xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 namespace llvm {
25 
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36 
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39 
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43 
44   /// AVX512 static rounding constants.  These need to match the values in
45   /// avx512fintrin.h.
46   enum STATIC_ROUNDING {
47     TO_NEAREST_INT = 0,
48     TO_NEG_INF = 1,
49     TO_POS_INF = 2,
50     TO_ZERO = 3,
51     CUR_DIRECTION = 4,
52     NO_EXC = 8
53   };
54 
55   /// The constants to describe instr prefixes if there are
56   enum IPREFIXES {
57     IP_NO_PREFIX = 0,
58     IP_HAS_OP_SIZE = 1,
59     IP_HAS_AD_SIZE = 2,
60     IP_HAS_REPEAT_NE = 4,
61     IP_HAS_REPEAT = 8,
62     IP_HAS_LOCK = 16,
63     IP_HAS_NOTRACK = 32,
64     IP_USE_VEX3 = 64,
65   };
66 
67   enum OperandType : unsigned {
68     /// AVX512 embedded rounding control. This should only have values 0-3.
69     OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
70     OPERAND_COND_CODE,
71   };
72 
73   // X86 specific condition code. These correspond to X86_*_COND in
74   // X86InstrInfo.td. They must be kept in synch.
75   enum CondCode {
76     COND_O = 0,
77     COND_NO = 1,
78     COND_B = 2,
79     COND_AE = 3,
80     COND_E = 4,
81     COND_NE = 5,
82     COND_BE = 6,
83     COND_A = 7,
84     COND_S = 8,
85     COND_NS = 9,
86     COND_P = 10,
87     COND_NP = 11,
88     COND_L = 12,
89     COND_GE = 13,
90     COND_LE = 14,
91     COND_G = 15,
92     LAST_VALID_COND = COND_G,
93 
94     // Artificial condition codes. These are used by analyzeBranch
95     // to indicate a block terminated with two conditional branches that together
96     // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
97     // which can't be represented on x86 with a single condition. These
98     // are never used in MachineInstrs and are inverses of one another.
99     COND_NE_OR_P,
100     COND_E_AND_NP,
101 
102     COND_INVALID
103   };
104 
105   // The classification for the first instruction in macro fusion.
106   enum class FirstMacroFusionInstKind {
107     // TEST
108     Test,
109     // CMP
110     Cmp,
111     // AND
112     And,
113     // ADD, SUB
114     AddSub,
115     // INC, DEC
116     IncDec,
117     // Not valid as a first macro fusion instruction
118     Invalid
119   };
120 
121   enum class SecondMacroFusionInstKind {
122     // JA, JB and variants.
123     AB,
124     // JE, JL, JG and variants.
125     ELG,
126     // JS, JP, JO and variants
127     SPO,
128     // Not a fusible jump.
129     Invalid,
130   };
131 
132   /// \returns the type of the first instruction in macro-fusion.
133   inline FirstMacroFusionInstKind
134   classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
135     switch (Opcode) {
136     default:
137       return FirstMacroFusionInstKind::Invalid;
138     // TEST
139     case X86::TEST16i16:
140     case X86::TEST16mr:
141     case X86::TEST16ri:
142     case X86::TEST16rr:
143     case X86::TEST32i32:
144     case X86::TEST32mr:
145     case X86::TEST32ri:
146     case X86::TEST32rr:
147     case X86::TEST64i32:
148     case X86::TEST64mr:
149     case X86::TEST64ri32:
150     case X86::TEST64rr:
151     case X86::TEST8i8:
152     case X86::TEST8mr:
153     case X86::TEST8ri:
154     case X86::TEST8rr:
155       return FirstMacroFusionInstKind::Test;
156     case X86::AND16i16:
157     case X86::AND16ri:
158     case X86::AND16ri8:
159     case X86::AND16rm:
160     case X86::AND16rr:
161     case X86::AND16rr_REV:
162     case X86::AND32i32:
163     case X86::AND32ri:
164     case X86::AND32ri8:
165     case X86::AND32rm:
166     case X86::AND32rr:
167     case X86::AND32rr_REV:
168     case X86::AND64i32:
169     case X86::AND64ri32:
170     case X86::AND64ri8:
171     case X86::AND64rm:
172     case X86::AND64rr:
173     case X86::AND64rr_REV:
174     case X86::AND8i8:
175     case X86::AND8ri:
176     case X86::AND8ri8:
177     case X86::AND8rm:
178     case X86::AND8rr:
179     case X86::AND8rr_REV:
180       return FirstMacroFusionInstKind::And;
181     // CMP
182     case X86::CMP16i16:
183     case X86::CMP16mr:
184     case X86::CMP16ri:
185     case X86::CMP16ri8:
186     case X86::CMP16rm:
187     case X86::CMP16rr:
188     case X86::CMP16rr_REV:
189     case X86::CMP32i32:
190     case X86::CMP32mr:
191     case X86::CMP32ri:
192     case X86::CMP32ri8:
193     case X86::CMP32rm:
194     case X86::CMP32rr:
195     case X86::CMP32rr_REV:
196     case X86::CMP64i32:
197     case X86::CMP64mr:
198     case X86::CMP64ri32:
199     case X86::CMP64ri8:
200     case X86::CMP64rm:
201     case X86::CMP64rr:
202     case X86::CMP64rr_REV:
203     case X86::CMP8i8:
204     case X86::CMP8mr:
205     case X86::CMP8ri:
206     case X86::CMP8ri8:
207     case X86::CMP8rm:
208     case X86::CMP8rr:
209     case X86::CMP8rr_REV:
210       return FirstMacroFusionInstKind::Cmp;
211     // ADD
212     case X86::ADD16i16:
213     case X86::ADD16ri:
214     case X86::ADD16ri8:
215     case X86::ADD16rm:
216     case X86::ADD16rr:
217     case X86::ADD16rr_REV:
218     case X86::ADD32i32:
219     case X86::ADD32ri:
220     case X86::ADD32ri8:
221     case X86::ADD32rm:
222     case X86::ADD32rr:
223     case X86::ADD32rr_REV:
224     case X86::ADD64i32:
225     case X86::ADD64ri32:
226     case X86::ADD64ri8:
227     case X86::ADD64rm:
228     case X86::ADD64rr:
229     case X86::ADD64rr_REV:
230     case X86::ADD8i8:
231     case X86::ADD8ri:
232     case X86::ADD8ri8:
233     case X86::ADD8rm:
234     case X86::ADD8rr:
235     case X86::ADD8rr_REV:
236     // SUB
237     case X86::SUB16i16:
238     case X86::SUB16ri:
239     case X86::SUB16ri8:
240     case X86::SUB16rm:
241     case X86::SUB16rr:
242     case X86::SUB16rr_REV:
243     case X86::SUB32i32:
244     case X86::SUB32ri:
245     case X86::SUB32ri8:
246     case X86::SUB32rm:
247     case X86::SUB32rr:
248     case X86::SUB32rr_REV:
249     case X86::SUB64i32:
250     case X86::SUB64ri32:
251     case X86::SUB64ri8:
252     case X86::SUB64rm:
253     case X86::SUB64rr:
254     case X86::SUB64rr_REV:
255     case X86::SUB8i8:
256     case X86::SUB8ri:
257     case X86::SUB8ri8:
258     case X86::SUB8rm:
259     case X86::SUB8rr:
260     case X86::SUB8rr_REV:
261       return FirstMacroFusionInstKind::AddSub;
262     // INC
263     case X86::INC16r:
264     case X86::INC16r_alt:
265     case X86::INC32r:
266     case X86::INC32r_alt:
267     case X86::INC64r:
268     case X86::INC8r:
269     // DEC
270     case X86::DEC16r:
271     case X86::DEC16r_alt:
272     case X86::DEC32r:
273     case X86::DEC32r_alt:
274     case X86::DEC64r:
275     case X86::DEC8r:
276       return FirstMacroFusionInstKind::IncDec;
277     }
278   }
279 
280   /// \returns the type of the second instruction in macro-fusion.
281   inline SecondMacroFusionInstKind
282   classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
283     if (CC == X86::COND_INVALID)
284       return SecondMacroFusionInstKind::Invalid;
285 
286     switch (CC) {
287     default:
288       return SecondMacroFusionInstKind::Invalid;
289     // JE,JZ
290     case X86::COND_E:
291     // JNE,JNZ
292     case X86::COND_NE:
293     // JL,JNGE
294     case X86::COND_L:
295     // JLE,JNG
296     case X86::COND_LE:
297     // JG,JNLE
298     case X86::COND_G:
299     // JGE,JNL
300     case X86::COND_GE:
301       return SecondMacroFusionInstKind::ELG;
302     // JB,JC
303     case X86::COND_B:
304     // JNA,JBE
305     case X86::COND_BE:
306     // JA,JNBE
307     case X86::COND_A:
308     // JAE,JNC,JNB
309     case X86::COND_AE:
310       return SecondMacroFusionInstKind::AB;
311     // JS
312     case X86::COND_S:
313     // JNS
314     case X86::COND_NS:
315     // JP,JPE
316     case X86::COND_P:
317     // JNP,JPO
318     case X86::COND_NP:
319     // JO
320     case X86::COND_O:
321     // JNO
322     case X86::COND_NO:
323       return SecondMacroFusionInstKind::SPO;
324     }
325   }
326 
327   /// \param FirstKind kind of the first instruction in macro fusion.
328   /// \param SecondKind kind of the second instruction in macro fusion.
329   ///
330   /// \returns true if the two instruction can be macro fused.
331   inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
332                            SecondMacroFusionInstKind SecondKind) {
333     switch (FirstKind) {
334     case X86::FirstMacroFusionInstKind::Test:
335     case X86::FirstMacroFusionInstKind::And:
336       return true;
337     case X86::FirstMacroFusionInstKind::Cmp:
338     case X86::FirstMacroFusionInstKind::AddSub:
339       return SecondKind == X86::SecondMacroFusionInstKind::AB ||
340              SecondKind == X86::SecondMacroFusionInstKind::ELG;
341     case X86::FirstMacroFusionInstKind::IncDec:
342       return SecondKind == X86::SecondMacroFusionInstKind::ELG;
343     case X86::FirstMacroFusionInstKind::Invalid:
344       return false;
345     }
346     llvm_unreachable("unknown fusion type");
347   }
348 
349   /// Defines the possible values of the branch boundary alignment mask.
350   enum AlignBranchBoundaryKind : uint8_t {
351     AlignBranchNone = 0,
352     AlignBranchFused = 1U << 0,
353     AlignBranchJcc = 1U << 1,
354     AlignBranchJmp = 1U << 2,
355     AlignBranchCall = 1U << 3,
356     AlignBranchRet = 1U << 4,
357     AlignBranchIndirect = 1U << 5
358   };
359 
360   /// Defines the encoding values for segment override prefix.
361   enum EncodingOfSegmentOverridePrefix : uint8_t {
362     CS_Encoding = 0x2E,
363     DS_Encoding = 0x3E,
364     ES_Encoding = 0x26,
365     FS_Encoding = 0x64,
366     GS_Encoding = 0x65,
367     SS_Encoding = 0x36
368   };
369 
370   /// Given a segment register, return the encoding of the segment override
371   /// prefix for it.
372   inline EncodingOfSegmentOverridePrefix
373   getSegmentOverridePrefixForReg(unsigned Reg) {
374     switch (Reg) {
375     default:
376       llvm_unreachable("Unknown segment register!");
377     case X86::CS:
378       return CS_Encoding;
379     case X86::DS:
380       return DS_Encoding;
381     case X86::ES:
382       return ES_Encoding;
383     case X86::FS:
384       return FS_Encoding;
385     case X86::GS:
386       return GS_Encoding;
387     case X86::SS:
388       return SS_Encoding;
389     }
390   }
391 
392 } // end namespace X86;
393 
394 /// X86II - This namespace holds all of the target specific flags that
395 /// instruction info tracks.
396 ///
397 namespace X86II {
398   /// Target Operand Flag enum.
399   enum TOF {
400     //===------------------------------------------------------------------===//
401     // X86 Specific MachineOperand flags.
402 
403     MO_NO_FLAG,
404 
405     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
406     /// relocation of:
407     ///    SYMBOL_LABEL + [. - PICBASELABEL]
408     MO_GOT_ABSOLUTE_ADDRESS,
409 
410     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
411     /// immediate should get the value of the symbol minus the PIC base label:
412     ///    SYMBOL_LABEL - PICBASELABEL
413     MO_PIC_BASE_OFFSET,
414 
415     /// MO_GOT - On a symbol operand this indicates that the immediate is the
416     /// offset to the GOT entry for the symbol name from the base of the GOT.
417     ///
418     /// See the X86-64 ELF ABI supplement for more details.
419     ///    SYMBOL_LABEL @GOT
420     MO_GOT,
421 
422     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
423     /// the offset to the location of the symbol name from the base of the GOT.
424     ///
425     /// See the X86-64 ELF ABI supplement for more details.
426     ///    SYMBOL_LABEL @GOTOFF
427     MO_GOTOFF,
428 
429     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
430     /// offset to the GOT entry for the symbol name from the current code
431     /// location.
432     ///
433     /// See the X86-64 ELF ABI supplement for more details.
434     ///    SYMBOL_LABEL @GOTPCREL
435     MO_GOTPCREL,
436 
437     /// MO_PLT - On a symbol operand this indicates that the immediate is
438     /// offset to the PLT entry of symbol name from the current code location.
439     ///
440     /// See the X86-64 ELF ABI supplement for more details.
441     ///    SYMBOL_LABEL @PLT
442     MO_PLT,
443 
444     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
445     /// the offset of the GOT entry with the TLS index structure that contains
446     /// the module number and variable offset for the symbol. Used in the
447     /// general dynamic TLS access model.
448     ///
449     /// See 'ELF Handling for Thread-Local Storage' for more details.
450     ///    SYMBOL_LABEL @TLSGD
451     MO_TLSGD,
452 
453     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
454     /// the offset of the GOT entry with the TLS index for the module that
455     /// contains the symbol. When this index is passed to a call to
456     /// __tls_get_addr, the function will return the base address of the TLS
457     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
458     ///
459     /// See 'ELF Handling for Thread-Local Storage' for more details.
460     ///    SYMBOL_LABEL @TLSLD
461     MO_TLSLD,
462 
463     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
464     /// the offset of the GOT entry with the TLS index for the module that
465     /// contains the symbol. When this index is passed to a call to
466     /// ___tls_get_addr, the function will return the base address of the TLS
467     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
468     ///
469     /// See 'ELF Handling for Thread-Local Storage' for more details.
470     ///    SYMBOL_LABEL @TLSLDM
471     MO_TLSLDM,
472 
473     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
474     /// the offset of the GOT entry with the thread-pointer offset for the
475     /// symbol. Used in the x86-64 initial exec TLS access model.
476     ///
477     /// See 'ELF Handling for Thread-Local Storage' for more details.
478     ///    SYMBOL_LABEL @GOTTPOFF
479     MO_GOTTPOFF,
480 
481     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
482     /// the absolute address of the GOT entry with the negative thread-pointer
483     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
484     /// model.
485     ///
486     /// See 'ELF Handling for Thread-Local Storage' for more details.
487     ///    SYMBOL_LABEL @INDNTPOFF
488     MO_INDNTPOFF,
489 
490     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
491     /// the thread-pointer offset for the symbol. Used in the x86-64 local
492     /// exec TLS access model.
493     ///
494     /// See 'ELF Handling for Thread-Local Storage' for more details.
495     ///    SYMBOL_LABEL @TPOFF
496     MO_TPOFF,
497 
498     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
499     /// the offset of the GOT entry with the TLS offset of the symbol. Used
500     /// in the local dynamic TLS access model.
501     ///
502     /// See 'ELF Handling for Thread-Local Storage' for more details.
503     ///    SYMBOL_LABEL @DTPOFF
504     MO_DTPOFF,
505 
506     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
507     /// the negative thread-pointer offset for the symbol. Used in the IA32
508     /// local exec TLS access model.
509     ///
510     /// See 'ELF Handling for Thread-Local Storage' for more details.
511     ///    SYMBOL_LABEL @NTPOFF
512     MO_NTPOFF,
513 
514     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
515     /// the offset of the GOT entry with the negative thread-pointer offset for
516     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
517     ///
518     /// See 'ELF Handling for Thread-Local Storage' for more details.
519     ///    SYMBOL_LABEL @GOTNTPOFF
520     MO_GOTNTPOFF,
521 
522     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
523     /// reference is actually to the "__imp_FOO" symbol.  This is used for
524     /// dllimport linkage on windows.
525     MO_DLLIMPORT,
526 
527     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
528     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
529     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
530     MO_DARWIN_NONLAZY,
531 
532     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
533     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
534     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
535     MO_DARWIN_NONLAZY_PIC_BASE,
536 
537     /// MO_TLVP - On a symbol operand this indicates that the immediate is
538     /// some TLS offset.
539     ///
540     /// This is the TLS offset for the Darwin TLS mechanism.
541     MO_TLVP,
542 
543     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
544     /// is some TLS offset from the picbase.
545     ///
546     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
547     MO_TLVP_PIC_BASE,
548 
549     /// MO_SECREL - On a symbol operand this indicates that the immediate is
550     /// the offset from beginning of section.
551     ///
552     /// This is the TLS offset for the COFF/Windows TLS mechanism.
553     MO_SECREL,
554 
555     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
556     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
557     /// symbol modifier.
558     MO_ABS8,
559 
560     /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
561     /// reference is actually to the ".refptr.FOO" symbol.  This is used for
562     /// stub symbols on windows.
563     MO_COFFSTUB,
564   };
565 
566   enum : uint64_t {
567     //===------------------------------------------------------------------===//
568     // Instruction encodings.  These are the standard/most common forms for X86
569     // instructions.
570     //
571 
572     // PseudoFrm - This represents an instruction that is a pseudo instruction
573     // or one that has not been implemented yet.  It is illegal to code generate
574     // it, but tolerated for intermediate implementation stages.
575     Pseudo         = 0,
576 
577     /// Raw - This form is for instructions that don't have any operands, so
578     /// they are just a fixed opcode value, like 'leave'.
579     RawFrm         = 1,
580 
581     /// AddRegFrm - This form is used for instructions like 'push r32' that have
582     /// their one register operand added to their opcode.
583     AddRegFrm      = 2,
584 
585     /// RawFrmMemOffs - This form is for instructions that store an absolute
586     /// memory offset as an immediate with a possible segment override.
587     RawFrmMemOffs  = 3,
588 
589     /// RawFrmSrc - This form is for instructions that use the source index
590     /// register SI/ESI/RSI with a possible segment override.
591     RawFrmSrc      = 4,
592 
593     /// RawFrmDst - This form is for instructions that use the destination index
594     /// register DI/EDI/RDI.
595     RawFrmDst      = 5,
596 
597     /// RawFrmDstSrc - This form is for instructions that use the source index
598     /// register SI/ESI/RSI with a possible segment override, and also the
599     /// destination index register DI/EDI/RDI.
600     RawFrmDstSrc   = 6,
601 
602     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
603     /// immediates, the first of which is a 16-bit immediate (specified by
604     /// the imm encoding) and the second is a 8-bit fixed value.
605     RawFrmImm8 = 7,
606 
607     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
608     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
609     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
610     /// manual, this operand is described as pntr16:32 and pntr16:16
611     RawFrmImm16 = 8,
612 
613     /// AddCCFrm - This form is used for Jcc that encode the condition code
614     /// in the lower 4 bits of the opcode.
615     AddCCFrm = 9,
616 
617     /// PrefixByte - This form is used for instructions that represent a prefix
618     /// byte like data16 or rep.
619     PrefixByte = 10,
620 
621     /// MRM[0-7][rm] - These forms are used to represent instructions that use
622     /// a Mod/RM byte, and use the middle field to hold extended opcode
623     /// information.  In the intel manual these are represented as /0, /1, ...
624     ///
625 
626     // Instructions operate on a register Reg/Opcode operand not the r/m field.
627     MRMr0 = 21,
628 
629     /// MRMSrcMem - But force to use the SIB field.
630     MRMSrcMemFSIB  = 22,
631 
632     /// MRMDestMem - But force to use the SIB field.
633     MRMDestMemFSIB = 23,
634 
635     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
636     /// to specify a destination, which in this case is memory.
637     ///
638     MRMDestMem     = 24,
639 
640     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
641     /// to specify a source, which in this case is memory.
642     ///
643     MRMSrcMem      = 25,
644 
645     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
646     /// operand 3 with VEX.VVVV and load from memory.
647     ///
648     MRMSrcMem4VOp3 = 26,
649 
650     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
651     /// byte to specify the fourth source, which in this case is memory.
652     ///
653     MRMSrcMemOp4   = 27,
654 
655     /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
656     /// byte to specify the operands and also encodes a condition code.
657     ///
658     MRMSrcMemCC    = 28,
659 
660     /// MRMXm - This form is used for instructions that use the Mod/RM byte
661     /// to specify a memory source, but doesn't use the middle field. And has
662     /// a condition code.
663     ///
664     MRMXmCC = 30,
665 
666     /// MRMXm - This form is used for instructions that use the Mod/RM byte
667     /// to specify a memory source, but doesn't use the middle field.
668     ///
669     MRMXm = 31,
670 
671     // Next, instructions that operate on a memory r/m operand...
672     MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
673     MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7
674 
675     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
676     /// to specify a destination, which in this case is a register.
677     ///
678     MRMDestReg     = 40,
679 
680     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
681     /// to specify a source, which in this case is a register.
682     ///
683     MRMSrcReg      = 41,
684 
685     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
686     /// operand 3 with VEX.VVVV and do not load from memory.
687     ///
688     MRMSrcReg4VOp3 = 42,
689 
690     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
691     /// byte to specify the fourth source, which in this case is a register.
692     ///
693     MRMSrcRegOp4   = 43,
694 
695     /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
696     /// byte to specify the operands and also encodes a condition code
697     ///
698     MRMSrcRegCC    = 44,
699 
700     /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
701     /// to specify a register source, but doesn't use the middle field. And has
702     /// a condition code.
703     ///
704     MRMXrCC = 46,
705 
706     /// MRMXr - This form is used for instructions that use the Mod/RM byte
707     /// to specify a register source, but doesn't use the middle field.
708     ///
709     MRMXr = 47,
710 
711     // Instructions that operate on a register r/m operand...
712     MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
713     MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7
714 
715     // Instructions that operate that have mod=11 and an opcode but ignore r/m.
716     MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
717     MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7
718 
719     /// MRM_XX - A mod/rm byte of exactly 0xXX.
720     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
721     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
722     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
723     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
724     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
725     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
726     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
727     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
728     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
729     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
730     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
731     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
732     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
733     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
734     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
735     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
736 
737     FormMask       = 127,
738 
739     //===------------------------------------------------------------------===//
740     // Actual flags...
741 
742     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
743     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
744     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
745     // prefix in 16-bit mode.
746     OpSizeShift = 7,
747     OpSizeMask = 0x3 << OpSizeShift,
748 
749     OpSizeFixed  = 0 << OpSizeShift,
750     OpSize16     = 1 << OpSizeShift,
751     OpSize32     = 2 << OpSizeShift,
752 
753     // AsSize - AdSizeX implies this instruction determines its need of 0x67
754     // prefix from a normal ModRM memory operand. The other types indicate that
755     // an operand is encoded with a specific width and a prefix is needed if
756     // it differs from the current mode.
757     AdSizeShift = OpSizeShift + 2,
758     AdSizeMask  = 0x3 << AdSizeShift,
759 
760     AdSizeX  = 0 << AdSizeShift,
761     AdSize16 = 1 << AdSizeShift,
762     AdSize32 = 2 << AdSizeShift,
763     AdSize64 = 3 << AdSizeShift,
764 
765     //===------------------------------------------------------------------===//
766     // OpPrefix - There are several prefix bytes that are used as opcode
767     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
768     // no prefix.
769     //
770     OpPrefixShift = AdSizeShift + 2,
771     OpPrefixMask  = 0x3 << OpPrefixShift,
772 
773     // PD - Prefix code for packed double precision vector floating point
774     // operations performed in the SSE registers.
775     PD = 1 << OpPrefixShift,
776 
777     // XS, XD - These prefix codes are for single and double precision scalar
778     // floating point operations performed in the SSE registers.
779     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
780 
781     //===------------------------------------------------------------------===//
782     // OpMap - This field determines which opcode map this instruction
783     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
784     //
785     OpMapShift = OpPrefixShift + 2,
786     OpMapMask  = 0x7 << OpMapShift,
787 
788     // OB - OneByte - Set if this instruction has a one byte opcode.
789     OB = 0 << OpMapShift,
790 
791     // TB - TwoByte - Set if this instruction has a two byte opcode, which
792     // starts with a 0x0F byte before the real opcode.
793     TB = 1 << OpMapShift,
794 
795     // T8, TA - Prefix after the 0x0F prefix.
796     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
797 
798     // XOP8 - Prefix to include use of imm byte.
799     XOP8 = 4 << OpMapShift,
800 
801     // XOP9 - Prefix to exclude use of imm byte.
802     XOP9 = 5 << OpMapShift,
803 
804     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
805     XOPA = 6 << OpMapShift,
806 
807     /// ThreeDNow - This indicates that the instruction uses the
808     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
809     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
810     /// storing a classifier in the imm8 field.  To simplify our implementation,
811     /// we handle this by storeing the classifier in the opcode field and using
812     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
813     ThreeDNow = 7 << OpMapShift,
814 
815     //===------------------------------------------------------------------===//
816     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
817     // They are used to specify GPRs and SSE registers, 64-bit operand size,
818     // etc. We only cares about REX.W and REX.R bits and only the former is
819     // statically determined.
820     //
821     REXShift    = OpMapShift + 3,
822     REX_W       = 1 << REXShift,
823 
824     //===------------------------------------------------------------------===//
825     // This three-bit field describes the size of an immediate operand.  Zero is
826     // unused so that we can tell if we forgot to set a value.
827     ImmShift = REXShift + 1,
828     ImmMask    = 15 << ImmShift,
829     Imm8       = 1 << ImmShift,
830     Imm8PCRel  = 2 << ImmShift,
831     Imm8Reg    = 3 << ImmShift,
832     Imm16      = 4 << ImmShift,
833     Imm16PCRel = 5 << ImmShift,
834     Imm32      = 6 << ImmShift,
835     Imm32PCRel = 7 << ImmShift,
836     Imm32S     = 8 << ImmShift,
837     Imm64      = 9 << ImmShift,
838 
839     //===------------------------------------------------------------------===//
840     // FP Instruction Classification...  Zero is non-fp instruction.
841 
842     // FPTypeMask - Mask for all of the FP types...
843     FPTypeShift = ImmShift + 4,
844     FPTypeMask  = 7 << FPTypeShift,
845 
846     // NotFP - The default, set for instructions that do not use FP registers.
847     NotFP      = 0 << FPTypeShift,
848 
849     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
850     ZeroArgFP  = 1 << FPTypeShift,
851 
852     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
853     OneArgFP   = 2 << FPTypeShift,
854 
855     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
856     // result back to ST(0).  For example, fcos, fsqrt, etc.
857     //
858     OneArgFPRW = 3 << FPTypeShift,
859 
860     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
861     // explicit argument, storing the result to either ST(0) or the implicit
862     // argument.  For example: fadd, fsub, fmul, etc...
863     TwoArgFP   = 4 << FPTypeShift,
864 
865     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
866     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
867     CompareFP  = 5 << FPTypeShift,
868 
869     // CondMovFP - "2 operand" floating point conditional move instructions.
870     CondMovFP  = 6 << FPTypeShift,
871 
872     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
873     SpecialFP  = 7 << FPTypeShift,
874 
875     // Lock prefix
876     LOCKShift = FPTypeShift + 3,
877     LOCK = 1 << LOCKShift,
878 
879     // REP prefix
880     REPShift = LOCKShift + 1,
881     REP = 1 << REPShift,
882 
883     // Execution domain for SSE instructions.
884     // 0 means normal, non-SSE instruction.
885     SSEDomainShift = REPShift + 1,
886 
887     // Encoding
888     EncodingShift = SSEDomainShift + 2,
889     EncodingMask = 0x3 << EncodingShift,
890 
891     // VEX - encoding using 0xC4/0xC5
892     VEX = 1 << EncodingShift,
893 
894     /// XOP - Opcode prefix used by XOP instructions.
895     XOP = 2 << EncodingShift,
896 
897     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
898     // syntax support up to 32 512-bit register operands and up to 7 16-bit
899     // mask operands as well as source operand data swizzling/memory operand
900     // conversion, eviction hint, and rounding mode.
901     EVEX = 3 << EncodingShift,
902 
903     // Opcode
904     OpcodeShift   = EncodingShift + 2,
905 
906     /// VEX_W - Has a opcode specific functionality, but is used in the same
907     /// way as REX_W is for regular SSE instructions.
908     VEX_WShift  = OpcodeShift + 8,
909     VEX_W       = 1ULL << VEX_WShift,
910 
911     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
912     /// address instructions in SSE are represented as 3 address ones in AVX
913     /// and the additional register is encoded in VEX_VVVV prefix.
914     VEX_4VShift = VEX_WShift + 1,
915     VEX_4V      = 1ULL << VEX_4VShift,
916 
917     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
918     /// instruction uses 256-bit wide registers. This is usually auto detected
919     /// if a VR256 register is used, but some AVX instructions also have this
920     /// field marked when using a f256 memory references.
921     VEX_LShift = VEX_4VShift + 1,
922     VEX_L       = 1ULL << VEX_LShift,
923 
924     // EVEX_K - Set if this instruction requires masking
925     EVEX_KShift = VEX_LShift + 1,
926     EVEX_K      = 1ULL << EVEX_KShift,
927 
928     // EVEX_Z - Set if this instruction has EVEX.Z field set.
929     EVEX_ZShift = EVEX_KShift + 1,
930     EVEX_Z      = 1ULL << EVEX_ZShift,
931 
932     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
933     EVEX_L2Shift = EVEX_ZShift + 1,
934     EVEX_L2     = 1ULL << EVEX_L2Shift,
935 
936     // EVEX_B - Set if this instruction has EVEX.B field set.
937     EVEX_BShift = EVEX_L2Shift + 1,
938     EVEX_B      = 1ULL << EVEX_BShift,
939 
940     // The scaling factor for the AVX512's 8-bit compressed displacement.
941     CD8_Scale_Shift = EVEX_BShift + 1,
942     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
943 
944     /// Explicitly specified rounding control
945     EVEX_RCShift = CD8_Scale_Shift + 7,
946     EVEX_RC = 1ULL << EVEX_RCShift,
947 
948     // NOTRACK prefix
949     NoTrackShift = EVEX_RCShift + 1,
950     NOTRACK = 1ULL << NoTrackShift
951   };
952 
953   /// \returns true if the instruction with given opcode is a prefix.
954   inline bool isPrefix(uint64_t TSFlags) {
955     return (TSFlags & X86II::FormMask) == PrefixByte;
956   }
957 
958   /// \returns true if the instruction with given opcode is a pseudo.
959   inline bool isPseudo(uint64_t TSFlags) {
960     return (TSFlags & X86II::FormMask) == Pseudo;
961   }
962 
963   /// \returns the "base" X86 opcode for the specified machine
964   /// instruction.
965   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
966     return TSFlags >> X86II::OpcodeShift;
967   }
968 
969   inline bool hasImm(uint64_t TSFlags) {
970     return (TSFlags & X86II::ImmMask) != 0;
971   }
972 
973   /// Decode the "size of immediate" field from the TSFlags field of the
974   /// specified instruction.
975   inline unsigned getSizeOfImm(uint64_t TSFlags) {
976     switch (TSFlags & X86II::ImmMask) {
977     default: llvm_unreachable("Unknown immediate size");
978     case X86II::Imm8:
979     case X86II::Imm8PCRel:
980     case X86II::Imm8Reg:    return 1;
981     case X86II::Imm16:
982     case X86II::Imm16PCRel: return 2;
983     case X86II::Imm32:
984     case X86II::Imm32S:
985     case X86II::Imm32PCRel: return 4;
986     case X86II::Imm64:      return 8;
987     }
988   }
989 
990   /// \returns true if the immediate of the specified instruction's TSFlags
991   /// indicates that it is pc relative.
992   inline bool isImmPCRel(uint64_t TSFlags) {
993     switch (TSFlags & X86II::ImmMask) {
994     default: llvm_unreachable("Unknown immediate size");
995     case X86II::Imm8PCRel:
996     case X86II::Imm16PCRel:
997     case X86II::Imm32PCRel:
998       return true;
999     case X86II::Imm8:
1000     case X86II::Imm8Reg:
1001     case X86II::Imm16:
1002     case X86II::Imm32:
1003     case X86II::Imm32S:
1004     case X86II::Imm64:
1005       return false;
1006     }
1007   }
1008 
1009   /// \returns true if the immediate of the specified instruction's
1010   /// TSFlags indicates that it is signed.
1011   inline bool isImmSigned(uint64_t TSFlags) {
1012     switch (TSFlags & X86II::ImmMask) {
1013     default: llvm_unreachable("Unknown immediate signedness");
1014     case X86II::Imm32S:
1015       return true;
1016     case X86II::Imm8:
1017     case X86II::Imm8PCRel:
1018     case X86II::Imm8Reg:
1019     case X86II::Imm16:
1020     case X86II::Imm16PCRel:
1021     case X86II::Imm32:
1022     case X86II::Imm32PCRel:
1023     case X86II::Imm64:
1024       return false;
1025     }
1026   }
1027 
1028   /// Compute whether all of the def operands are repeated in the uses and
1029   /// therefore should be skipped.
1030   /// This determines the start of the unique operand list. We need to determine
1031   /// if all of the defs have a corresponding tied operand in the uses.
1032   /// Unfortunately, the tied operand information is encoded in the uses not
1033   /// the defs so we have to use some heuristics to find which operands to
1034   /// query.
1035   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
1036     unsigned NumDefs = Desc.getNumDefs();
1037     unsigned NumOps = Desc.getNumOperands();
1038     switch (NumDefs) {
1039     default: llvm_unreachable("Unexpected number of defs");
1040     case 0:
1041       return 0;
1042     case 1:
1043       // Common two addr case.
1044       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
1045         return 1;
1046       // Check for AVX-512 scatter which has a TIED_TO in the second to last
1047       // operand.
1048       if (NumOps == 8 &&
1049           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
1050         return 1;
1051       return 0;
1052     case 2:
1053       // XCHG/XADD have two destinations and two sources.
1054       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1055           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
1056         return 2;
1057       // Check for gather. AVX-512 has the second tied operand early. AVX2
1058       // has it as the last op.
1059       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1060           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1061            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1062         return 2;
1063       return 0;
1064     }
1065   }
1066 
1067   /// The function returns the MCInst operand # for the first field of the
1068   /// memory operand.  If the instruction doesn't have a
1069   /// memory operand, this returns -1.
1070   ///
1071   /// Note that this ignores tied operands.  If there is a tied register which
1072   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1073   /// counted as one operand.
1074   ///
1075   inline int getMemoryOperandNo(uint64_t TSFlags) {
1076     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1077     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1078 
1079     switch (TSFlags & X86II::FormMask) {
1080     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1081     case X86II::Pseudo:
1082     case X86II::RawFrm:
1083     case X86II::AddRegFrm:
1084     case X86II::RawFrmImm8:
1085     case X86II::RawFrmImm16:
1086     case X86II::RawFrmMemOffs:
1087     case X86II::RawFrmSrc:
1088     case X86II::RawFrmDst:
1089     case X86II::RawFrmDstSrc:
1090     case X86II::AddCCFrm:
1091     case X86II::PrefixByte:
1092       return -1;
1093     case X86II::MRMDestMem:
1094     case X86II::MRMDestMemFSIB:
1095       return 0;
1096     case X86II::MRMSrcMem:
1097     case X86II::MRMSrcMemFSIB:
1098       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1099       // mask register.
1100       return 1 + HasVEX_4V + HasEVEX_K;
1101     case X86II::MRMSrcMem4VOp3:
1102       // Skip registers encoded in reg.
1103       return 1 + HasEVEX_K;
1104     case X86II::MRMSrcMemOp4:
1105       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1106       return 3;
1107     case X86II::MRMSrcMemCC:
1108       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1109       // mask register.
1110       return 1;
1111     case X86II::MRMDestReg:
1112     case X86II::MRMSrcReg:
1113     case X86II::MRMSrcReg4VOp3:
1114     case X86II::MRMSrcRegOp4:
1115     case X86II::MRMSrcRegCC:
1116     case X86II::MRMXrCC:
1117     case X86II::MRMr0:
1118     case X86II::MRMXr:
1119     case X86II::MRM0r: case X86II::MRM1r:
1120     case X86II::MRM2r: case X86II::MRM3r:
1121     case X86II::MRM4r: case X86II::MRM5r:
1122     case X86II::MRM6r: case X86II::MRM7r:
1123       return -1;
1124     case X86II::MRM0X: case X86II::MRM1X:
1125     case X86II::MRM2X: case X86II::MRM3X:
1126     case X86II::MRM4X: case X86II::MRM5X:
1127     case X86II::MRM6X: case X86II::MRM7X:
1128       return -1;
1129     case X86II::MRMXmCC:
1130     case X86II::MRMXm:
1131     case X86II::MRM0m: case X86II::MRM1m:
1132     case X86II::MRM2m: case X86II::MRM3m:
1133     case X86II::MRM4m: case X86II::MRM5m:
1134     case X86II::MRM6m: case X86II::MRM7m:
1135       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1136       return 0 + HasVEX_4V + HasEVEX_K;
1137     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1138     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1139     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1140     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1141     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1142     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1143     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1144     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1145     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1146     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1147     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1148     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1149     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1150     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1151     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1152     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1153     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1154     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1155     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1156     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1157     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1158     case X86II::MRM_FF:
1159       return -1;
1160     }
1161   }
1162 
1163   /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1164   /// higher) register,  e.g. r8, xmm8, xmm13, etc.
1165   inline bool isX86_64ExtendedReg(unsigned RegNo) {
1166     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1167         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1168         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1169       return true;
1170 
1171     switch (RegNo) {
1172     default: break;
1173     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1174     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1175     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1176     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1177     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1178     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1179     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1180     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1181     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1182     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1183     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1184     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1185       return true;
1186     }
1187     return false;
1188   }
1189 
1190   /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1191   /// registers, e.g. zmm21, etc.
1192   static inline bool is32ExtendedReg(unsigned RegNo) {
1193     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1194             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1195             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1196   }
1197 
1198 
1199   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1200     return (reg == X86::SPL || reg == X86::BPL ||
1201             reg == X86::SIL || reg == X86::DIL);
1202   }
1203 
1204   /// \returns true if this is a masked instruction.
1205   inline bool isKMasked(uint64_t TSFlags) {
1206     return (TSFlags & X86II::EVEX_K) != 0;
1207   }
1208 
1209   /// \returns true if this is a merge masked instruction.
1210   inline bool isKMergeMasked(uint64_t TSFlags) {
1211     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1212   }
1213 }
1214 
1215 } // end namespace llvm;
1216 
1217 #endif
1218