1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains small standalone helper functions and enum definitions for 10 // the X86 target useful for the compiler back-end and the MC libraries. 11 // As such, it deliberately does not include references to LLVM core 12 // code gen types, passes, etc.. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 18 19 #include "X86MCTargetDesc.h" 20 #include "llvm/MC/MCInstrDesc.h" 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/ErrorHandling.h" 23 24 namespace llvm { 25 namespace X86 { 26 // Enums for memory operand decoding. Each memory operand is represented with 27 // a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment] 28 enum { 29 AddrBaseReg = 0, 30 AddrScaleAmt = 1, 31 AddrIndexReg = 2, 32 AddrDisp = 3, 33 // The operand # of the segment in the memory operand. 34 AddrSegmentReg = 4, 35 // Total number of operands in a memory reference. 36 AddrNumOperands = 5 37 }; 38 39 /// AVX512 static rounding constants. These need to match the values in 40 /// avx512fintrin.h. 41 enum STATIC_ROUNDING { 42 TO_NEAREST_INT = 0, 43 TO_NEG_INF = 1, 44 TO_POS_INF = 2, 45 TO_ZERO = 3, 46 CUR_DIRECTION = 4, 47 NO_EXC = 8 48 }; 49 50 /// The constants to describe instr prefixes if there are 51 enum IPREFIXES { 52 IP_NO_PREFIX = 0, 53 IP_HAS_OP_SIZE = 1U << 0, 54 IP_HAS_AD_SIZE = 1U << 1, 55 IP_HAS_REPEAT_NE = 1U << 2, 56 IP_HAS_REPEAT = 1U << 3, 57 IP_HAS_LOCK = 1U << 4, 58 IP_HAS_NOTRACK = 1U << 5, 59 IP_USE_VEX = 1U << 6, 60 IP_USE_VEX2 = 1U << 7, 61 IP_USE_VEX3 = 1U << 8, 62 IP_USE_EVEX = 1U << 9, 63 IP_USE_DISP8 = 1U << 10, 64 IP_USE_DISP32 = 1U << 11, 65 }; 66 67 enum OperandType : unsigned { 68 // AVX512 embedded rounding control. This should only have values 0-3. 69 OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, 70 OPERAND_COND_CODE, 71 }; 72 73 // X86 specific condition code. These correspond to X86_*_COND in 74 // X86InstrInfo.td. They must be kept in synch. 75 enum CondCode { 76 COND_O = 0, 77 COND_NO = 1, 78 COND_B = 2, 79 COND_AE = 3, 80 COND_E = 4, 81 COND_NE = 5, 82 COND_BE = 6, 83 COND_A = 7, 84 COND_S = 8, 85 COND_NS = 9, 86 COND_P = 10, 87 COND_NP = 11, 88 COND_L = 12, 89 COND_GE = 13, 90 COND_LE = 14, 91 COND_G = 15, 92 LAST_VALID_COND = COND_G, 93 // Artificial condition codes. These are used by analyzeBranch 94 // to indicate a block terminated with two conditional branches that together 95 // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, 96 // which can't be represented on x86 with a single condition. These 97 // are never used in MachineInstrs and are inverses of one another. 98 COND_NE_OR_P, 99 COND_E_AND_NP, 100 COND_INVALID 101 }; 102 103 // The classification for the first instruction in macro fusion. 104 // FIXME: Zen 3 support branch fusion for OR/XOR. 105 enum class FirstMacroFusionInstKind { 106 Test, // TEST 107 Cmp, // CMP 108 And, // AND 109 AddSub, // ADD, SUB 110 IncDec, // INC, DEC 111 Invalid // Not valid as a first macro fusion instruction 112 }; 113 114 enum class SecondMacroFusionInstKind { 115 AB, // JA, JB and variants 116 ELG, // JE, JL, JG and variants 117 SPO, // JS, JP, JO and variants 118 Invalid, // Not a fusible jump. 119 }; 120 121 /// \returns the type of the first instruction in macro-fusion. 122 // FIXME: Zen 3 support branch fusion for OR/XOR. 123 inline FirstMacroFusionInstKind 124 classifyFirstOpcodeInMacroFusion(unsigned Opcode) { 125 switch (Opcode) { 126 default: 127 return FirstMacroFusionInstKind::Invalid; 128 // TEST 129 case X86::TEST16i16: 130 case X86::TEST16mr: 131 case X86::TEST16ri: 132 case X86::TEST16rr: 133 case X86::TEST32i32: 134 case X86::TEST32mr: 135 case X86::TEST32ri: 136 case X86::TEST32rr: 137 case X86::TEST64i32: 138 case X86::TEST64mr: 139 case X86::TEST64ri32: 140 case X86::TEST64rr: 141 case X86::TEST8i8: 142 case X86::TEST8mr: 143 case X86::TEST8ri: 144 case X86::TEST8rr: 145 return FirstMacroFusionInstKind::Test; 146 case X86::AND16i16: 147 case X86::AND16ri: 148 case X86::AND16ri8: 149 case X86::AND16rm: 150 case X86::AND16rr: 151 case X86::AND32i32: 152 case X86::AND32ri: 153 case X86::AND32ri8: 154 case X86::AND32rm: 155 case X86::AND32rr: 156 case X86::AND64i32: 157 case X86::AND64ri32: 158 case X86::AND64ri8: 159 case X86::AND64rm: 160 case X86::AND64rr: 161 case X86::AND8i8: 162 case X86::AND8ri: 163 case X86::AND8ri8: 164 case X86::AND8rm: 165 case X86::AND8rr: 166 return FirstMacroFusionInstKind::And; 167 // CMP 168 case X86::CMP16i16: 169 case X86::CMP16mr: 170 case X86::CMP16ri: 171 case X86::CMP16ri8: 172 case X86::CMP16rm: 173 case X86::CMP16rr: 174 case X86::CMP32i32: 175 case X86::CMP32mr: 176 case X86::CMP32ri: 177 case X86::CMP32ri8: 178 case X86::CMP32rm: 179 case X86::CMP32rr: 180 case X86::CMP64i32: 181 case X86::CMP64mr: 182 case X86::CMP64ri32: 183 case X86::CMP64ri8: 184 case X86::CMP64rm: 185 case X86::CMP64rr: 186 case X86::CMP8i8: 187 case X86::CMP8mr: 188 case X86::CMP8ri: 189 case X86::CMP8ri8: 190 case X86::CMP8rm: 191 case X86::CMP8rr: 192 return FirstMacroFusionInstKind::Cmp; 193 // ADD 194 case X86::ADD16i16: 195 case X86::ADD16ri: 196 case X86::ADD16ri8: 197 case X86::ADD16rm: 198 case X86::ADD16rr: 199 case X86::ADD32i32: 200 case X86::ADD32ri: 201 case X86::ADD32ri8: 202 case X86::ADD32rm: 203 case X86::ADD32rr: 204 case X86::ADD64i32: 205 case X86::ADD64ri32: 206 case X86::ADD64ri8: 207 case X86::ADD64rm: 208 case X86::ADD64rr: 209 case X86::ADD8i8: 210 case X86::ADD8ri: 211 case X86::ADD8ri8: 212 case X86::ADD8rm: 213 case X86::ADD8rr: 214 // SUB 215 case X86::SUB16i16: 216 case X86::SUB16ri: 217 case X86::SUB16ri8: 218 case X86::SUB16rm: 219 case X86::SUB16rr: 220 case X86::SUB32i32: 221 case X86::SUB32ri: 222 case X86::SUB32ri8: 223 case X86::SUB32rm: 224 case X86::SUB32rr: 225 case X86::SUB64i32: 226 case X86::SUB64ri32: 227 case X86::SUB64ri8: 228 case X86::SUB64rm: 229 case X86::SUB64rr: 230 case X86::SUB8i8: 231 case X86::SUB8ri: 232 case X86::SUB8ri8: 233 case X86::SUB8rm: 234 case X86::SUB8rr: 235 return FirstMacroFusionInstKind::AddSub; 236 // INC 237 case X86::INC16r: 238 case X86::INC16r_alt: 239 case X86::INC32r: 240 case X86::INC32r_alt: 241 case X86::INC64r: 242 case X86::INC8r: 243 // DEC 244 case X86::DEC16r: 245 case X86::DEC16r_alt: 246 case X86::DEC32r: 247 case X86::DEC32r_alt: 248 case X86::DEC64r: 249 case X86::DEC8r: 250 return FirstMacroFusionInstKind::IncDec; 251 } 252 } 253 254 /// \returns the type of the second instruction in macro-fusion. 255 inline SecondMacroFusionInstKind 256 classifySecondCondCodeInMacroFusion(X86::CondCode CC) { 257 if (CC == X86::COND_INVALID) 258 return SecondMacroFusionInstKind::Invalid; 259 switch (CC) { 260 default: 261 return SecondMacroFusionInstKind::Invalid; 262 case X86::COND_E: // JE,JZ 263 case X86::COND_NE: // JNE,JNZ 264 case X86::COND_L: // JL,JNGE 265 case X86::COND_LE: // JLE,JNG 266 case X86::COND_G: // JG,JNLE 267 case X86::COND_GE: // JGE,JNL 268 return SecondMacroFusionInstKind::ELG; 269 case X86::COND_B: // JB,JC 270 case X86::COND_BE: // JNA,JBE 271 case X86::COND_A: // JA,JNBE 272 case X86::COND_AE: // JAE,JNC,JNB 273 return SecondMacroFusionInstKind::AB; 274 case X86::COND_S: // JS 275 case X86::COND_NS: // JNS 276 case X86::COND_P: // JP,JPE 277 case X86::COND_NP: // JNP,JPO 278 case X86::COND_O: // JO 279 case X86::COND_NO: // JNO 280 return SecondMacroFusionInstKind::SPO; 281 } 282 } 283 284 /// \param FirstKind kind of the first instruction in macro fusion. 285 /// \param SecondKind kind of the second instruction in macro fusion. 286 /// 287 /// \returns true if the two instruction can be macro fused. 288 inline bool isMacroFused(FirstMacroFusionInstKind FirstKind, 289 SecondMacroFusionInstKind SecondKind) { 290 switch (FirstKind) { 291 case X86::FirstMacroFusionInstKind::Test: 292 case X86::FirstMacroFusionInstKind::And: 293 return true; 294 case X86::FirstMacroFusionInstKind::Cmp: 295 case X86::FirstMacroFusionInstKind::AddSub: 296 return SecondKind == X86::SecondMacroFusionInstKind::AB || 297 SecondKind == X86::SecondMacroFusionInstKind::ELG; 298 case X86::FirstMacroFusionInstKind::IncDec: 299 return SecondKind == X86::SecondMacroFusionInstKind::ELG; 300 case X86::FirstMacroFusionInstKind::Invalid: 301 return false; 302 } 303 llvm_unreachable("unknown fusion type"); 304 } 305 306 /// Defines the possible values of the branch boundary alignment mask. 307 enum AlignBranchBoundaryKind : uint8_t { 308 AlignBranchNone = 0, 309 AlignBranchFused = 1U << 0, 310 AlignBranchJcc = 1U << 1, 311 AlignBranchJmp = 1U << 2, 312 AlignBranchCall = 1U << 3, 313 AlignBranchRet = 1U << 4, 314 AlignBranchIndirect = 1U << 5 315 }; 316 317 /// Defines the encoding values for segment override prefix. 318 enum EncodingOfSegmentOverridePrefix : uint8_t { 319 CS_Encoding = 0x2E, 320 DS_Encoding = 0x3E, 321 ES_Encoding = 0x26, 322 FS_Encoding = 0x64, 323 GS_Encoding = 0x65, 324 SS_Encoding = 0x36 325 }; 326 327 /// Given a segment register, return the encoding of the segment override 328 /// prefix for it. 329 inline EncodingOfSegmentOverridePrefix 330 getSegmentOverridePrefixForReg(unsigned Reg) { 331 switch (Reg) { 332 default: 333 llvm_unreachable("Unknown segment register!"); 334 case X86::CS: 335 return CS_Encoding; 336 case X86::DS: 337 return DS_Encoding; 338 case X86::ES: 339 return ES_Encoding; 340 case X86::FS: 341 return FS_Encoding; 342 case X86::GS: 343 return GS_Encoding; 344 case X86::SS: 345 return SS_Encoding; 346 } 347 } 348 349 } // namespace X86 350 351 /// X86II - This namespace holds all of the target specific flags that 352 /// instruction info tracks. 353 /// 354 namespace X86II { 355 /// Target Operand Flag enum. 356 enum TOF { 357 //===------------------------------------------------------------------===// 358 // X86 Specific MachineOperand flags. 359 // 360 /// MO_NO_FLAG - No flag for the operand 361 MO_NO_FLAG, 362 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a 363 /// relocation of: 364 /// SYMBOL_LABEL + [. - PICBASELABEL] 365 MO_GOT_ABSOLUTE_ADDRESS, 366 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the 367 /// immediate should get the value of the symbol minus the PIC base label: 368 /// SYMBOL_LABEL - PICBASELABEL 369 MO_PIC_BASE_OFFSET, 370 /// MO_GOT - On a symbol operand this indicates that the immediate is the 371 /// offset to the GOT entry for the symbol name from the base of the GOT. 372 /// See the X86-64 ELF ABI supplement for more details. 373 /// SYMBOL_LABEL @GOT 374 MO_GOT, 375 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is 376 /// the offset to the location of the symbol name from the base of the GOT. 377 /// See the X86-64 ELF ABI supplement for more details. 378 /// SYMBOL_LABEL @GOTOFF 379 MO_GOTOFF, 380 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is 381 /// offset to the GOT entry for the symbol name from the current code 382 /// location. 383 /// See the X86-64 ELF ABI supplement for more details. 384 /// SYMBOL_LABEL @GOTPCREL 385 MO_GOTPCREL, 386 /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL 387 /// relocations are guaranteed to be emitted by the integrated assembler 388 /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations. 389 MO_GOTPCREL_NORELAX, 390 /// MO_PLT - On a symbol operand this indicates that the immediate is 391 /// offset to the PLT entry of symbol name from the current code location. 392 /// See the X86-64 ELF ABI supplement for more details. 393 /// SYMBOL_LABEL @PLT 394 MO_PLT, 395 /// MO_TLSGD - On a symbol operand this indicates that the immediate is 396 /// the offset of the GOT entry with the TLS index structure that contains 397 /// the module number and variable offset for the symbol. Used in the 398 /// general dynamic TLS access model. 399 /// See 'ELF Handling for Thread-Local Storage' for more details. 400 /// SYMBOL_LABEL @TLSGD 401 MO_TLSGD, 402 /// MO_TLSLD - On a symbol operand this indicates that the immediate is 403 /// the offset of the GOT entry with the TLS index for the module that 404 /// contains the symbol. When this index is passed to a call to 405 /// __tls_get_addr, the function will return the base address of the TLS 406 /// block for the symbol. Used in the x86-64 local dynamic TLS access model. 407 /// See 'ELF Handling for Thread-Local Storage' for more details. 408 /// SYMBOL_LABEL @TLSLD 409 MO_TLSLD, 410 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is 411 /// the offset of the GOT entry with the TLS index for the module that 412 /// contains the symbol. When this index is passed to a call to 413 /// ___tls_get_addr, the function will return the base address of the TLS 414 /// block for the symbol. Used in the IA32 local dynamic TLS access model. 415 /// See 'ELF Handling for Thread-Local Storage' for more details. 416 /// SYMBOL_LABEL @TLSLDM 417 MO_TLSLDM, 418 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is 419 /// the offset of the GOT entry with the thread-pointer offset for the 420 /// symbol. Used in the x86-64 initial exec TLS access model. 421 /// See 'ELF Handling for Thread-Local Storage' for more details. 422 /// SYMBOL_LABEL @GOTTPOFF 423 MO_GOTTPOFF, 424 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is 425 /// the absolute address of the GOT entry with the negative thread-pointer 426 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access 427 /// model. 428 /// See 'ELF Handling for Thread-Local Storage' for more details. 429 /// SYMBOL_LABEL @INDNTPOFF 430 MO_INDNTPOFF, 431 /// MO_TPOFF - On a symbol operand this indicates that the immediate is 432 /// the thread-pointer offset for the symbol. Used in the x86-64 local 433 /// exec TLS access model. 434 /// See 'ELF Handling for Thread-Local Storage' for more details. 435 /// SYMBOL_LABEL @TPOFF 436 MO_TPOFF, 437 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is 438 /// the offset of the GOT entry with the TLS offset of the symbol. Used 439 /// in the local dynamic TLS access model. 440 /// See 'ELF Handling for Thread-Local Storage' for more details. 441 /// SYMBOL_LABEL @DTPOFF 442 MO_DTPOFF, 443 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is 444 /// the negative thread-pointer offset for the symbol. Used in the IA32 445 /// local exec TLS access model. 446 /// See 'ELF Handling for Thread-Local Storage' for more details. 447 /// SYMBOL_LABEL @NTPOFF 448 MO_NTPOFF, 449 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is 450 /// the offset of the GOT entry with the negative thread-pointer offset for 451 /// the symbol. Used in the PIC IA32 initial exec TLS access model. 452 /// See 'ELF Handling for Thread-Local Storage' for more details. 453 /// SYMBOL_LABEL @GOTNTPOFF 454 MO_GOTNTPOFF, 455 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the 456 /// reference is actually to the "__imp_FOO" symbol. This is used for 457 /// dllimport linkage on windows. 458 MO_DLLIMPORT, 459 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the 460 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a 461 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 462 MO_DARWIN_NONLAZY, 463 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates 464 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is 465 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 466 MO_DARWIN_NONLAZY_PIC_BASE, 467 /// MO_TLVP - On a symbol operand this indicates that the immediate is 468 /// some TLS offset. 469 /// This is the TLS offset for the Darwin TLS mechanism. 470 MO_TLVP, 471 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate 472 /// is some TLS offset from the picbase. 473 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. 474 MO_TLVP_PIC_BASE, 475 /// MO_SECREL - On a symbol operand this indicates that the immediate is 476 /// the offset from beginning of section. 477 /// This is the TLS offset for the COFF/Windows TLS mechanism. 478 MO_SECREL, 479 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known 480 /// to be an absolute symbol in range [0,128), so we can use the @ABS8 481 /// symbol modifier. 482 MO_ABS8, 483 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the 484 /// reference is actually to the ".refptr.FOO" symbol. This is used for 485 /// stub symbols on windows. 486 MO_COFFSTUB, 487 }; 488 489 enum : uint64_t { 490 //===------------------------------------------------------------------===// 491 // Instruction encodings. These are the standard/most common forms for X86 492 // instructions. 493 // 494 /// PseudoFrm - This represents an instruction that is a pseudo instruction 495 /// or one that has not been implemented yet. It is illegal to code generate 496 /// it, but tolerated for intermediate implementation stages. 497 Pseudo = 0, 498 /// Raw - This form is for instructions that don't have any operands, so 499 /// they are just a fixed opcode value, like 'leave'. 500 RawFrm = 1, 501 /// AddRegFrm - This form is used for instructions like 'push r32' that have 502 /// their one register operand added to their opcode. 503 AddRegFrm = 2, 504 /// RawFrmMemOffs - This form is for instructions that store an absolute 505 /// memory offset as an immediate with a possible segment override. 506 RawFrmMemOffs = 3, 507 /// RawFrmSrc - This form is for instructions that use the source index 508 /// register SI/ESI/RSI with a possible segment override. 509 RawFrmSrc = 4, 510 /// RawFrmDst - This form is for instructions that use the destination index 511 /// register DI/EDI/RDI. 512 RawFrmDst = 5, 513 /// RawFrmDstSrc - This form is for instructions that use the source index 514 /// register SI/ESI/RSI with a possible segment override, and also the 515 /// destination index register DI/EDI/RDI. 516 RawFrmDstSrc = 6, 517 /// RawFrmImm8 - This is used for the ENTER instruction, which has two 518 /// immediates, the first of which is a 16-bit immediate (specified by 519 /// the imm encoding) and the second is a 8-bit fixed value. 520 RawFrmImm8 = 7, 521 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two 522 /// immediates, the first of which is a 16 or 32-bit immediate (specified by 523 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD 524 /// manual, this operand is described as pntr16:32 and pntr16:16 525 RawFrmImm16 = 8, 526 /// AddCCFrm - This form is used for Jcc that encode the condition code 527 /// in the lower 4 bits of the opcode. 528 AddCCFrm = 9, 529 /// PrefixByte - This form is used for instructions that represent a prefix 530 /// byte like data16 or rep. 531 PrefixByte = 10, 532 /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM 533 /// byte to specify a destination which in this case is memory and operand 3 534 /// with VEX.VVVV, and also encodes a condition code. 535 MRMDestMem4VOp3CC = 20, 536 /// Instructions operate on a register Reg/Opcode operand not the r/m field. 537 MRMr0 = 21, 538 /// MRMSrcMem - But force to use the SIB field. 539 MRMSrcMemFSIB = 22, 540 /// MRMDestMem - But force to use the SIB field. 541 MRMDestMemFSIB = 23, 542 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte 543 /// to specify a destination, which in this case is memory. 544 MRMDestMem = 24, 545 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte 546 /// to specify a source, which in this case is memory. 547 MRMSrcMem = 25, 548 /// MRMSrcMem4VOp3 - This form is used for instructions that encode 549 /// operand 3 with VEX.VVVV and load from memory. 550 MRMSrcMem4VOp3 = 26, 551 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM 552 /// byte to specify the fourth source, which in this case is memory. 553 MRMSrcMemOp4 = 27, 554 /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM 555 /// byte to specify the operands and also encodes a condition code. 556 MRMSrcMemCC = 28, 557 /// MRMXm - This form is used for instructions that use the Mod/RM byte 558 /// to specify a memory source, but doesn't use the middle field. And has 559 /// a condition code. 560 MRMXmCC = 30, 561 /// MRMXm - This form is used for instructions that use the Mod/RM byte 562 /// to specify a memory source, but doesn't use the middle field. 563 MRMXm = 31, 564 /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use 565 /// reg field to hold extended opcode, which is represented as /0, /1, ... 566 MRM0m = 32, // Format /0 567 MRM1m = 33, // Format /1 568 MRM2m = 34, // Format /2 569 MRM3m = 35, // Format /3 570 MRM4m = 36, // Format /4 571 MRM5m = 37, // Format /5 572 MRM6m = 38, // Format /6 573 MRM7m = 39, // Format /7 574 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte 575 /// to specify a destination, which in this case is a register. 576 MRMDestReg = 40, 577 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte 578 /// to specify a source, which in this case is a register. 579 MRMSrcReg = 41, 580 /// MRMSrcReg4VOp3 - This form is used for instructions that encode 581 /// operand 3 with VEX.VVVV and do not load from memory. 582 MRMSrcReg4VOp3 = 42, 583 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM 584 /// byte to specify the fourth source, which in this case is a register. 585 MRMSrcRegOp4 = 43, 586 /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM 587 /// byte to specify the operands and also encodes a condition code 588 MRMSrcRegCC = 44, 589 /// MRMXCCr - This form is used for instructions that use the Mod/RM byte 590 /// to specify a register source, but doesn't use the middle field. And has 591 /// a condition code. 592 MRMXrCC = 46, 593 /// MRMXr - This form is used for instructions that use the Mod/RM byte 594 /// to specify a register source, but doesn't use the middle field. 595 MRMXr = 47, 596 /// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use 597 /// reg field to hold extended opcode, which is represented as /0, /1, ... 598 MRM0r = 48, // Format /0 599 MRM1r = 49, // Format /1 600 MRM2r = 50, // Format /2 601 MRM3r = 51, // Format /3 602 MRM4r = 52, // Format /4 603 MRM5r = 53, // Format /5 604 MRM6r = 54, // Format /6 605 MRM7r = 55, // Format /7 606 /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but 607 /// ignore r/m. 608 MRM0X = 56, // Format /0 609 MRM1X = 57, // Format /1 610 MRM2X = 58, // Format /2 611 MRM3X = 59, // Format /3 612 MRM4X = 60, // Format /4 613 MRM5X = 61, // Format /5 614 MRM6X = 62, // Format /6 615 MRM7X = 63, // Format /7 616 /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX. 617 MRM_C0 = 64, 618 MRM_C1 = 65, 619 MRM_C2 = 66, 620 MRM_C3 = 67, 621 MRM_C4 = 68, 622 MRM_C5 = 69, 623 MRM_C6 = 70, 624 MRM_C7 = 71, 625 MRM_C8 = 72, 626 MRM_C9 = 73, 627 MRM_CA = 74, 628 MRM_CB = 75, 629 MRM_CC = 76, 630 MRM_CD = 77, 631 MRM_CE = 78, 632 MRM_CF = 79, 633 MRM_D0 = 80, 634 MRM_D1 = 81, 635 MRM_D2 = 82, 636 MRM_D3 = 83, 637 MRM_D4 = 84, 638 MRM_D5 = 85, 639 MRM_D6 = 86, 640 MRM_D7 = 87, 641 MRM_D8 = 88, 642 MRM_D9 = 89, 643 MRM_DA = 90, 644 MRM_DB = 91, 645 MRM_DC = 92, 646 MRM_DD = 93, 647 MRM_DE = 94, 648 MRM_DF = 95, 649 MRM_E0 = 96, 650 MRM_E1 = 97, 651 MRM_E2 = 98, 652 MRM_E3 = 99, 653 MRM_E4 = 100, 654 MRM_E5 = 101, 655 MRM_E6 = 102, 656 MRM_E7 = 103, 657 MRM_E8 = 104, 658 MRM_E9 = 105, 659 MRM_EA = 106, 660 MRM_EB = 107, 661 MRM_EC = 108, 662 MRM_ED = 109, 663 MRM_EE = 110, 664 MRM_EF = 111, 665 MRM_F0 = 112, 666 MRM_F1 = 113, 667 MRM_F2 = 114, 668 MRM_F3 = 115, 669 MRM_F4 = 116, 670 MRM_F5 = 117, 671 MRM_F6 = 118, 672 MRM_F7 = 119, 673 MRM_F8 = 120, 674 MRM_F9 = 121, 675 MRM_FA = 122, 676 MRM_FB = 123, 677 MRM_FC = 124, 678 MRM_FD = 125, 679 MRM_FE = 126, 680 MRM_FF = 127, 681 FormMask = 127, 682 //===------------------------------------------------------------------===// 683 // Actual flags... 684 /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. 685 /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in 686 /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 687 /// prefix in 16-bit mode. 688 OpSizeShift = 7, 689 OpSizeMask = 0x3 << OpSizeShift, 690 OpSizeFixed = 0 << OpSizeShift, 691 OpSize16 = 1 << OpSizeShift, 692 OpSize32 = 2 << OpSizeShift, 693 /// AsSize - AdSizeX implies this instruction determines its need of 0x67 694 /// prefix from a normal ModRM memory operand. The other types indicate that 695 /// an operand is encoded with a specific width and a prefix is needed if 696 /// it differs from the current mode. 697 AdSizeShift = OpSizeShift + 2, 698 AdSizeMask = 0x3 << AdSizeShift, 699 AdSizeX = 0 << AdSizeShift, 700 AdSize16 = 1 << AdSizeShift, 701 AdSize32 = 2 << AdSizeShift, 702 AdSize64 = 3 << AdSizeShift, 703 //===------------------------------------------------------------------===// 704 /// OpPrefix - There are several prefix bytes that are used as opcode 705 /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is 706 /// no prefix. 707 OpPrefixShift = AdSizeShift + 2, 708 OpPrefixMask = 0x3 << OpPrefixShift, 709 /// PD - Prefix code for packed double precision vector floating point 710 /// operations performed in the SSE registers. 711 PD = 1 << OpPrefixShift, 712 /// XS, XD - These prefix codes are for single and double precision scalar 713 /// floating point operations performed in the SSE registers. 714 XS = 2 << OpPrefixShift, 715 XD = 3 << OpPrefixShift, 716 //===------------------------------------------------------------------===// 717 /// OpMap - This field determines which opcode map this instruction 718 /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. 719 OpMapShift = OpPrefixShift + 2, 720 OpMapMask = 0xF << OpMapShift, 721 /// OB - OneByte - Set if this instruction has a one byte opcode. 722 OB = 0 << OpMapShift, 723 /// TB - TwoByte - Set if this instruction has a two byte opcode, which 724 /// starts with a 0x0F byte before the real opcode. 725 TB = 1 << OpMapShift, 726 /// T8, TA - Prefix after the 0x0F prefix. 727 T8 = 2 << OpMapShift, 728 TA = 3 << OpMapShift, 729 /// XOP8 - Prefix to include use of imm byte. 730 XOP8 = 4 << OpMapShift, 731 /// XOP9 - Prefix to exclude use of imm byte. 732 XOP9 = 5 << OpMapShift, 733 /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. 734 XOPA = 6 << OpMapShift, 735 /// ThreeDNow - This indicates that the instruction uses the 736 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents 737 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction 738 /// storing a classifier in the imm8 field. To simplify our implementation, 739 /// we handle this by storeing the classifier in the opcode field and using 740 /// this flag to indicate that the encoder should do the wacky 3DNow! thing. 741 ThreeDNow = 7 << OpMapShift, 742 /// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix. 743 T_MAP4 = 8 << OpMapShift, 744 T_MAP5 = 9 << OpMapShift, 745 T_MAP6 = 10 << OpMapShift, 746 T_MAP7 = 11 << OpMapShift, 747 //===------------------------------------------------------------------===// 748 /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode. 749 /// They are used to specify GPRs and SSE registers, 64-bit operand size, 750 /// etc. We only cares about REX.W and REX.R bits and only the former is 751 /// statically determined. 752 REXShift = OpMapShift + 4, 753 REX_W = 1 << REXShift, 754 //===------------------------------------------------------------------===// 755 // This 4-bit field describes the size of an immediate operand. Zero is 756 // unused so that we can tell if we forgot to set a value. 757 ImmShift = REXShift + 1, 758 Imm8 = 1 << ImmShift, 759 Imm8PCRel = 2 << ImmShift, 760 Imm8Reg = 3 << ImmShift, 761 Imm16 = 4 << ImmShift, 762 Imm16PCRel = 5 << ImmShift, 763 Imm32 = 6 << ImmShift, 764 Imm32PCRel = 7 << ImmShift, 765 Imm32S = 8 << ImmShift, 766 Imm64 = 9 << ImmShift, 767 ImmMask = 15 << ImmShift, 768 //===------------------------------------------------------------------===// 769 /// FP Instruction Classification... Zero is non-fp instruction. 770 /// FPTypeMask - Mask for all of the FP types... 771 FPTypeShift = ImmShift + 4, 772 FPTypeMask = 7 << FPTypeShift, 773 /// NotFP - The default, set for instructions that do not use FP registers. 774 NotFP = 0 << FPTypeShift, 775 /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 776 ZeroArgFP = 1 << FPTypeShift, 777 /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst 778 OneArgFP = 2 << FPTypeShift, 779 /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a 780 /// result back to ST(0). For example, fcos, fsqrt, etc. 781 OneArgFPRW = 3 << FPTypeShift, 782 /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an 783 /// explicit argument, storing the result to either ST(0) or the implicit 784 /// argument. For example: fadd, fsub, fmul, etc... 785 TwoArgFP = 4 << FPTypeShift, 786 /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an 787 /// explicit argument, but have no destination. Example: fucom, fucomi, ... 788 CompareFP = 5 << FPTypeShift, 789 /// CondMovFP - "2 operand" floating point conditional move instructions. 790 CondMovFP = 6 << FPTypeShift, 791 /// SpecialFP - Special instruction forms. Dispatch by opcode explicitly. 792 SpecialFP = 7 << FPTypeShift, 793 /// Lock prefix 794 LOCKShift = FPTypeShift + 3, 795 LOCK = 1 << LOCKShift, 796 /// REP prefix 797 REPShift = LOCKShift + 1, 798 REP = 1 << REPShift, 799 /// Execution domain for SSE instructions. 800 /// 0 means normal, non-SSE instruction. 801 SSEDomainShift = REPShift + 1, 802 /// Encoding 803 EncodingShift = SSEDomainShift + 2, 804 EncodingMask = 0x3 << EncodingShift, 805 /// VEX - encoding using 0xC4/0xC5 806 VEX = 1 << EncodingShift, 807 /// XOP - Opcode prefix used by XOP instructions. 808 XOP = 2 << EncodingShift, 809 /// EVEX - Specifies that this instruction use EVEX form which provides 810 /// syntax support up to 32 512-bit register operands and up to 7 16-bit 811 /// mask operands as well as source operand data swizzling/memory operand 812 /// conversion, eviction hint, and rounding mode. 813 EVEX = 3 << EncodingShift, 814 /// Opcode 815 OpcodeShift = EncodingShift + 2, 816 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 817 /// address instructions in SSE are represented as 3 address ones in AVX 818 /// and the additional register is encoded in VEX_VVVV prefix. 819 VEX_4VShift = OpcodeShift + 8, 820 VEX_4V = 1ULL << VEX_4VShift, 821 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current 822 /// instruction uses 256-bit wide registers. This is usually auto detected 823 /// if a VR256 register is used, but some AVX instructions also have this 824 /// field marked when using a f256 memory references. 825 VEX_LShift = VEX_4VShift + 1, 826 VEX_L = 1ULL << VEX_LShift, 827 /// EVEX_K - Set if this instruction requires masking 828 EVEX_KShift = VEX_LShift + 1, 829 EVEX_K = 1ULL << EVEX_KShift, 830 /// EVEX_Z - Set if this instruction has EVEX.Z field set. 831 EVEX_ZShift = EVEX_KShift + 1, 832 EVEX_Z = 1ULL << EVEX_ZShift, 833 /// EVEX_L2 - Set if this instruction has EVEX.L' field set. 834 EVEX_L2Shift = EVEX_ZShift + 1, 835 EVEX_L2 = 1ULL << EVEX_L2Shift, 836 /// EVEX_B - Set if this instruction has EVEX.B field set. 837 EVEX_BShift = EVEX_L2Shift + 1, 838 EVEX_B = 1ULL << EVEX_BShift, 839 /// The scaling factor for the AVX512's 8-bit compressed displacement. 840 CD8_Scale_Shift = EVEX_BShift + 1, 841 CD8_Scale_Mask = 7ULL << CD8_Scale_Shift, 842 /// Explicitly specified rounding control 843 EVEX_RCShift = CD8_Scale_Shift + 3, 844 EVEX_RC = 1ULL << EVEX_RCShift, 845 /// NOTRACK prefix 846 NoTrackShift = EVEX_RCShift + 1, 847 NOTRACK = 1ULL << NoTrackShift, 848 /// Force REX2/VEX/EVEX encoding 849 ExplicitOpPrefixShift = NoTrackShift + 1, 850 /// For instructions that require REX2 prefix even if EGPR is not used. 851 ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift, 852 /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3} 853 /// is present. 854 ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift, 855 /// For instructions that are promoted to EVEX space for EGPR. 856 ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift, 857 ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift, 858 /// EVEX_NF - Set if this instruction has EVEX.NF field set. 859 EVEX_NFShift = ExplicitOpPrefixShift + 2, 860 EVEX_NF = 1ULL << EVEX_NFShift 861 }; 862 863 /// \returns true if the instruction with given opcode is a prefix. 864 inline bool isPrefix(uint64_t TSFlags) { 865 return (TSFlags & X86II::FormMask) == PrefixByte; 866 } 867 868 /// \returns true if the instruction with given opcode is a pseudo. 869 inline bool isPseudo(uint64_t TSFlags) { 870 return (TSFlags & X86II::FormMask) == Pseudo; 871 } 872 873 /// \returns the "base" X86 opcode for the specified machine 874 /// instruction. 875 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { 876 return TSFlags >> X86II::OpcodeShift; 877 } 878 879 inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } 880 881 /// Decode the "size of immediate" field from the TSFlags field of the 882 /// specified instruction. 883 inline unsigned getSizeOfImm(uint64_t TSFlags) { 884 switch (TSFlags & X86II::ImmMask) { 885 default: 886 llvm_unreachable("Unknown immediate size"); 887 case X86II::Imm8: 888 case X86II::Imm8PCRel: 889 case X86II::Imm8Reg: 890 return 1; 891 case X86II::Imm16: 892 case X86II::Imm16PCRel: 893 return 2; 894 case X86II::Imm32: 895 case X86II::Imm32S: 896 case X86II::Imm32PCRel: 897 return 4; 898 case X86II::Imm64: 899 return 8; 900 } 901 } 902 903 /// \returns true if the immediate of the specified instruction's TSFlags 904 /// indicates that it is pc relative. 905 inline bool isImmPCRel(uint64_t TSFlags) { 906 switch (TSFlags & X86II::ImmMask) { 907 default: 908 llvm_unreachable("Unknown immediate size"); 909 case X86II::Imm8PCRel: 910 case X86II::Imm16PCRel: 911 case X86II::Imm32PCRel: 912 return true; 913 case X86II::Imm8: 914 case X86II::Imm8Reg: 915 case X86II::Imm16: 916 case X86II::Imm32: 917 case X86II::Imm32S: 918 case X86II::Imm64: 919 return false; 920 } 921 } 922 923 /// \returns true if the immediate of the specified instruction's 924 /// TSFlags indicates that it is signed. 925 inline bool isImmSigned(uint64_t TSFlags) { 926 switch (TSFlags & X86II::ImmMask) { 927 default: 928 llvm_unreachable("Unknown immediate signedness"); 929 case X86II::Imm32S: 930 return true; 931 case X86II::Imm8: 932 case X86II::Imm8PCRel: 933 case X86II::Imm8Reg: 934 case X86II::Imm16: 935 case X86II::Imm16PCRel: 936 case X86II::Imm32: 937 case X86II::Imm32PCRel: 938 case X86II::Imm64: 939 return false; 940 } 941 } 942 943 /// Compute whether all of the def operands are repeated in the uses and 944 /// therefore should be skipped. 945 /// This determines the start of the unique operand list. We need to determine 946 /// if all of the defs have a corresponding tied operand in the uses. 947 /// Unfortunately, the tied operand information is encoded in the uses not 948 /// the defs so we have to use some heuristics to find which operands to 949 /// query. 950 inline unsigned getOperandBias(const MCInstrDesc &Desc) { 951 unsigned NumDefs = Desc.getNumDefs(); 952 unsigned NumOps = Desc.getNumOperands(); 953 switch (NumDefs) { 954 default: 955 llvm_unreachable("Unexpected number of defs"); 956 case 0: 957 return 0; 958 case 1: 959 // Common two addr case. 960 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) 961 return 1; 962 // Check for AVX-512 scatter which has a TIED_TO in the second to last 963 // operand. 964 if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0) 965 return 1; 966 return 0; 967 case 2: 968 // XCHG/XADD have two destinations and two sources. 969 if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 970 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) 971 return 2; 972 // Check for gather. AVX-512 has the second tied operand early. AVX2 973 // has it as the last op. 974 if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 975 (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 || 976 Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1)) 977 return 2; 978 return 0; 979 } 980 } 981 982 /// \returns true if the instruction has a NDD (new data destination). 983 inline bool hasNewDataDest(uint64_t TSFlags) { 984 return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 && 985 (TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V); 986 } 987 988 /// \returns operand # for the first field of the memory operand or -1 if no 989 /// memory operands. 990 /// NOTE: This ignores tied operands. If there is a tied register which is 991 /// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted 992 /// as one operand. 993 inline int getMemoryOperandNo(uint64_t TSFlags) { 994 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 995 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 996 997 switch (TSFlags & X86II::FormMask) { 998 default: 999 llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); 1000 case X86II::Pseudo: 1001 case X86II::RawFrm: 1002 case X86II::AddRegFrm: 1003 case X86II::RawFrmImm8: 1004 case X86II::RawFrmImm16: 1005 case X86II::RawFrmMemOffs: 1006 case X86II::RawFrmSrc: 1007 case X86II::RawFrmDst: 1008 case X86II::RawFrmDstSrc: 1009 case X86II::AddCCFrm: 1010 case X86II::PrefixByte: 1011 return -1; 1012 case X86II::MRMDestMem: 1013 case X86II::MRMDestMemFSIB: 1014 return hasNewDataDest(TSFlags); 1015 case X86II::MRMSrcMem: 1016 case X86II::MRMSrcMemFSIB: 1017 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1018 // mask register. 1019 return 1 + HasVEX_4V + HasEVEX_K; 1020 case X86II::MRMSrcMem4VOp3: 1021 // Skip registers encoded in reg. 1022 return 1 + HasEVEX_K; 1023 case X86II::MRMSrcMemOp4: 1024 // Skip registers encoded in reg, VEX_VVVV, and I8IMM. 1025 return 3; 1026 case X86II::MRMSrcMemCC: 1027 case X86II::MRMDestMem4VOp3CC: 1028 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1029 // mask register. 1030 return 1; 1031 case X86II::MRMDestReg: 1032 case X86II::MRMSrcReg: 1033 case X86II::MRMSrcReg4VOp3: 1034 case X86II::MRMSrcRegOp4: 1035 case X86II::MRMSrcRegCC: 1036 case X86II::MRMXrCC: 1037 case X86II::MRMr0: 1038 case X86II::MRMXr: 1039 case X86II::MRM0r: 1040 case X86II::MRM1r: 1041 case X86II::MRM2r: 1042 case X86II::MRM3r: 1043 case X86II::MRM4r: 1044 case X86II::MRM5r: 1045 case X86II::MRM6r: 1046 case X86II::MRM7r: 1047 return -1; 1048 case X86II::MRM0X: 1049 case X86II::MRM1X: 1050 case X86II::MRM2X: 1051 case X86II::MRM3X: 1052 case X86II::MRM4X: 1053 case X86II::MRM5X: 1054 case X86II::MRM6X: 1055 case X86II::MRM7X: 1056 return -1; 1057 case X86II::MRMXmCC: 1058 case X86II::MRMXm: 1059 case X86II::MRM0m: 1060 case X86II::MRM1m: 1061 case X86II::MRM2m: 1062 case X86II::MRM3m: 1063 case X86II::MRM4m: 1064 case X86II::MRM5m: 1065 case X86II::MRM6m: 1066 case X86II::MRM7m: 1067 // Start from 0, skip registers encoded in VEX_VVVV or a mask register. 1068 return 0 + HasVEX_4V + HasEVEX_K; 1069 case X86II::MRM_C0: 1070 case X86II::MRM_C1: 1071 case X86II::MRM_C2: 1072 case X86II::MRM_C3: 1073 case X86II::MRM_C4: 1074 case X86II::MRM_C5: 1075 case X86II::MRM_C6: 1076 case X86II::MRM_C7: 1077 case X86II::MRM_C8: 1078 case X86II::MRM_C9: 1079 case X86II::MRM_CA: 1080 case X86II::MRM_CB: 1081 case X86II::MRM_CC: 1082 case X86II::MRM_CD: 1083 case X86II::MRM_CE: 1084 case X86II::MRM_CF: 1085 case X86II::MRM_D0: 1086 case X86II::MRM_D1: 1087 case X86II::MRM_D2: 1088 case X86II::MRM_D3: 1089 case X86II::MRM_D4: 1090 case X86II::MRM_D5: 1091 case X86II::MRM_D6: 1092 case X86II::MRM_D7: 1093 case X86II::MRM_D8: 1094 case X86II::MRM_D9: 1095 case X86II::MRM_DA: 1096 case X86II::MRM_DB: 1097 case X86II::MRM_DC: 1098 case X86II::MRM_DD: 1099 case X86II::MRM_DE: 1100 case X86II::MRM_DF: 1101 case X86II::MRM_E0: 1102 case X86II::MRM_E1: 1103 case X86II::MRM_E2: 1104 case X86II::MRM_E3: 1105 case X86II::MRM_E4: 1106 case X86II::MRM_E5: 1107 case X86II::MRM_E6: 1108 case X86II::MRM_E7: 1109 case X86II::MRM_E8: 1110 case X86II::MRM_E9: 1111 case X86II::MRM_EA: 1112 case X86II::MRM_EB: 1113 case X86II::MRM_EC: 1114 case X86II::MRM_ED: 1115 case X86II::MRM_EE: 1116 case X86II::MRM_EF: 1117 case X86II::MRM_F0: 1118 case X86II::MRM_F1: 1119 case X86II::MRM_F2: 1120 case X86II::MRM_F3: 1121 case X86II::MRM_F4: 1122 case X86II::MRM_F5: 1123 case X86II::MRM_F6: 1124 case X86II::MRM_F7: 1125 case X86II::MRM_F8: 1126 case X86II::MRM_F9: 1127 case X86II::MRM_FA: 1128 case X86II::MRM_FB: 1129 case X86II::MRM_FC: 1130 case X86II::MRM_FD: 1131 case X86II::MRM_FE: 1132 case X86II::MRM_FF: 1133 return -1; 1134 } 1135 } 1136 1137 /// \returns true if the register is a XMM. 1138 inline bool isXMMReg(unsigned RegNo) { 1139 assert(X86::XMM15 - X86::XMM0 == 15 && 1140 "XMM0-15 registers are not continuous"); 1141 assert(X86::XMM31 - X86::XMM16 == 15 && 1142 "XMM16-31 registers are not continuous"); 1143 return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) || 1144 (RegNo >= X86::XMM16 && RegNo <= X86::XMM31); 1145 } 1146 1147 /// \returns true if the register is a YMM. 1148 inline bool isYMMReg(unsigned RegNo) { 1149 assert(X86::YMM15 - X86::YMM0 == 15 && 1150 "YMM0-15 registers are not continuous"); 1151 assert(X86::YMM31 - X86::YMM16 == 15 && 1152 "YMM16-31 registers are not continuous"); 1153 return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) || 1154 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31); 1155 } 1156 1157 /// \returns true if the register is a ZMM. 1158 inline bool isZMMReg(unsigned RegNo) { 1159 assert(X86::ZMM31 - X86::ZMM0 == 31 && "ZMM registers are not continuous"); 1160 return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31; 1161 } 1162 1163 /// \returns true if \p RegNo is an apx extended register. 1164 inline bool isApxExtendedReg(unsigned RegNo) { 1165 assert(X86::R31WH - X86::R16 == 95 && "EGPRs are not continuous"); 1166 return RegNo >= X86::R16 && RegNo <= X86::R31WH; 1167 } 1168 1169 /// \returns true if the MachineOperand is a x86-64 extended (r8 or 1170 /// higher) register, e.g. r8, xmm8, xmm13, etc. 1171 inline bool isX86_64ExtendedReg(unsigned RegNo) { 1172 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) || 1173 (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || 1174 (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) || 1175 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || 1176 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) 1177 return true; 1178 1179 if (isApxExtendedReg(RegNo)) 1180 return true; 1181 1182 switch (RegNo) { 1183 default: 1184 break; 1185 case X86::R8: 1186 case X86::R9: 1187 case X86::R10: 1188 case X86::R11: 1189 case X86::R12: 1190 case X86::R13: 1191 case X86::R14: 1192 case X86::R15: 1193 case X86::R8D: 1194 case X86::R9D: 1195 case X86::R10D: 1196 case X86::R11D: 1197 case X86::R12D: 1198 case X86::R13D: 1199 case X86::R14D: 1200 case X86::R15D: 1201 case X86::R8W: 1202 case X86::R9W: 1203 case X86::R10W: 1204 case X86::R11W: 1205 case X86::R12W: 1206 case X86::R13W: 1207 case X86::R14W: 1208 case X86::R15W: 1209 case X86::R8B: 1210 case X86::R9B: 1211 case X86::R10B: 1212 case X86::R11B: 1213 case X86::R12B: 1214 case X86::R13B: 1215 case X86::R14B: 1216 case X86::R15B: 1217 case X86::CR8: 1218 case X86::CR9: 1219 case X86::CR10: 1220 case X86::CR11: 1221 case X86::CR12: 1222 case X86::CR13: 1223 case X86::CR14: 1224 case X86::CR15: 1225 case X86::DR8: 1226 case X86::DR9: 1227 case X86::DR10: 1228 case X86::DR11: 1229 case X86::DR12: 1230 case X86::DR13: 1231 case X86::DR14: 1232 case X86::DR15: 1233 return true; 1234 } 1235 return false; 1236 } 1237 1238 inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) { 1239 uint64_t TSFlags = Desc.TSFlags; 1240 uint64_t Encoding = TSFlags & EncodingMask; 1241 // EVEX can always use egpr. 1242 if (Encoding == X86II::EVEX) 1243 return true; 1244 1245 // To be conservative, egpr is not used for all pseudo instructions 1246 // because we are not sure what instruction it will become. 1247 // FIXME: Could we improve it in X86ExpandPseudo? 1248 if (isPseudo(TSFlags)) 1249 return false; 1250 1251 // MAP OB/TB in legacy encoding space can always use egpr except 1252 // XSAVE*/XRSTOR*. 1253 unsigned Opcode = Desc.Opcode; 1254 switch (Opcode) { 1255 default: 1256 break; 1257 case X86::XSAVE: 1258 case X86::XSAVE64: 1259 case X86::XSAVEOPT: 1260 case X86::XSAVEOPT64: 1261 case X86::XSAVEC: 1262 case X86::XSAVEC64: 1263 case X86::XSAVES: 1264 case X86::XSAVES64: 1265 case X86::XRSTOR: 1266 case X86::XRSTOR64: 1267 case X86::XRSTORS: 1268 case X86::XRSTORS64: 1269 return false; 1270 } 1271 uint64_t OpMap = TSFlags & X86II::OpMapMask; 1272 return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB); 1273 } 1274 1275 /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher) 1276 /// registers, e.g. zmm21, etc. 1277 static inline bool is32ExtendedReg(unsigned RegNo) { 1278 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || 1279 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || 1280 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); 1281 } 1282 1283 inline bool isX86_64NonExtLowByteReg(unsigned reg) { 1284 return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || 1285 reg == X86::DIL); 1286 } 1287 1288 /// \returns true if this is a masked instruction. 1289 inline bool isKMasked(uint64_t TSFlags) { 1290 return (TSFlags & X86II::EVEX_K) != 0; 1291 } 1292 1293 /// \returns true if this is a merge masked instruction. 1294 inline bool isKMergeMasked(uint64_t TSFlags) { 1295 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; 1296 } 1297 } // namespace X86II 1298 } // namespace llvm 1299 #endif 1300