but some AVX instructions also have this 842 /// field marked when using a f256 memory references. 843 VEX_LShift = VEX_4VShift + 1, 844 VEX_L = 1ULL << VEX_LShift, 845 /// EVEX_K - Set if this instruction requires masking 846 EVEX_KShift = VEX_LShift + 1, 847 EVEX_K = 1ULL << EVEX_KShift, 848 /// EVEX_Z - Set if this instruction has EVEX.Z field set. 849 EVEX_ZShift = EVEX_KShift + 1, 850 EVEX_Z = 1ULL << EVEX_ZShift, 851 /// EVEX_L2 - Set if this instruction has EVEX.L' field set. 852 EVEX_L2Shift = EVEX_ZShift + 1, 853 EVEX_L2 = 1ULL << EVEX_L2Shift, 854 /// EVEX_B - Set if this instruction has EVEX.B field set. 855 EVEX_BShift = EVEX_L2Shift + 1, 856 EVEX_B = 1ULL << EVEX_BShift, 857 /// The scaling factor for the AVX512's 8-bit compressed displacement. 858 CD8_Scale_Shift = EVEX_BShift + 1, 859 CD8_Scale_Mask = 7ULL << CD8_Scale_Shift, 860 /// Explicitly specified rounding control 861 EVEX_RCShift = CD8_Scale_Shift + 3, 862 EVEX_RC = 1ULL << EVEX_RCShift, 863 /// NOTRACK prefix 864 NoTrackShift = EVEX_RCShift + 1, 865 NOTRACK = 1ULL << NoTrackShift, 866 /// Force REX2/VEX/EVEX encoding 867 ExplicitOpPrefixShift = NoTrackShift + 1, 868 /// For instructions that require REX2 prefix even if EGPR is not used. 869 ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift, 870 /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3} 871 /// is present. 872 ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift, 873 /// For instructions that are promoted to EVEX space for EGPR. 874 ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift, 875 ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift, 876 /// EVEX_NF - Set if this instruction has EVEX.NF field set. 877 EVEX_NFShift = ExplicitOpPrefixShift + 2, 878 EVEX_NF = 1ULL << EVEX_NFShift 879 }; 880 881 /// \returns true if the instruction with given opcode is a prefix. 882 inline bool isPrefix(uint64_t TSFlags) { 883 return (TSFlags & X86II::FormMask) == PrefixByte; 884 } 885 886 /// \returns true if the instruction with given opcode is a pseudo. 887 inline bool isPseudo(uint64_t TSFlags) { 888 return (TSFlags & X86II::FormMask) == Pseudo; 889 } 890 891 /// \returns the "base" X86 opcode for the specified machine 892 /// instruction. 893 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { 894 return TSFlags >> X86II::OpcodeShift; 895 } 896 897 inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } 898 899 /// Decode the "size of immediate" field from the TSFlags field of the 900 /// specified instruction. 901 inline unsigned getSizeOfImm(uint64_t TSFlags) { 902 switch (TSFlags & X86II::ImmMask) { 903 default: 904 llvm_unreachable("Unknown immediate size"); 905 case X86II::Imm8: 906 case X86II::Imm8PCRel: 907 case X86II::Imm8Reg: 908 return 1; 909 case X86II::Imm16: 910 case X86II::Imm16PCRel: 911 return 2; 912 case X86II::Imm32: 913 case X86II::Imm32S: 914 case X86II::Imm32PCRel: 915 return 4; 916 case X86II::Imm64: 917 return 8; 918 } 919 } 920 921 /// \returns true if the immediate of the specified instruction's TSFlags 922 /// indicates that it is pc relative. 923 inline bool isImmPCRel(uint64_t TSFlags) { 924 switch (TSFlags & X86II::ImmMask) { 925 default: 926 llvm_unreachable("Unknown immediate size"); 927 case X86II::Imm8PCRel: 928 case X86II::Imm16PCRel: 929 case X86II::Imm32PCRel: 930 return true; 931 case X86II::Imm8: 932 case X86II::Imm8Reg: 933 case X86II::Imm16: 934 case X86II::Imm32: 935 case X86II::Imm32S: 936 case X86II::Imm64: 937 return false; 938 } 939 } 940 941 /// \returns true if the immediate of the specified instruction's 942 /// TSFlags indicates that it is signed. 943 inline bool isImmSigned(uint64_t TSFlags) { 944 switch (TSFlags & X86II::ImmMask) { 945 default: 946 llvm_unreachable("Unknown immediate signedness"); 947 case X86II::Imm32S: 948 return true; 949 case X86II::Imm8: 950 case X86II::Imm8PCRel: 951 case X86II::Imm8Reg: 952 case X86II::Imm16: 953 case X86II::Imm16PCRel: 954 case X86II::Imm32: 955 case X86II::Imm32PCRel: 956 case X86II::Imm64: 957 return false; 958 } 959 } 960 961 /// Compute whether all of the def operands are repeated in the uses and 962 /// therefore should be skipped. 963 /// This determines the start of the unique operand list. We need to determine 964 /// if all of the defs have a corresponding tied operand in the uses. 965 /// Unfortunately, the tied operand information is encoded in the uses not 966 /// the defs so we have to use some heuristics to find which operands to 967 /// query. 968 inline unsigned getOperandBias(const MCInstrDesc &Desc) { 969 unsigned NumDefs = Desc.getNumDefs(); 970 unsigned NumOps = Desc.getNumOperands(); 971 switch (NumDefs) { 972 default: 973 llvm_unreachable("Unexpected number of defs"); 974 case 0: 975 return 0; 976 case 1: 977 // Common two addr case. 978 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) 979 return 1; 980 // Check for AVX-512 scatter which has a TIED_TO in the second to last 981 // operand. 982 if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0) 983 return 1; 984 return 0; 985 case 2: 986 // XCHG/XADD have two destinations and two sources. 987 if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 988 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) 989 return 2; 990 // Check for gather. AVX-512 has the second tied operand early. AVX2 991 // has it as the last op. 992 if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 993 (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 || 994 Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1)) 995 return 2; 996 return 0; 997 } 998 } 999 1000 /// \returns true if the instruction has a NDD (new data destination). 1001 inline bool hasNewDataDest(uint64_t TSFlags) { 1002 return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 && 1003 (TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V); 1004 } 1005 1006 /// \returns operand # for the first field of the memory operand or -1 if no 1007 /// memory operands. 1008 /// NOTE: This ignores tied operands. If there is a tied register which is 1009 /// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted 1010 /// as one operand. 1011 inline int getMemoryOperandNo(uint64_t TSFlags) { 1012 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 1013 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 1014 1015 switch (TSFlags & X86II::FormMask) { 1016 default: 1017 llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); 1018 case X86II::Pseudo: 1019 case X86II::RawFrm: 1020 case X86II::AddRegFrm: 1021 case X86II::RawFrmImm8: 1022 case X86II::RawFrmImm16: 1023 case X86II::RawFrmMemOffs: 1024 case X86II::RawFrmSrc: 1025 case X86II::RawFrmDst: 1026 case X86II::RawFrmDstSrc: 1027 case X86II::AddCCFrm: 1028 case X86II::PrefixByte: 1029 return -1; 1030 case X86II::MRMDestMem: 1031 case X86II::MRMDestMemFSIB: 1032 return hasNewDataDest(TSFlags); 1033 case X86II::MRMSrcMem: 1034 case X86II::MRMSrcMemFSIB: 1035 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1036 // mask register. 1037 return 1 + HasVEX_4V + HasEVEX_K; 1038 case X86II::MRMSrcMem4VOp3: 1039 // Skip registers encoded in reg. 1040 return 1 + HasEVEX_K; 1041 case X86II::MRMSrcMemOp4: 1042 // Skip registers encoded in reg, VEX_VVVV, and I8IMM. 1043 return 3; 1044 case X86II::MRMSrcMemCC: 1045 case X86II::MRMDestMem4VOp3CC: 1046 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1047 // mask register. 1048 return 1; 1049 case X86II::MRMDestReg: 1050 case X86II::MRMSrcReg: 1051 case X86II::MRMSrcReg4VOp3: 1052 case X86II::MRMSrcRegOp4: 1053 case X86II::MRMSrcRegCC: 1054 case X86II::MRMXrCC: 1055 case X86II::MRMr0: 1056 case X86II::MRMXr: 1057 case X86II::MRM0r: 1058 case X86II::MRM1r: 1059 case X86II::MRM2r: 1060 case X86II::MRM3r: 1061 case X86II::MRM4r: 1062 case X86II::MRM5r: 1063 case X86II::MRM6r: 1064 case X86II::MRM7r: 1065 return -1; 1066 case X86II::MRM0X: 1067 case X86II::MRM1X: 1068 case X86II::MRM2X: 1069 case X86II::MRM3X: 1070 case X86II::MRM4X: 1071 case X86II::MRM5X: 1072 case X86II::MRM6X: 1073 case X86II::MRM7X: 1074 return -1; 1075 case X86II::MRMXmCC: 1076 case X86II::MRMXm: 1077 case X86II::MRM0m: 1078 case X86II::MRM1m: 1079 case X86II::MRM2m: 1080 case X86II::MRM3m: 1081 case X86II::MRM4m: 1082 case X86II::MRM5m: 1083 case X86II::MRM6m: 1084 case X86II::MRM7m: 1085 // Start from 0, skip registers encoded in VEX_VVVV or a mask register. 1086 return 0 + HasVEX_4V + HasEVEX_K; 1087 case X86II::MRM_C0: 1088 case X86II::MRM_C1: 1089 case X86II::MRM_C2: 1090 case X86II::MRM_C3: 1091 case X86II::MRM_C4: 1092 case X86II::MRM_C5: 1093 case X86II::MRM_C6: 1094 case X86II::MRM_C7: 1095 case X86II::MRM_C8: 1096 case X86II::MRM_C9: 1097 case X86II::MRM_CA: 1098 case X86II::MRM_CB: 1099 case X86II::MRM_CC: 1100 case X86II::MRM_CD: 1101 case X86II::MRM_CE: 1102 case X86II::MRM_CF: 1103 case X86II::MRM_D0: 1104 case X86II::MRM_D1: 1105 case X86II::MRM_D2: 1106 case X86II::MRM_D3: 1107 case X86II::MRM_D4: 1108 case X86II::MRM_D5: 1109 case X86II::MRM_D6: 1110 case X86II::MRM_D7: 1111 case X86II::MRM_D8: 1112 case X86II::MRM_D9: 1113 case X86II::MRM_DA: 1114 case X86II::MRM_DB: 1115 case X86II::MRM_DC: 1116 case X86II::MRM_DD: 1117 case X86II::MRM_DE: 1118 case X86II::MRM_DF: 1119 case X86II::MRM_E0: 1120 case X86II::MRM_E1: 1121 case X86II::MRM_E2: 1122 case X86II::MRM_E3: 1123 case X86II::MRM_E4: 1124 case X86II::MRM_E5: 1125 case X86II::MRM_E6: 1126 case X86II::MRM_E7: 1127 case X86II::MRM_E8: 1128 case X86II::MRM_E9: 1129 case X86II::MRM_EA: 1130 case X86II::MRM_EB: 1131 case X86II::MRM_EC: 1132 case X86II::MRM_ED: 1133 case X86II::MRM_EE: 1134 case X86II::MRM_EF: 1135 case X86II::MRM_F0: 1136 case X86II::MRM_F1: 1137 case X86II::MRM_F2: 1138 case X86II::MRM_F3: 1139 case X86II::MRM_F4: 1140 case X86II::MRM_F5: 1141 case X86II::MRM_F6: 1142 case X86II::MRM_F7: 1143 case X86II::MRM_F8: 1144 case X86II::MRM_F9: 1145 case X86II::MRM_FA: 1146 case X86II::MRM_FB: 1147 case X86II::MRM_FC: 1148 case X86II::MRM_FD: 1149 case X86II::MRM_FE: 1150 case X86II::MRM_FF: 1151 return -1; 1152 } 1153 } 1154 1155 /// \returns true if the register is a XMM. 1156 inline bool isXMMReg(unsigned RegNo) { 1157 assert(X86::XMM15 - X86::XMM0 == 15 && 1158 "XMM0-15 registers are not continuous"); 1159 assert(X86::XMM31 - X86::XMM16 == 15 && 1160 "XMM16-31 registers are not continuous"); 1161 return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) || 1162 (RegNo >= X86::XMM16 && RegNo <= X86::XMM31); 1163 } 1164 1165 /// \returns true if the register is a YMM. 1166 inline bool isYMMReg(unsigned RegNo) { 1167 assert(X86::YMM15 - X86::YMM0 == 15 && 1168 "YMM0-15 registers are not continuous"); 1169 assert(X86::YMM31 - X86::YMM16 == 15 && 1170 "YMM16-31 registers are not continuous"); 1171 return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) || 1172 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31); 1173 } 1174 1175 /// \returns true if the register is a ZMM. 1176 inline bool isZMMReg(unsigned RegNo) { 1177 assert(X86::ZMM31 - X86::ZMM0 == 31 && "ZMM registers are not continuous"); 1178 return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31; 1179 } 1180 1181 /// \returns true if \p RegNo is an apx extended register. 1182 inline bool isApxExtendedReg(unsigned RegNo) { 1183 assert(X86::R31WH - X86::R16 == 95 && "EGPRs are not continuous"); 1184 return RegNo >= X86::R16 && RegNo <= X86::R31WH; 1185 } 1186 1187 /// \returns true if the MachineOperand is a x86-64 extended (r8 or 1188 /// higher) register, e.g. r8, xmm8, xmm13, etc. 1189 inline bool isX86_64ExtendedReg(unsigned RegNo) { 1190 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) || 1191 (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || 1192 (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) || 1193 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || 1194 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) 1195 return true; 1196 1197 if (isApxExtendedReg(RegNo)) 1198 return true; 1199 1200 switch (RegNo) { 1201 default: 1202 break; 1203 case X86::R8: 1204 case X86::R9: 1205 case X86::R10: 1206 case X86::R11: 1207 case X86::R12: 1208 case X86::R13: 1209 case X86::R14: 1210 case X86::R15: 1211 case X86::R8D: 1212 case X86::R9D: 1213 case X86::R10D: 1214 case X86::R11D: 1215 case X86::R12D: 1216 case X86::R13D: 1217 case X86::R14D: 1218 case X86::R15D: 1219 case X86::R8W: 1220 case X86::R9W: 1221 case X86::R10W: 1222 case X86::R11W: 1223 case X86::R12W: 1224 case X86::R13W: 1225 case X86::R14W: 1226 case X86::R15W: 1227 case X86::R8B: 1228 case X86::R9B: 1229 case X86::R10B: 1230 case X86::R11B: 1231 case X86::R12B: 1232 case X86::R13B: 1233 case X86::R14B: 1234 case X86::R15B: 1235 case X86::CR8: 1236 case X86::CR9: 1237 case X86::CR10: 1238 case X86::CR11: 1239 case X86::CR12: 1240 case X86::CR13: 1241 case X86::CR14: 1242 case X86::CR15: 1243 case X86::DR8: 1244 case X86::DR9: 1245 case X86::DR10: 1246 case X86::DR11: 1247 case X86::DR12: 1248 case X86::DR13: 1249 case X86::DR14: 1250 case X86::DR15: 1251 return true; 1252 } 1253 return false; 1254 } 1255 1256 inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) { 1257 uint64_t TSFlags = Desc.TSFlags; 1258 uint64_t Encoding = TSFlags & EncodingMask; 1259 // EVEX can always use egpr. 1260 if (Encoding == X86II::EVEX) 1261 return true; 1262 1263 unsigned Opcode = Desc.Opcode; 1264 // MOV32r0 is always expanded to XOR32rr 1265 if (Opcode == X86::MOV32r0) 1266 return true; 1267 // To be conservative, egpr is not used for all pseudo instructions 1268 // because we are not sure what instruction it will become. 1269 // FIXME: Could we improve it in X86ExpandPseudo? 1270 if (isPseudo(TSFlags)) 1271 return false; 1272 1273 // MAP OB/TB in legacy encoding space can always use egpr except 1274 // XSAVE*/XRSTOR*. 1275 switch (Opcode) { 1276 default: 1277 break; 1278 case X86::XSAVE: 1279 case X86::XSAVE64: 1280 case X86::XSAVEOPT: 1281 case X86::XSAVEOPT64: 1282 case X86::XSAVEC: 1283 case X86::XSAVEC64: 1284 case X86::XSAVES: 1285 case X86::XSAVES64: 1286 case X86::XRSTOR: 1287 case X86::XRSTOR64: 1288 case X86::XRSTORS: 1289 case X86::XRSTORS64: 1290 return false; 1291 } 1292 uint64_t OpMap = TSFlags & X86II::OpMapMask; 1293 return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB); 1294 } 1295 1296 /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher) 1297 /// registers, e.g. zmm21, etc. 1298 static inline bool is32ExtendedReg(unsigned RegNo) { 1299 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || 1300 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || 1301 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); 1302 } 1303 1304 inline bool isX86_64NonExtLowByteReg(unsigned reg) { 1305 return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || 1306 reg == X86::DIL); 1307 } 1308 1309 /// \returns true if this is a masked instruction. 1310 inline bool isKMasked(uint64_t TSFlags) { 1311 return (TSFlags & X86II::EVEX_K) != 0; 1312 } 1313 1314 /// \returns true if this is a merge masked instruction. 1315 inline bool isKMergeMasked(uint64_t TSFlags) { 1316 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; 1317 } 1318 } // namespace X86II 1319 } // namespace llvm 1320 #endif 1321