1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains small standalone helper functions and enum definitions for 10 // the X86 target useful for the compiler back-end and the MC libraries. 11 // As such, it deliberately does not include references to LLVM core 12 // code gen types, passes, etc.. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H 18 19 #include "X86MCTargetDesc.h" 20 #include "llvm/MC/MCInstrDesc.h" 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/ErrorHandling.h" 23 24 namespace llvm { 25 namespace X86 { 26 // Enums for memory operand decoding. Each memory operand is represented with 27 // a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment] 28 enum { 29 AddrBaseReg = 0, 30 AddrScaleAmt = 1, 31 AddrIndexReg = 2, 32 AddrDisp = 3, 33 // The operand # of the segment in the memory operand. 34 AddrSegmentReg = 4, 35 // Total number of operands in a memory reference. 36 AddrNumOperands = 5 37 }; 38 39 /// AVX512 static rounding constants. These need to match the values in 40 /// avx512fintrin.h. 41 enum STATIC_ROUNDING { 42 TO_NEAREST_INT = 0, 43 TO_NEG_INF = 1, 44 TO_POS_INF = 2, 45 TO_ZERO = 3, 46 CUR_DIRECTION = 4, 47 NO_EXC = 8 48 }; 49 50 /// The constants to describe instr prefixes if there are 51 enum IPREFIXES { 52 IP_NO_PREFIX = 0, 53 IP_HAS_OP_SIZE = 1U << 0, 54 IP_HAS_AD_SIZE = 1U << 1, 55 IP_HAS_REPEAT_NE = 1U << 2, 56 IP_HAS_REPEAT = 1U << 3, 57 IP_HAS_LOCK = 1U << 4, 58 IP_HAS_NOTRACK = 1U << 5, 59 IP_USE_REX = 1U << 6, 60 IP_USE_REX2 = 1U << 7, 61 IP_USE_VEX = 1U << 8, 62 IP_USE_VEX2 = 1U << 9, 63 IP_USE_VEX3 = 1U << 10, 64 IP_USE_EVEX = 1U << 11, 65 IP_USE_DISP8 = 1U << 12, 66 IP_USE_DISP32 = 1U << 13, 67 }; 68 69 enum OperandType : unsigned { 70 // AVX512 embedded rounding control. This should only have values 0-3. 71 OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET, 72 OPERAND_COND_CODE, 73 }; 74 75 // X86 specific condition code. These correspond to X86_*_COND in 76 // X86InstrInfo.td. They must be kept in synch. 77 enum CondCode { 78 COND_O = 0, 79 COND_NO = 1, 80 COND_B = 2, 81 COND_AE = 3, 82 COND_E = 4, 83 COND_NE = 5, 84 COND_BE = 6, 85 COND_A = 7, 86 COND_S = 8, 87 COND_NS = 9, 88 COND_P = 10, 89 COND_NP = 11, 90 COND_L = 12, 91 COND_GE = 13, 92 COND_LE = 14, 93 COND_G = 15, 94 LAST_VALID_COND = COND_G, 95 // Artificial condition codes. These are used by analyzeBranch 96 // to indicate a block terminated with two conditional branches that together 97 // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE, 98 // which can't be represented on x86 with a single condition. These 99 // are never used in MachineInstrs and are inverses of one another. 100 COND_NE_OR_P, 101 COND_E_AND_NP, 102 COND_INVALID 103 }; 104 105 // The classification for the first instruction in macro fusion. 106 // FIXME: Zen 3 support branch fusion for OR/XOR. 107 enum class FirstMacroFusionInstKind { 108 Test, // TEST 109 Cmp, // CMP 110 And, // AND 111 AddSub, // ADD, SUB 112 IncDec, // INC, DEC 113 Invalid // Not valid as a first macro fusion instruction 114 }; 115 116 enum class SecondMacroFusionInstKind { 117 AB, // JA, JB and variants 118 ELG, // JE, JL, JG and variants 119 SPO, // JS, JP, JO and variants 120 Invalid, // Not a fusible jump. 121 }; 122 123 /// \returns the type of the first instruction in macro-fusion. 124 // FIXME: Zen 3 support branch fusion for OR/XOR. 125 inline FirstMacroFusionInstKind 126 classifyFirstOpcodeInMacroFusion(unsigned Opcode) { 127 switch (Opcode) { 128 default: 129 return FirstMacroFusionInstKind::Invalid; 130 // TEST 131 case X86::TEST16i16: 132 case X86::TEST16mr: 133 case X86::TEST16ri: 134 case X86::TEST16rr: 135 case X86::TEST32i32: 136 case X86::TEST32mr: 137 case X86::TEST32ri: 138 case X86::TEST32rr: 139 case X86::TEST64i32: 140 case X86::TEST64mr: 141 case X86::TEST64ri32: 142 case X86::TEST64rr: 143 case X86::TEST8i8: 144 case X86::TEST8mr: 145 case X86::TEST8ri: 146 case X86::TEST8rr: 147 return FirstMacroFusionInstKind::Test; 148 case X86::AND16i16: 149 case X86::AND16ri: 150 case X86::AND16ri8: 151 case X86::AND16rm: 152 case X86::AND16rr: 153 case X86::AND32i32: 154 case X86::AND32ri: 155 case X86::AND32ri8: 156 case X86::AND32rm: 157 case X86::AND32rr: 158 case X86::AND64i32: 159 case X86::AND64ri32: 160 case X86::AND64ri8: 161 case X86::AND64rm: 162 case X86::AND64rr: 163 case X86::AND8i8: 164 case X86::AND8ri: 165 case X86::AND8ri8: 166 case X86::AND8rm: 167 case X86::AND8rr: 168 return FirstMacroFusionInstKind::And; 169 // CMP 170 case X86::CMP16i16: 171 case X86::CMP16mr: 172 case X86::CMP16ri: 173 case X86::CMP16ri8: 174 case X86::CMP16rm: 175 case X86::CMP16rr: 176 case X86::CMP32i32: 177 case X86::CMP32mr: 178 case X86::CMP32ri: 179 case X86::CMP32ri8: 180 case X86::CMP32rm: 181 case X86::CMP32rr: 182 case X86::CMP64i32: 183 case X86::CMP64mr: 184 case X86::CMP64ri32: 185 case X86::CMP64ri8: 186 case X86::CMP64rm: 187 case X86::CMP64rr: 188 case X86::CMP8i8: 189 case X86::CMP8mr: 190 case X86::CMP8ri: 191 case X86::CMP8ri8: 192 case X86::CMP8rm: 193 case X86::CMP8rr: 194 return FirstMacroFusionInstKind::Cmp; 195 // ADD 196 case X86::ADD16i16: 197 case X86::ADD16ri: 198 case X86::ADD16ri8: 199 case X86::ADD16rm: 200 case X86::ADD16rr: 201 case X86::ADD32i32: 202 case X86::ADD32ri: 203 case X86::ADD32ri8: 204 case X86::ADD32rm: 205 case X86::ADD32rr: 206 case X86::ADD64i32: 207 case X86::ADD64ri32: 208 case X86::ADD64ri8: 209 case X86::ADD64rm: 210 case X86::ADD64rr: 211 case X86::ADD8i8: 212 case X86::ADD8ri: 213 case X86::ADD8ri8: 214 case X86::ADD8rm: 215 case X86::ADD8rr: 216 // SUB 217 case X86::SUB16i16: 218 case X86::SUB16ri: 219 case X86::SUB16ri8: 220 case X86::SUB16rm: 221 case X86::SUB16rr: 222 case X86::SUB32i32: 223 case X86::SUB32ri: 224 case X86::SUB32ri8: 225 case X86::SUB32rm: 226 case X86::SUB32rr: 227 case X86::SUB64i32: 228 case X86::SUB64ri32: 229 case X86::SUB64ri8: 230 case X86::SUB64rm: 231 case X86::SUB64rr: 232 case X86::SUB8i8: 233 case X86::SUB8ri: 234 case X86::SUB8ri8: 235 case X86::SUB8rm: 236 case X86::SUB8rr: 237 return FirstMacroFusionInstKind::AddSub; 238 // INC 239 case X86::INC16r: 240 case X86::INC16r_alt: 241 case X86::INC32r: 242 case X86::INC32r_alt: 243 case X86::INC64r: 244 case X86::INC8r: 245 // DEC 246 case X86::DEC16r: 247 case X86::DEC16r_alt: 248 case X86::DEC32r: 249 case X86::DEC32r_alt: 250 case X86::DEC64r: 251 case X86::DEC8r: 252 return FirstMacroFusionInstKind::IncDec; 253 } 254 } 255 256 /// \returns the type of the second instruction in macro-fusion. 257 inline SecondMacroFusionInstKind 258 classifySecondCondCodeInMacroFusion(X86::CondCode CC) { 259 if (CC == X86::COND_INVALID) 260 return SecondMacroFusionInstKind::Invalid; 261 switch (CC) { 262 default: 263 return SecondMacroFusionInstKind::Invalid; 264 case X86::COND_E: // JE,JZ 265 case X86::COND_NE: // JNE,JNZ 266 case X86::COND_L: // JL,JNGE 267 case X86::COND_LE: // JLE,JNG 268 case X86::COND_G: // JG,JNLE 269 case X86::COND_GE: // JGE,JNL 270 return SecondMacroFusionInstKind::ELG; 271 case X86::COND_B: // JB,JC 272 case X86::COND_BE: // JNA,JBE 273 case X86::COND_A: // JA,JNBE 274 case X86::COND_AE: // JAE,JNC,JNB 275 return SecondMacroFusionInstKind::AB; 276 case X86::COND_S: // JS 277 case X86::COND_NS: // JNS 278 case X86::COND_P: // JP,JPE 279 case X86::COND_NP: // JNP,JPO 280 case X86::COND_O: // JO 281 case X86::COND_NO: // JNO 282 return SecondMacroFusionInstKind::SPO; 283 } 284 } 285 286 /// \param FirstKind kind of the first instruction in macro fusion. 287 /// \param SecondKind kind of the second instruction in macro fusion. 288 /// 289 /// \returns true if the two instruction can be macro fused. 290 inline bool isMacroFused(FirstMacroFusionInstKind FirstKind, 291 SecondMacroFusionInstKind SecondKind) { 292 switch (FirstKind) { 293 case X86::FirstMacroFusionInstKind::Test: 294 case X86::FirstMacroFusionInstKind::And: 295 return true; 296 case X86::FirstMacroFusionInstKind::Cmp: 297 case X86::FirstMacroFusionInstKind::AddSub: 298 return SecondKind == X86::SecondMacroFusionInstKind::AB || 299 SecondKind == X86::SecondMacroFusionInstKind::ELG; 300 case X86::FirstMacroFusionInstKind::IncDec: 301 return SecondKind == X86::SecondMacroFusionInstKind::ELG; 302 case X86::FirstMacroFusionInstKind::Invalid: 303 return false; 304 } 305 llvm_unreachable("unknown fusion type"); 306 } 307 308 /// Defines the possible values of the branch boundary alignment mask. 309 enum AlignBranchBoundaryKind : uint8_t { 310 AlignBranchNone = 0, 311 AlignBranchFused = 1U << 0, 312 AlignBranchJcc = 1U << 1, 313 AlignBranchJmp = 1U << 2, 314 AlignBranchCall = 1U << 3, 315 AlignBranchRet = 1U << 4, 316 AlignBranchIndirect = 1U << 5 317 }; 318 319 /// Defines the encoding values for segment override prefix. 320 enum EncodingOfSegmentOverridePrefix : uint8_t { 321 CS_Encoding = 0x2E, 322 DS_Encoding = 0x3E, 323 ES_Encoding = 0x26, 324 FS_Encoding = 0x64, 325 GS_Encoding = 0x65, 326 SS_Encoding = 0x36 327 }; 328 329 /// Given a segment register, return the encoding of the segment override 330 /// prefix for it. 331 inline EncodingOfSegmentOverridePrefix 332 getSegmentOverridePrefixForReg(unsigned Reg) { 333 switch (Reg) { 334 default: 335 llvm_unreachable("Unknown segment register!"); 336 case X86::CS: 337 return CS_Encoding; 338 case X86::DS: 339 return DS_Encoding; 340 case X86::ES: 341 return ES_Encoding; 342 case X86::FS: 343 return FS_Encoding; 344 case X86::GS: 345 return GS_Encoding; 346 case X86::SS: 347 return SS_Encoding; 348 } 349 } 350 351 } // namespace X86 352 353 /// X86II - This namespace holds all of the target specific flags that 354 /// instruction info tracks. 355 /// 356 namespace X86II { 357 /// Target Operand Flag enum. 358 enum TOF { 359 //===------------------------------------------------------------------===// 360 // X86 Specific MachineOperand flags. 361 // 362 /// MO_NO_FLAG - No flag for the operand 363 MO_NO_FLAG, 364 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a 365 /// relocation of: 366 /// SYMBOL_LABEL + [. - PICBASELABEL] 367 MO_GOT_ABSOLUTE_ADDRESS, 368 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the 369 /// immediate should get the value of the symbol minus the PIC base label: 370 /// SYMBOL_LABEL - PICBASELABEL 371 MO_PIC_BASE_OFFSET, 372 /// MO_GOT - On a symbol operand this indicates that the immediate is the 373 /// offset to the GOT entry for the symbol name from the base of the GOT. 374 /// See the X86-64 ELF ABI supplement for more details. 375 /// SYMBOL_LABEL @GOT 376 MO_GOT, 377 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is 378 /// the offset to the location of the symbol name from the base of the GOT. 379 /// See the X86-64 ELF ABI supplement for more details. 380 /// SYMBOL_LABEL @GOTOFF 381 MO_GOTOFF, 382 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is 383 /// offset to the GOT entry for the symbol name from the current code 384 /// location. 385 /// See the X86-64 ELF ABI supplement for more details. 386 /// SYMBOL_LABEL @GOTPCREL 387 MO_GOTPCREL, 388 /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL 389 /// relocations are guaranteed to be emitted by the integrated assembler 390 /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations. 391 MO_GOTPCREL_NORELAX, 392 /// MO_PLT - On a symbol operand this indicates that the immediate is 393 /// offset to the PLT entry of symbol name from the current code location. 394 /// See the X86-64 ELF ABI supplement for more details. 395 /// SYMBOL_LABEL @PLT 396 MO_PLT, 397 /// MO_TLSGD - On a symbol operand this indicates that the immediate is 398 /// the offset of the GOT entry with the TLS index structure that contains 399 /// the module number and variable offset for the symbol. Used in the 400 /// general dynamic TLS access model. 401 /// See 'ELF Handling for Thread-Local Storage' for more details. 402 /// SYMBOL_LABEL @TLSGD 403 MO_TLSGD, 404 /// MO_TLSLD - On a symbol operand this indicates that the immediate is 405 /// the offset of the GOT entry with the TLS index for the module that 406 /// contains the symbol. When this index is passed to a call to 407 /// __tls_get_addr, the function will return the base address of the TLS 408 /// block for the symbol. Used in the x86-64 local dynamic TLS access model. 409 /// See 'ELF Handling for Thread-Local Storage' for more details. 410 /// SYMBOL_LABEL @TLSLD 411 MO_TLSLD, 412 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is 413 /// the offset of the GOT entry with the TLS index for the module that 414 /// contains the symbol. When this index is passed to a call to 415 /// ___tls_get_addr, the function will return the base address of the TLS 416 /// block for the symbol. Used in the IA32 local dynamic TLS access model. 417 /// See 'ELF Handling for Thread-Local Storage' for more details. 418 /// SYMBOL_LABEL @TLSLDM 419 MO_TLSLDM, 420 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is 421 /// the offset of the GOT entry with the thread-pointer offset for the 422 /// symbol. Used in the x86-64 initial exec TLS access model. 423 /// See 'ELF Handling for Thread-Local Storage' for more details. 424 /// SYMBOL_LABEL @GOTTPOFF 425 MO_GOTTPOFF, 426 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is 427 /// the absolute address of the GOT entry with the negative thread-pointer 428 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access 429 /// model. 430 /// See 'ELF Handling for Thread-Local Storage' for more details. 431 /// SYMBOL_LABEL @INDNTPOFF 432 MO_INDNTPOFF, 433 /// MO_TPOFF - On a symbol operand this indicates that the immediate is 434 /// the thread-pointer offset for the symbol. Used in the x86-64 local 435 /// exec TLS access model. 436 /// See 'ELF Handling for Thread-Local Storage' for more details. 437 /// SYMBOL_LABEL @TPOFF 438 MO_TPOFF, 439 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is 440 /// the offset of the GOT entry with the TLS offset of the symbol. Used 441 /// in the local dynamic TLS access model. 442 /// See 'ELF Handling for Thread-Local Storage' for more details. 443 /// SYMBOL_LABEL @DTPOFF 444 MO_DTPOFF, 445 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is 446 /// the negative thread-pointer offset for the symbol. Used in the IA32 447 /// local exec TLS access model. 448 /// See 'ELF Handling for Thread-Local Storage' for more details. 449 /// SYMBOL_LABEL @NTPOFF 450 MO_NTPOFF, 451 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is 452 /// the offset of the GOT entry with the negative thread-pointer offset for 453 /// the symbol. Used in the PIC IA32 initial exec TLS access model. 454 /// See 'ELF Handling for Thread-Local Storage' for more details. 455 /// SYMBOL_LABEL @GOTNTPOFF 456 MO_GOTNTPOFF, 457 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the 458 /// reference is actually to the "__imp_FOO" symbol. This is used for 459 /// dllimport linkage on windows. 460 MO_DLLIMPORT, 461 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the 462 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a 463 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 464 MO_DARWIN_NONLAZY, 465 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates 466 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is 467 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 468 MO_DARWIN_NONLAZY_PIC_BASE, 469 /// MO_TLVP - On a symbol operand this indicates that the immediate is 470 /// some TLS offset. 471 /// This is the TLS offset for the Darwin TLS mechanism. 472 MO_TLVP, 473 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate 474 /// is some TLS offset from the picbase. 475 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. 476 MO_TLVP_PIC_BASE, 477 /// MO_SECREL - On a symbol operand this indicates that the immediate is 478 /// the offset from beginning of section. 479 /// This is the TLS offset for the COFF/Windows TLS mechanism. 480 MO_SECREL, 481 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known 482 /// to be an absolute symbol in range [0,128), so we can use the @ABS8 483 /// symbol modifier. 484 MO_ABS8, 485 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the 486 /// reference is actually to the ".refptr.FOO" symbol. This is used for 487 /// stub symbols on windows. 488 MO_COFFSTUB, 489 }; 490 491 enum : uint64_t { 492 //===------------------------------------------------------------------===// 493 // Instruction encodings. These are the standard/most common forms for X86 494 // instructions. 495 // 496 /// PseudoFrm - This represents an instruction that is a pseudo instruction 497 /// or one that has not been implemented yet. It is illegal to code generate 498 /// it, but tolerated for intermediate implementation stages. 499 Pseudo = 0, 500 /// Raw - This form is for instructions that don't have any operands, so 501 /// they are just a fixed opcode value, like 'leave'. 502 RawFrm = 1, 503 /// AddRegFrm - This form is used for instructions like 'push r32' that have 504 /// their one register operand added to their opcode. 505 AddRegFrm = 2, 506 /// RawFrmMemOffs - This form is for instructions that store an absolute 507 /// memory offset as an immediate with a possible segment override. 508 RawFrmMemOffs = 3, 509 /// RawFrmSrc - This form is for instructions that use the source index 510 /// register SI/ESI/RSI with a possible segment override. 511 RawFrmSrc = 4, 512 /// RawFrmDst - This form is for instructions that use the destination index 513 /// register DI/EDI/RDI. 514 RawFrmDst = 5, 515 /// RawFrmDstSrc - This form is for instructions that use the source index 516 /// register SI/ESI/RSI with a possible segment override, and also the 517 /// destination index register DI/EDI/RDI. 518 RawFrmDstSrc = 6, 519 /// RawFrmImm8 - This is used for the ENTER instruction, which has two 520 /// immediates, the first of which is a 16-bit immediate (specified by 521 /// the imm encoding) and the second is a 8-bit fixed value. 522 RawFrmImm8 = 7, 523 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two 524 /// immediates, the first of which is a 16 or 32-bit immediate (specified by 525 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD 526 /// manual, this operand is described as pntr16:32 and pntr16:16 527 RawFrmImm16 = 8, 528 /// AddCCFrm - This form is used for Jcc that encode the condition code 529 /// in the lower 4 bits of the opcode. 530 AddCCFrm = 9, 531 /// PrefixByte - This form is used for instructions that represent a prefix 532 /// byte like data16 or rep. 533 PrefixByte = 10, 534 /// MRMDestRegCC - This form is used for the cfcmov instructions, which use 535 /// the Mod/RM byte to specify the operands reg(r/m) and reg(reg) and also 536 /// encodes a condition code. 537 MRMDestRegCC = 18, 538 /// MRMDestMemCC - This form is used for the cfcmov instructions, which use 539 /// the Mod/RM byte to specify the operands mem(r/m) and reg(reg) and also 540 /// encodes a condition code. 541 MRMDestMemCC = 19, 542 /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM 543 /// byte to specify a destination which in this case is memory and operand 3 544 /// with VEX.VVVV, and also encodes a condition code. 545 MRMDestMem4VOp3CC = 20, 546 /// Instructions operate on a register Reg/Opcode operand not the r/m field. 547 MRMr0 = 21, 548 /// MRMSrcMem - But force to use the SIB field. 549 MRMSrcMemFSIB = 22, 550 /// MRMDestMem - But force to use the SIB field. 551 MRMDestMemFSIB = 23, 552 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte 553 /// to specify a destination, which in this case is memory. 554 MRMDestMem = 24, 555 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte 556 /// to specify a source, which in this case is memory. 557 MRMSrcMem = 25, 558 /// MRMSrcMem4VOp3 - This form is used for instructions that encode 559 /// operand 3 with VEX.VVVV and load from memory. 560 MRMSrcMem4VOp3 = 26, 561 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM 562 /// byte to specify the fourth source, which in this case is memory. 563 MRMSrcMemOp4 = 27, 564 /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM 565 /// byte to specify the operands and also encodes a condition code. 566 MRMSrcMemCC = 28, 567 /// MRMXm - This form is used for instructions that use the Mod/RM byte 568 /// to specify a memory source, but doesn't use the middle field. And has 569 /// a condition code. 570 MRMXmCC = 30, 571 /// MRMXm - This form is used for instructions that use the Mod/RM byte 572 /// to specify a memory source, but doesn't use the middle field. 573 MRMXm = 31, 574 /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use 575 /// reg field to hold extended opcode, which is represented as /0, /1, ... 576 MRM0m = 32, // Format /0 577 MRM1m = 33, // Format /1 578 MRM2m = 34, // Format /2 579 MRM3m = 35, // Format /3 580 MRM4m = 36, // Format /4 581 MRM5m = 37, // Format /5 582 MRM6m = 38, // Format /6 583 MRM7m = 39, // Format /7 584 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte 585 /// to specify a destination, which in this case is a register. 586 MRMDestReg = 40, 587 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte 588 /// to specify a source, which in this case is a register. 589 MRMSrcReg = 41, 590 /// MRMSrcReg4VOp3 - This form is used for instructions that encode 591 /// operand 3 with VEX.VVVV and do not load from memory. 592 MRMSrcReg4VOp3 = 42, 593 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM 594 /// byte to specify the fourth source, which in this case is a register. 595 MRMSrcRegOp4 = 43, 596 /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM 597 /// byte to specify the operands and also encodes a condition code 598 MRMSrcRegCC = 44, 599 /// MRMXCCr - This form is used for instructions that use the Mod/RM byte 600 /// to specify a register source, but doesn't use the middle field. And has 601 /// a condition code. 602 MRMXrCC = 46, 603 /// MRMXr - This form is used for instructions that use the Mod/RM byte 604 /// to specify a register source, but doesn't use the middle field. 605 MRMXr = 47, 606 /// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use 607 /// reg field to hold extended opcode, which is represented as /0, /1, ... 608 MRM0r = 48, // Format /0 609 MRM1r = 49, // Format /1 610 MRM2r = 50, // Format /2 611 MRM3r = 51, // Format /3 612 MRM4r = 52, // Format /4 613 MRM5r = 53, // Format /5 614 MRM6r = 54, // Format /6 615 MRM7r = 55, // Format /7 616 /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but 617 /// ignore r/m. 618 MRM0X = 56, // Format /0 619 MRM1X = 57, // Format /1 620 MRM2X = 58, // Format /2 621 MRM3X = 59, // Format /3 622 MRM4X = 60, // Format /4 623 MRM5X = 61, // Format /5 624 MRM6X = 62, // Format /6 625 MRM7X = 63, // Format /7 626 /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX. 627 MRM_C0 = 64, 628 MRM_C1 = 65, 629 MRM_C2 = 66, 630 MRM_C3 = 67, 631 MRM_C4 = 68, 632 MRM_C5 = 69, 633 MRM_C6 = 70, 634 MRM_C7 = 71, 635 MRM_C8 = 72, 636 MRM_C9 = 73, 637 MRM_CA = 74, 638 MRM_CB = 75, 639 MRM_CC = 76, 640 MRM_CD = 77, 641 MRM_CE = 78, 642 MRM_CF = 79, 643 MRM_D0 = 80, 644 MRM_D1 = 81, 645 MRM_D2 = 82, 646 MRM_D3 = 83, 647 MRM_D4 = 84, 648 MRM_D5 = 85, 649 MRM_D6 = 86, 650 MRM_D7 = 87, 651 MRM_D8 = 88, 652 MRM_D9 = 89, 653 MRM_DA = 90, 654 MRM_DB = 91, 655 MRM_DC = 92, 656 MRM_DD = 93, 657 MRM_DE = 94, 658 MRM_DF = 95, 659 MRM_E0 = 96, 660 MRM_E1 = 97, 661 MRM_E2 = 98, 662 MRM_E3 = 99, 663 MRM_E4 = 100, 664 MRM_E5 = 101, 665 MRM_E6 = 102, 666 MRM_E7 = 103, 667 MRM_E8 = 104, 668 MRM_E9 = 105, 669 MRM_EA = 106, 670 MRM_EB = 107, 671 MRM_EC = 108, 672 MRM_ED = 109, 673 MRM_EE = 110, 674 MRM_EF = 111, 675 MRM_F0 = 112, 676 MRM_F1 = 113, 677 MRM_F2 = 114, 678 MRM_F3 = 115, 679 MRM_F4 = 116, 680 MRM_F5 = 117, 681 MRM_F6 = 118, 682 MRM_F7 = 119, 683 MRM_F8 = 120, 684 MRM_F9 = 121, 685 MRM_FA = 122, 686 MRM_FB = 123, 687 MRM_FC = 124, 688 MRM_FD = 125, 689 MRM_FE = 126, 690 MRM_FF = 127, 691 FormMask = 127, 692 //===------------------------------------------------------------------===// 693 // Actual flags... 694 /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix. 695 /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in 696 /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66 697 /// prefix in 16-bit mode. 698 OpSizeShift = 7, 699 OpSizeMask = 0x3 << OpSizeShift, 700 OpSizeFixed = 0 << OpSizeShift, 701 OpSize16 = 1 << OpSizeShift, 702 OpSize32 = 2 << OpSizeShift, 703 /// AsSize - AdSizeX implies this instruction determines its need of 0x67 704 /// prefix from a normal ModRM memory operand. The other types indicate that 705 /// an operand is encoded with a specific width and a prefix is needed if 706 /// it differs from the current mode. 707 AdSizeShift = OpSizeShift + 2, 708 AdSizeMask = 0x3 << AdSizeShift, 709 AdSizeX = 0 << AdSizeShift, 710 AdSize16 = 1 << AdSizeShift, 711 AdSize32 = 2 << AdSizeShift, 712 AdSize64 = 3 << AdSizeShift, 713 //===------------------------------------------------------------------===// 714 /// OpPrefix - There are several prefix bytes that are used as opcode 715 /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is 716 /// no prefix. 717 OpPrefixShift = AdSizeShift + 2, 718 OpPrefixMask = 0x3 << OpPrefixShift, 719 /// PD - Prefix code for packed double precision vector floating point 720 /// operations performed in the SSE registers. 721 PD = 1 << OpPrefixShift, 722 /// XS, XD - These prefix codes are for single and double precision scalar 723 /// floating point operations performed in the SSE registers. 724 XS = 2 << OpPrefixShift, 725 XD = 3 << OpPrefixShift, 726 //===------------------------------------------------------------------===// 727 /// OpMap - This field determines which opcode map this instruction 728 /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc. 729 OpMapShift = OpPrefixShift + 2, 730 OpMapMask = 0xF << OpMapShift, 731 /// OB - OneByte - Set if this instruction has a one byte opcode. 732 OB = 0 << OpMapShift, 733 /// TB - TwoByte - Set if this instruction has a two byte opcode, which 734 /// starts with a 0x0F byte before the real opcode. 735 TB = 1 << OpMapShift, 736 /// T8, TA - Prefix after the 0x0F prefix. 737 T8 = 2 << OpMapShift, 738 TA = 3 << OpMapShift, 739 /// XOP8 - Prefix to include use of imm byte. 740 XOP8 = 4 << OpMapShift, 741 /// XOP9 - Prefix to exclude use of imm byte. 742 XOP9 = 5 << OpMapShift, 743 /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions. 744 XOPA = 6 << OpMapShift, 745 /// ThreeDNow - This indicates that the instruction uses the 746 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents 747 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction 748 /// storing a classifier in the imm8 field. To simplify our implementation, 749 /// we handle this by storeing the classifier in the opcode field and using 750 /// this flag to indicate that the encoder should do the wacky 3DNow! thing. 751 ThreeDNow = 7 << OpMapShift, 752 /// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix. 753 T_MAP4 = 8 << OpMapShift, 754 T_MAP5 = 9 << OpMapShift, 755 T_MAP6 = 10 << OpMapShift, 756 T_MAP7 = 11 << OpMapShift, 757 //===------------------------------------------------------------------===// 758 /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode. 759 /// They are used to specify GPRs and SSE registers, 64-bit operand size, 760 /// etc. We only cares about REX.W and REX.R bits and only the former is 761 /// statically determined. 762 REXShift = OpMapShift + 4, 763 REX_W = 1 << REXShift, 764 //===------------------------------------------------------------------===// 765 // This 4-bit field describes the size of an immediate operand. Zero is 766 // unused so that we can tell if we forgot to set a value. 767 ImmShift = REXShift + 1, 768 Imm8 = 1 << ImmShift, 769 Imm8PCRel = 2 << ImmShift, 770 Imm8Reg = 3 << ImmShift, 771 Imm16 = 4 << ImmShift, 772 Imm16PCRel = 5 << ImmShift, 773 Imm32 = 6 << ImmShift, 774 Imm32PCRel = 7 << ImmShift, 775 Imm32S = 8 << ImmShift, 776 Imm64 = 9 << ImmShift, 777 ImmMask = 15 << ImmShift, 778 //===------------------------------------------------------------------===// 779 /// FP Instruction Classification... Zero is non-fp instruction. 780 /// FPTypeMask - Mask for all of the FP types... 781 FPTypeShift = ImmShift + 4, 782 FPTypeMask = 7 << FPTypeShift, 783 /// NotFP - The default, set for instructions that do not use FP registers. 784 NotFP = 0 << FPTypeShift, 785 /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 786 ZeroArgFP = 1 << FPTypeShift, 787 /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst 788 OneArgFP = 2 << FPTypeShift, 789 /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a 790 /// result back to ST(0). For example, fcos, fsqrt, etc. 791 OneArgFPRW = 3 << FPTypeShift, 792 /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an 793 /// explicit argument, storing the result to either ST(0) or the implicit 794 /// argument. For example: fadd, fsub, fmul, etc... 795 TwoArgFP = 4 << FPTypeShift, 796 /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an 797 /// explicit argument, but have no destination. Example: fucom, fucomi, ... 798 CompareFP = 5 << FPTypeShift, 799 /// CondMovFP - "2 operand" floating point conditional move instructions. 800 CondMovFP = 6 << FPTypeShift, 801 /// SpecialFP - Special instruction forms. Dispatch by opcode explicitly. 802 SpecialFP = 7 << FPTypeShift, 803 /// Lock prefix 804 LOCKShift = FPTypeShift + 3, 805 LOCK = 1 << LOCKShift, 806 /// REP prefix 807 REPShift = LOCKShift + 1, 808 REP = 1 << REPShift, 809 /// Execution domain for SSE instructions. 810 /// 0 means normal, non-SSE instruction. 811 SSEDomainShift = REPShift + 1, 812 /// Encoding 813 EncodingShift = SSEDomainShift + 2, 814 EncodingMask = 0x3 << EncodingShift, 815 /// LEGACY - encoding using REX/REX2 or w/o opcode prefix. 816 LEGACY = 0 << EncodingShift, 817 /// VEX - encoding using 0xC4/0xC5 818 VEX = 1 << EncodingShift, 819 /// XOP - Opcode prefix used by XOP instructions. 820 XOP = 2 << EncodingShift, 821 /// EVEX - Specifies that this instruction use EVEX form which provides 822 /// syntax support up to 32 512-bit register operands and up to 7 16-bit 823 /// mask operands as well as source operand data swizzling/memory operand 824 /// conversion, eviction hint, and rounding mode. 825 EVEX = 3 << EncodingShift, 826 /// Opcode 827 OpcodeShift = EncodingShift + 2, 828 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 829 /// address instructions in SSE are represented as 3 address ones in AVX 830 /// and the additional register is encoded in VEX_VVVV prefix. 831 VEX_4VShift = OpcodeShift + 8, 832 VEX_4V = 1ULL << VEX_4VShift, 833 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current 834 /// instruction uses 256-bit wide registers. This is usually auto detected 835 /// if a VR256 register is used, but some AVX instructions also have this 836 /// field marked when using a f256 memory references. 837 VEX_LShift = VEX_4VShift + 1, 838 VEX_L = 1ULL << VEX_LShift, 839 /// EVEX_K - Set if this instruction requires masking 840 EVEX_KShift = VEX_LShift + 1, 841 EVEX_K = 1ULL << EVEX_KShift, 842 /// EVEX_Z - Set if this instruction has EVEX.Z field set. 843 EVEX_ZShift = EVEX_KShift + 1, 844 EVEX_Z = 1ULL << EVEX_ZShift, 845 /// EVEX_L2 - Set if this instruction has EVEX.L' field set. 846 EVEX_L2Shift = EVEX_ZShift + 1, 847 EVEX_L2 = 1ULL << EVEX_L2Shift, 848 /// EVEX_B - Set if this instruction has EVEX.B field set. 849 EVEX_BShift = EVEX_L2Shift + 1, 850 EVEX_B = 1ULL << EVEX_BShift, 851 /// The scaling factor for the AVX512's 8-bit compressed displacement. 852 CD8_Scale_Shift = EVEX_BShift + 1, 853 CD8_Scale_Mask = 7ULL << CD8_Scale_Shift, 854 /// Explicitly specified rounding control 855 EVEX_RCShift = CD8_Scale_Shift + 3, 856 EVEX_RC = 1ULL << EVEX_RCShift, 857 /// NOTRACK prefix 858 NoTrackShift = EVEX_RCShift + 1, 859 NOTRACK = 1ULL << NoTrackShift, 860 /// Force REX2/VEX/EVEX encoding 861 ExplicitOpPrefixShift = NoTrackShift + 1, 862 /// For instructions that require REX2 prefix even if EGPR is not used. 863 ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift, 864 /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3} 865 /// is present. 866 ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift, 867 /// For instructions that are promoted to EVEX space for EGPR. 868 ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift, 869 ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift, 870 /// EVEX_NF - Set if this instruction has EVEX.NF field set. 871 EVEX_NFShift = ExplicitOpPrefixShift + 2, 872 EVEX_NF = 1ULL << EVEX_NFShift, 873 // TwoConditionalOps - Set if this instruction has two conditional operands 874 TwoConditionalOps_Shift = EVEX_NFShift + 1, 875 TwoConditionalOps = 1ULL << TwoConditionalOps_Shift 876 }; 877 878 /// \returns true if the instruction with given opcode is a prefix. 879 inline bool isPrefix(uint64_t TSFlags) { 880 return (TSFlags & X86II::FormMask) == PrefixByte; 881 } 882 883 /// \returns true if the instruction with given opcode is a pseudo. 884 inline bool isPseudo(uint64_t TSFlags) { 885 return (TSFlags & X86II::FormMask) == Pseudo; 886 } 887 888 /// \returns the "base" X86 opcode for the specified machine 889 /// instruction. 890 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) { 891 return TSFlags >> X86II::OpcodeShift; 892 } 893 894 inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; } 895 896 /// Decode the "size of immediate" field from the TSFlags field of the 897 /// specified instruction. 898 inline unsigned getSizeOfImm(uint64_t TSFlags) { 899 switch (TSFlags & X86II::ImmMask) { 900 default: 901 llvm_unreachable("Unknown immediate size"); 902 case X86II::Imm8: 903 case X86II::Imm8PCRel: 904 case X86II::Imm8Reg: 905 return 1; 906 case X86II::Imm16: 907 case X86II::Imm16PCRel: 908 return 2; 909 case X86II::Imm32: 910 case X86II::Imm32S: 911 case X86II::Imm32PCRel: 912 return 4; 913 case X86II::Imm64: 914 return 8; 915 } 916 } 917 918 /// \returns true if the immediate of the specified instruction's TSFlags 919 /// indicates that it is pc relative. 920 inline bool isImmPCRel(uint64_t TSFlags) { 921 switch (TSFlags & X86II::ImmMask) { 922 default: 923 llvm_unreachable("Unknown immediate size"); 924 case X86II::Imm8PCRel: 925 case X86II::Imm16PCRel: 926 case X86II::Imm32PCRel: 927 return true; 928 case X86II::Imm8: 929 case X86II::Imm8Reg: 930 case X86II::Imm16: 931 case X86II::Imm32: 932 case X86II::Imm32S: 933 case X86II::Imm64: 934 return false; 935 } 936 } 937 938 /// \returns true if the immediate of the specified instruction's 939 /// TSFlags indicates that it is signed. 940 inline bool isImmSigned(uint64_t TSFlags) { 941 switch (TSFlags & X86II::ImmMask) { 942 default: 943 llvm_unreachable("Unknown immediate signedness"); 944 case X86II::Imm32S: 945 return true; 946 case X86II::Imm8: 947 case X86II::Imm8PCRel: 948 case X86II::Imm8Reg: 949 case X86II::Imm16: 950 case X86II::Imm16PCRel: 951 case X86II::Imm32: 952 case X86II::Imm32PCRel: 953 case X86II::Imm64: 954 return false; 955 } 956 } 957 958 /// Compute whether all of the def operands are repeated in the uses and 959 /// therefore should be skipped. 960 /// This determines the start of the unique operand list. We need to determine 961 /// if all of the defs have a corresponding tied operand in the uses. 962 /// Unfortunately, the tied operand information is encoded in the uses not 963 /// the defs so we have to use some heuristics to find which operands to 964 /// query. 965 inline unsigned getOperandBias(const MCInstrDesc &Desc) { 966 unsigned NumDefs = Desc.getNumDefs(); 967 unsigned NumOps = Desc.getNumOperands(); 968 switch (NumDefs) { 969 default: 970 llvm_unreachable("Unexpected number of defs"); 971 case 0: 972 return 0; 973 case 1: 974 // Common two addr case. 975 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0) 976 return 1; 977 // Check for AVX-512 scatter which has a TIED_TO in the second to last 978 // operand. 979 if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0) 980 return 1; 981 return 0; 982 case 2: 983 // XCHG/XADD have two destinations and two sources. 984 if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 985 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1) 986 return 2; 987 // Check for gather. AVX-512 has the second tied operand early. AVX2 988 // has it as the last op. 989 if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 && 990 (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 || 991 Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1)) 992 return 2; 993 return 0; 994 } 995 } 996 997 /// \returns true if the instruction has a NDD (new data destination). 998 inline bool hasNewDataDest(uint64_t TSFlags) { 999 return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 && 1000 (TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V); 1001 } 1002 1003 /// \returns operand # for the first field of the memory operand or -1 if no 1004 /// memory operands. 1005 /// NOTE: This ignores tied operands. If there is a tied register which is 1006 /// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted 1007 /// as one operand. 1008 inline int getMemoryOperandNo(uint64_t TSFlags) { 1009 bool HasVEX_4V = TSFlags & X86II::VEX_4V; 1010 bool HasEVEX_K = TSFlags & X86II::EVEX_K; 1011 1012 switch (TSFlags & X86II::FormMask) { 1013 default: 1014 llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); 1015 case X86II::Pseudo: 1016 case X86II::RawFrm: 1017 case X86II::AddRegFrm: 1018 case X86II::RawFrmImm8: 1019 case X86II::RawFrmImm16: 1020 case X86II::RawFrmMemOffs: 1021 case X86II::RawFrmSrc: 1022 case X86II::RawFrmDst: 1023 case X86II::RawFrmDstSrc: 1024 case X86II::AddCCFrm: 1025 case X86II::PrefixByte: 1026 return -1; 1027 case X86II::MRMDestMem: 1028 case X86II::MRMDestMemFSIB: 1029 case X86II::MRMDestMemCC: 1030 return hasNewDataDest(TSFlags); 1031 case X86II::MRMSrcMem: 1032 case X86II::MRMSrcMemFSIB: 1033 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1034 // mask register. 1035 return 1 + HasVEX_4V + HasEVEX_K; 1036 case X86II::MRMSrcMem4VOp3: 1037 // Skip registers encoded in reg. 1038 return 1 + HasEVEX_K; 1039 case X86II::MRMSrcMemOp4: 1040 // Skip registers encoded in reg, VEX_VVVV, and I8IMM. 1041 return 3; 1042 case X86II::MRMSrcMemCC: 1043 return 1 + hasNewDataDest(TSFlags); 1044 case X86II::MRMDestMem4VOp3CC: 1045 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a 1046 // mask register. 1047 return 1; 1048 case X86II::MRMDestReg: 1049 case X86II::MRMDestRegCC: 1050 case X86II::MRMSrcReg: 1051 case X86II::MRMSrcReg4VOp3: 1052 case X86II::MRMSrcRegOp4: 1053 case X86II::MRMSrcRegCC: 1054 case X86II::MRMXrCC: 1055 case X86II::MRMr0: 1056 case X86II::MRMXr: 1057 case X86II::MRM0r: 1058 case X86II::MRM1r: 1059 case X86II::MRM2r: 1060 case X86II::MRM3r: 1061 case X86II::MRM4r: 1062 case X86II::MRM5r: 1063 case X86II::MRM6r: 1064 case X86II::MRM7r: 1065 return -1; 1066 case X86II::MRM0X: 1067 case X86II::MRM1X: 1068 case X86II::MRM2X: 1069 case X86II::MRM3X: 1070 case X86II::MRM4X: 1071 case X86II::MRM5X: 1072 case X86II::MRM6X: 1073 case X86II::MRM7X: 1074 return -1; 1075 case X86II::MRMXmCC: 1076 case X86II::MRMXm: 1077 case X86II::MRM0m: 1078 case X86II::MRM1m: 1079 case X86II::MRM2m: 1080 case X86II::MRM3m: 1081 case X86II::MRM4m: 1082 case X86II::MRM5m: 1083 case X86II::MRM6m: 1084 case X86II::MRM7m: 1085 // Start from 0, skip registers encoded in VEX_VVVV or a mask register. 1086 return 0 + HasVEX_4V + HasEVEX_K; 1087 case X86II::MRM_C0: 1088 case X86II::MRM_C1: 1089 case X86II::MRM_C2: 1090 case X86II::MRM_C3: 1091 case X86II::MRM_C4: 1092 case X86II::MRM_C5: 1093 case X86II::MRM_C6: 1094 case X86II::MRM_C7: 1095 case X86II::MRM_C8: 1096 case X86II::MRM_C9: 1097 case X86II::MRM_CA: 1098 case X86II::MRM_CB: 1099 case X86II::MRM_CC: 1100 case X86II::MRM_CD: 1101 case X86II::MRM_CE: 1102 case X86II::MRM_CF: 1103 case X86II::MRM_D0: 1104 case X86II::MRM_D1: 1105 case X86II::MRM_D2: 1106 case X86II::MRM_D3: 1107 case X86II::MRM_D4: 1108 case X86II::MRM_D5: 1109 case X86II::MRM_D6: 1110 case X86II::MRM_D7: 1111 case X86II::MRM_D8: 1112 case X86II::MRM_D9: 1113 case X86II::MRM_DA: 1114 case X86II::MRM_DB: 1115 case X86II::MRM_DC: 1116 case X86II::MRM_DD: 1117 case X86II::MRM_DE: 1118 case X86II::MRM_DF: 1119 case X86II::MRM_E0: 1120 case X86II::MRM_E1: 1121 case X86II::MRM_E2: 1122 case X86II::MRM_E3: 1123 case X86II::MRM_E4: 1124 case X86II::MRM_E5: 1125 case X86II::MRM_E6: 1126 case X86II::MRM_E7: 1127 case X86II::MRM_E8: 1128 case X86II::MRM_E9: 1129 case X86II::MRM_EA: 1130 case X86II::MRM_EB: 1131 case X86II::MRM_EC: 1132 case X86II::MRM_ED: 1133 case X86II::MRM_EE: 1134 case X86II::MRM_EF: 1135 case X86II::MRM_F0: 1136 case X86II::MRM_F1: 1137 case X86II::MRM_F2: 1138 case X86II::MRM_F3: 1139 case X86II::MRM_F4: 1140 case X86II::MRM_F5: 1141 case X86II::MRM_F6: 1142 case X86II::MRM_F7: 1143 case X86II::MRM_F8: 1144 case X86II::MRM_F9: 1145 case X86II::MRM_FA: 1146 case X86II::MRM_FB: 1147 case X86II::MRM_FC: 1148 case X86II::MRM_FD: 1149 case X86II::MRM_FE: 1150 case X86II::MRM_FF: 1151 return -1; 1152 } 1153 } 1154 1155 /// \returns true if the register is a XMM. 1156 inline bool isXMMReg(unsigned RegNo) { 1157 static_assert(X86::XMM15 - X86::XMM0 == 15, 1158 "XMM0-15 registers are not continuous"); 1159 static_assert(X86::XMM31 - X86::XMM16 == 15, 1160 "XMM16-31 registers are not continuous"); 1161 return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) || 1162 (RegNo >= X86::XMM16 && RegNo <= X86::XMM31); 1163 } 1164 1165 /// \returns true if the register is a YMM. 1166 inline bool isYMMReg(unsigned RegNo) { 1167 static_assert(X86::YMM15 - X86::YMM0 == 15, 1168 "YMM0-15 registers are not continuous"); 1169 static_assert(X86::YMM31 - X86::YMM16 == 15, 1170 "YMM16-31 registers are not continuous"); 1171 return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) || 1172 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31); 1173 } 1174 1175 /// \returns true if the register is a ZMM. 1176 inline bool isZMMReg(unsigned RegNo) { 1177 static_assert(X86::ZMM31 - X86::ZMM0 == 31, 1178 "ZMM registers are not continuous"); 1179 return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31; 1180 } 1181 1182 /// \returns true if \p RegNo is an apx extended register. 1183 inline bool isApxExtendedReg(unsigned RegNo) { 1184 static_assert(X86::R31WH - X86::R16 == 95, "EGPRs are not continuous"); 1185 return RegNo >= X86::R16 && RegNo <= X86::R31WH; 1186 } 1187 1188 /// \returns true if the MachineOperand is a x86-64 extended (r8 or 1189 /// higher) register, e.g. r8, xmm8, xmm13, etc. 1190 inline bool isX86_64ExtendedReg(unsigned RegNo) { 1191 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) || 1192 (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || 1193 (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) || 1194 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || 1195 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31)) 1196 return true; 1197 1198 if (isApxExtendedReg(RegNo)) 1199 return true; 1200 1201 switch (RegNo) { 1202 default: 1203 break; 1204 case X86::R8: 1205 case X86::R9: 1206 case X86::R10: 1207 case X86::R11: 1208 case X86::R12: 1209 case X86::R13: 1210 case X86::R14: 1211 case X86::R15: 1212 case X86::R8D: 1213 case X86::R9D: 1214 case X86::R10D: 1215 case X86::R11D: 1216 case X86::R12D: 1217 case X86::R13D: 1218 case X86::R14D: 1219 case X86::R15D: 1220 case X86::R8W: 1221 case X86::R9W: 1222 case X86::R10W: 1223 case X86::R11W: 1224 case X86::R12W: 1225 case X86::R13W: 1226 case X86::R14W: 1227 case X86::R15W: 1228 case X86::R8B: 1229 case X86::R9B: 1230 case X86::R10B: 1231 case X86::R11B: 1232 case X86::R12B: 1233 case X86::R13B: 1234 case X86::R14B: 1235 case X86::R15B: 1236 case X86::CR8: 1237 case X86::CR9: 1238 case X86::CR10: 1239 case X86::CR11: 1240 case X86::CR12: 1241 case X86::CR13: 1242 case X86::CR14: 1243 case X86::CR15: 1244 case X86::DR8: 1245 case X86::DR9: 1246 case X86::DR10: 1247 case X86::DR11: 1248 case X86::DR12: 1249 case X86::DR13: 1250 case X86::DR14: 1251 case X86::DR15: 1252 return true; 1253 } 1254 return false; 1255 } 1256 1257 inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) { 1258 uint64_t TSFlags = Desc.TSFlags; 1259 uint64_t Encoding = TSFlags & EncodingMask; 1260 // EVEX can always use egpr. 1261 if (Encoding == X86II::EVEX) 1262 return true; 1263 1264 unsigned Opcode = Desc.Opcode; 1265 // MOV32r0 is always expanded to XOR32rr 1266 if (Opcode == X86::MOV32r0) 1267 return true; 1268 // To be conservative, egpr is not used for all pseudo instructions 1269 // because we are not sure what instruction it will become. 1270 // FIXME: Could we improve it in X86ExpandPseudo? 1271 if (isPseudo(TSFlags)) 1272 return false; 1273 1274 // MAP OB/TB in legacy encoding space can always use egpr except 1275 // XSAVE*/XRSTOR*. 1276 switch (Opcode) { 1277 default: 1278 break; 1279 case X86::XSAVE: 1280 case X86::XSAVE64: 1281 case X86::XSAVEOPT: 1282 case X86::XSAVEOPT64: 1283 case X86::XSAVEC: 1284 case X86::XSAVEC64: 1285 case X86::XSAVES: 1286 case X86::XSAVES64: 1287 case X86::XRSTOR: 1288 case X86::XRSTOR64: 1289 case X86::XRSTORS: 1290 case X86::XRSTORS64: 1291 return false; 1292 } 1293 uint64_t OpMap = TSFlags & X86II::OpMapMask; 1294 return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB); 1295 } 1296 1297 /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher) 1298 /// registers, e.g. zmm21, etc. 1299 static inline bool is32ExtendedReg(unsigned RegNo) { 1300 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) || 1301 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) || 1302 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31)); 1303 } 1304 1305 inline bool isX86_64NonExtLowByteReg(unsigned reg) { 1306 return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || 1307 reg == X86::DIL); 1308 } 1309 1310 /// \returns true if this is a masked instruction. 1311 inline bool isKMasked(uint64_t TSFlags) { 1312 return (TSFlags & X86II::EVEX_K) != 0; 1313 } 1314 1315 /// \returns true if this is a merge masked instruction. 1316 inline bool isKMergeMasked(uint64_t TSFlags) { 1317 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0; 1318 } 1319 1320 /// \returns true if the intruction needs a SIB. 1321 inline bool needSIB(unsigned BaseReg, unsigned IndexReg, bool In64BitMode) { 1322 // The SIB byte must be used if there is an index register. 1323 if (IndexReg) 1324 return true; 1325 1326 // The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of 1327 // which encode to an R/M value of 4, which indicates that a SIB byte is 1328 // present. 1329 switch (BaseReg) { 1330 default: 1331 // If there is no base register and we're in 64-bit mode, we need a SIB 1332 // byte to emit an addr that is just 'disp32' (the non-RIP relative form). 1333 return In64BitMode && !BaseReg; 1334 case X86::ESP: 1335 case X86::RSP: 1336 case X86::R12: 1337 case X86::R12D: 1338 case X86::R20: 1339 case X86::R20D: 1340 case X86::R28: 1341 case X86::R28D: 1342 return true; 1343 } 1344 } 1345 1346 } // namespace X86II 1347 } // namespace llvm 1348 #endif 1349