xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86ATTInstPrinter.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes code for rendering MCInst instances as AT&T-style
10 // assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86ATTInstPrinter.h"
15 #include "X86BaseInfo.h"
16 #include "X86InstComments.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCInstrAnalysis.h"
20 #include "llvm/MC/MCInstrInfo.h"
21 #include "llvm/MC/MCSubtargetInfo.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cassert>
27 #include <cinttypes>
28 #include <cstdint>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "asm-printer"
33 
34 // Include the auto-generated portion of the assembly writer.
35 #define PRINT_ALIAS_INSTR
36 #include "X86GenAsmWriter.inc"
37 
38 void X86ATTInstPrinter::printRegName(raw_ostream &OS, MCRegister Reg) const {
39   OS << markup("<reg:") << '%' << getRegisterName(Reg) << markup(">");
40 }
41 
42 void X86ATTInstPrinter::printInst(const MCInst *MI, uint64_t Address,
43                                   StringRef Annot, const MCSubtargetInfo &STI,
44                                   raw_ostream &OS) {
45   // If verbose assembly is enabled, we can print some informative comments.
46   if (CommentStream)
47     HasCustomInstComment = EmitAnyX86InstComments(MI, *CommentStream, MII);
48 
49   printInstFlags(MI, OS, STI);
50 
51   // Output CALLpcrel32 as "callq" in 64-bit mode.
52   // In Intel annotation it's always emitted as "call".
53   //
54   // TODO: Probably this hack should be redesigned via InstAlias in
55   // InstrInfo.td as soon as Requires clause is supported properly
56   // for InstAlias.
57   if (MI->getOpcode() == X86::CALLpcrel32 &&
58       (STI.getFeatureBits()[X86::Is64Bit])) {
59     OS << "\tcallq\t";
60     printPCRelImm(MI, Address, 0, OS);
61   }
62   // data16 and data32 both have the same encoding of 0x66. While data32 is
63   // valid only in 16 bit systems, data16 is valid in the rest.
64   // There seems to be some lack of support of the Requires clause that causes
65   // 0x66 to be interpreted as "data16" by the asm printer.
66   // Thus we add an adjustment here in order to print the "right" instruction.
67   else if (MI->getOpcode() == X86::DATA16_PREFIX &&
68            STI.getFeatureBits()[X86::Is16Bit]) {
69     OS << "\tdata32";
70   }
71   // Try to print any aliases first.
72   else if (!printAliasInstr(MI, Address, OS) && !printVecCompareInstr(MI, OS))
73     printInstruction(MI, Address, OS);
74 
75   // Next always print the annotation.
76   printAnnotation(OS, Annot);
77 }
78 
79 bool X86ATTInstPrinter::printVecCompareInstr(const MCInst *MI,
80                                              raw_ostream &OS) {
81   if (MI->getNumOperands() == 0 ||
82       !MI->getOperand(MI->getNumOperands() - 1).isImm())
83     return false;
84 
85   int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
86 
87   const MCInstrDesc &Desc = MII.get(MI->getOpcode());
88 
89   // Custom print the vector compare instructions to get the immediate
90   // translated into the mnemonic.
91   switch (MI->getOpcode()) {
92   case X86::CMPPDrmi:    case X86::CMPPDrri:
93   case X86::CMPPSrmi:    case X86::CMPPSrri:
94   case X86::CMPSDrm:     case X86::CMPSDrr:
95   case X86::CMPSDrm_Int: case X86::CMPSDrr_Int:
96   case X86::CMPSSrm:     case X86::CMPSSrr:
97   case X86::CMPSSrm_Int: case X86::CMPSSrr_Int:
98     if (Imm >= 0 && Imm <= 7) {
99       OS << '\t';
100       printCMPMnemonic(MI, /*IsVCMP*/false, OS);
101 
102       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
103         if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
104           printdwordmem(MI, 2, OS);
105         else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
106           printqwordmem(MI, 2, OS);
107         else
108           printxmmwordmem(MI, 2, OS);
109       } else
110         printOperand(MI, 2, OS);
111 
112       // Skip operand 1 as its tied to the dest.
113 
114       OS << ", ";
115       printOperand(MI, 0, OS);
116       return true;
117     }
118     break;
119 
120   case X86::VCMPPDrmi:      case X86::VCMPPDrri:
121   case X86::VCMPPDYrmi:     case X86::VCMPPDYrri:
122   case X86::VCMPPDZ128rmi:  case X86::VCMPPDZ128rri:
123   case X86::VCMPPDZ256rmi:  case X86::VCMPPDZ256rri:
124   case X86::VCMPPDZrmi:     case X86::VCMPPDZrri:
125   case X86::VCMPPSrmi:      case X86::VCMPPSrri:
126   case X86::VCMPPSYrmi:     case X86::VCMPPSYrri:
127   case X86::VCMPPSZ128rmi:  case X86::VCMPPSZ128rri:
128   case X86::VCMPPSZ256rmi:  case X86::VCMPPSZ256rri:
129   case X86::VCMPPSZrmi:     case X86::VCMPPSZrri:
130   case X86::VCMPSDrm:       case X86::VCMPSDrr:
131   case X86::VCMPSDZrm:      case X86::VCMPSDZrr:
132   case X86::VCMPSDrm_Int:   case X86::VCMPSDrr_Int:
133   case X86::VCMPSDZrm_Int:  case X86::VCMPSDZrr_Int:
134   case X86::VCMPSSrm:       case X86::VCMPSSrr:
135   case X86::VCMPSSZrm:      case X86::VCMPSSZrr:
136   case X86::VCMPSSrm_Int:   case X86::VCMPSSrr_Int:
137   case X86::VCMPSSZrm_Int:  case X86::VCMPSSZrr_Int:
138   case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik:
139   case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik:
140   case X86::VCMPPDZrmik:    case X86::VCMPPDZrrik:
141   case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik:
142   case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik:
143   case X86::VCMPPSZrmik:    case X86::VCMPPSZrrik:
144   case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk:
145   case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk:
146   case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik:
147   case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik:
148   case X86::VCMPPDZrmbi:    case X86::VCMPPDZrmbik:
149   case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik:
150   case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik:
151   case X86::VCMPPSZrmbi:    case X86::VCMPPSZrmbik:
152   case X86::VCMPPDZrrib:    case X86::VCMPPDZrribk:
153   case X86::VCMPPSZrrib:    case X86::VCMPPSZrribk:
154   case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk:
155   case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk:
156   case X86::VCMPPHZ128rmi:  case X86::VCMPPHZ128rri:
157   case X86::VCMPPHZ256rmi:  case X86::VCMPPHZ256rri:
158   case X86::VCMPPHZrmi:     case X86::VCMPPHZrri:
159   case X86::VCMPSHZrm:      case X86::VCMPSHZrr:
160   case X86::VCMPSHZrm_Int:  case X86::VCMPSHZrr_Int:
161   case X86::VCMPPHZ128rmik: case X86::VCMPPHZ128rrik:
162   case X86::VCMPPHZ256rmik: case X86::VCMPPHZ256rrik:
163   case X86::VCMPPHZrmik:    case X86::VCMPPHZrrik:
164   case X86::VCMPSHZrm_Intk: case X86::VCMPSHZrr_Intk:
165   case X86::VCMPPHZ128rmbi: case X86::VCMPPHZ128rmbik:
166   case X86::VCMPPHZ256rmbi: case X86::VCMPPHZ256rmbik:
167   case X86::VCMPPHZrmbi:    case X86::VCMPPHZrmbik:
168   case X86::VCMPPHZrrib:    case X86::VCMPPHZrribk:
169   case X86::VCMPSHZrrb_Int: case X86::VCMPSHZrrb_Intk:
170     if (Imm >= 0 && Imm <= 31) {
171       OS << '\t';
172       printCMPMnemonic(MI, /*IsVCMP*/true, OS);
173 
174       unsigned CurOp = (Desc.TSFlags & X86II::EVEX_K) ? 3 : 2;
175 
176       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
177         if (Desc.TSFlags & X86II::EVEX_B) {
178           // Broadcast form.
179           // Load size is word for TA map. Otherwise it is based on W-bit.
180           if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
181             assert(!(Desc.TSFlags & X86II::VEX_W) && "Unknown W-bit value!");
182             printwordmem(MI, CurOp--, OS);
183           } else if (Desc.TSFlags & X86II::VEX_W) {
184             printqwordmem(MI, CurOp--, OS);
185           } else {
186             printdwordmem(MI, CurOp--, OS);
187           }
188 
189           // Print the number of elements broadcasted.
190           unsigned NumElts;
191           if (Desc.TSFlags & X86II::EVEX_L2)
192             NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
193           else if (Desc.TSFlags & X86II::VEX_L)
194             NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
195           else
196             NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
197           if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
198             assert(!(Desc.TSFlags & X86II::VEX_W) && "Unknown W-bit value!");
199             NumElts *= 2;
200           }
201           OS << "{1to" << NumElts << "}";
202         } else {
203           if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) {
204             if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA)
205               printwordmem(MI, CurOp--, OS);
206             else
207               printdwordmem(MI, CurOp--, OS);
208           } else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD) {
209             assert((Desc.TSFlags & X86II::OpMapMask) != X86II::TA &&
210                    "Unexpected op map!");
211             printqwordmem(MI, CurOp--, OS);
212           } else if (Desc.TSFlags & X86II::EVEX_L2) {
213             printzmmwordmem(MI, CurOp--, OS);
214           } else if (Desc.TSFlags & X86II::VEX_L) {
215             printymmwordmem(MI, CurOp--, OS);
216           } else {
217             printxmmwordmem(MI, CurOp--, OS);
218           }
219         }
220       } else {
221         if (Desc.TSFlags & X86II::EVEX_B)
222           OS << "{sae}, ";
223         printOperand(MI, CurOp--, OS);
224       }
225 
226       OS << ", ";
227       printOperand(MI, CurOp--, OS);
228       OS << ", ";
229       printOperand(MI, 0, OS);
230       if (CurOp > 0) {
231         // Print mask operand.
232         OS << " {";
233         printOperand(MI, CurOp--, OS);
234         OS << "}";
235       }
236 
237       return true;
238     }
239     break;
240 
241   case X86::VPCOMBmi:  case X86::VPCOMBri:
242   case X86::VPCOMDmi:  case X86::VPCOMDri:
243   case X86::VPCOMQmi:  case X86::VPCOMQri:
244   case X86::VPCOMUBmi: case X86::VPCOMUBri:
245   case X86::VPCOMUDmi: case X86::VPCOMUDri:
246   case X86::VPCOMUQmi: case X86::VPCOMUQri:
247   case X86::VPCOMUWmi: case X86::VPCOMUWri:
248   case X86::VPCOMWmi:  case X86::VPCOMWri:
249     if (Imm >= 0 && Imm <= 7) {
250       OS << '\t';
251       printVPCOMMnemonic(MI, OS);
252 
253       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem)
254         printxmmwordmem(MI, 2, OS);
255       else
256         printOperand(MI, 2, OS);
257 
258       OS << ", ";
259       printOperand(MI, 1, OS);
260       OS << ", ";
261       printOperand(MI, 0, OS);
262       return true;
263     }
264     break;
265 
266   case X86::VPCMPBZ128rmi:   case X86::VPCMPBZ128rri:
267   case X86::VPCMPBZ256rmi:   case X86::VPCMPBZ256rri:
268   case X86::VPCMPBZrmi:      case X86::VPCMPBZrri:
269   case X86::VPCMPDZ128rmi:   case X86::VPCMPDZ128rri:
270   case X86::VPCMPDZ256rmi:   case X86::VPCMPDZ256rri:
271   case X86::VPCMPDZrmi:      case X86::VPCMPDZrri:
272   case X86::VPCMPQZ128rmi:   case X86::VPCMPQZ128rri:
273   case X86::VPCMPQZ256rmi:   case X86::VPCMPQZ256rri:
274   case X86::VPCMPQZrmi:      case X86::VPCMPQZrri:
275   case X86::VPCMPUBZ128rmi:  case X86::VPCMPUBZ128rri:
276   case X86::VPCMPUBZ256rmi:  case X86::VPCMPUBZ256rri:
277   case X86::VPCMPUBZrmi:     case X86::VPCMPUBZrri:
278   case X86::VPCMPUDZ128rmi:  case X86::VPCMPUDZ128rri:
279   case X86::VPCMPUDZ256rmi:  case X86::VPCMPUDZ256rri:
280   case X86::VPCMPUDZrmi:     case X86::VPCMPUDZrri:
281   case X86::VPCMPUQZ128rmi:  case X86::VPCMPUQZ128rri:
282   case X86::VPCMPUQZ256rmi:  case X86::VPCMPUQZ256rri:
283   case X86::VPCMPUQZrmi:     case X86::VPCMPUQZrri:
284   case X86::VPCMPUWZ128rmi:  case X86::VPCMPUWZ128rri:
285   case X86::VPCMPUWZ256rmi:  case X86::VPCMPUWZ256rri:
286   case X86::VPCMPUWZrmi:     case X86::VPCMPUWZrri:
287   case X86::VPCMPWZ128rmi:   case X86::VPCMPWZ128rri:
288   case X86::VPCMPWZ256rmi:   case X86::VPCMPWZ256rri:
289   case X86::VPCMPWZrmi:      case X86::VPCMPWZrri:
290   case X86::VPCMPBZ128rmik:  case X86::VPCMPBZ128rrik:
291   case X86::VPCMPBZ256rmik:  case X86::VPCMPBZ256rrik:
292   case X86::VPCMPBZrmik:     case X86::VPCMPBZrrik:
293   case X86::VPCMPDZ128rmik:  case X86::VPCMPDZ128rrik:
294   case X86::VPCMPDZ256rmik:  case X86::VPCMPDZ256rrik:
295   case X86::VPCMPDZrmik:     case X86::VPCMPDZrrik:
296   case X86::VPCMPQZ128rmik:  case X86::VPCMPQZ128rrik:
297   case X86::VPCMPQZ256rmik:  case X86::VPCMPQZ256rrik:
298   case X86::VPCMPQZrmik:     case X86::VPCMPQZrrik:
299   case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
300   case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
301   case X86::VPCMPUBZrmik:    case X86::VPCMPUBZrrik:
302   case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
303   case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
304   case X86::VPCMPUDZrmik:    case X86::VPCMPUDZrrik:
305   case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
306   case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
307   case X86::VPCMPUQZrmik:    case X86::VPCMPUQZrrik:
308   case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
309   case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik:
310   case X86::VPCMPUWZrmik:    case X86::VPCMPUWZrrik:
311   case X86::VPCMPWZ128rmik:  case X86::VPCMPWZ128rrik:
312   case X86::VPCMPWZ256rmik:  case X86::VPCMPWZ256rrik:
313   case X86::VPCMPWZrmik:     case X86::VPCMPWZrrik:
314   case X86::VPCMPDZ128rmib:  case X86::VPCMPDZ128rmibk:
315   case X86::VPCMPDZ256rmib:  case X86::VPCMPDZ256rmibk:
316   case X86::VPCMPDZrmib:     case X86::VPCMPDZrmibk:
317   case X86::VPCMPQZ128rmib:  case X86::VPCMPQZ128rmibk:
318   case X86::VPCMPQZ256rmib:  case X86::VPCMPQZ256rmibk:
319   case X86::VPCMPQZrmib:     case X86::VPCMPQZrmibk:
320   case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk:
321   case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk:
322   case X86::VPCMPUDZrmib:    case X86::VPCMPUDZrmibk:
323   case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk:
324   case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk:
325   case X86::VPCMPUQZrmib:    case X86::VPCMPUQZrmibk:
326     if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) {
327       OS << '\t';
328       printVPCMPMnemonic(MI, OS);
329 
330       unsigned CurOp = (Desc.TSFlags & X86II::EVEX_K) ? 3 : 2;
331 
332       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
333         if (Desc.TSFlags & X86II::EVEX_B) {
334           // Broadcast form.
335           // Load size is based on W-bit as only D and Q are supported.
336           if (Desc.TSFlags & X86II::VEX_W)
337             printqwordmem(MI, CurOp--, OS);
338           else
339             printdwordmem(MI, CurOp--, OS);
340 
341           // Print the number of elements broadcasted.
342           unsigned NumElts;
343           if (Desc.TSFlags & X86II::EVEX_L2)
344             NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
345           else if (Desc.TSFlags & X86II::VEX_L)
346             NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
347           else
348             NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
349           OS << "{1to" << NumElts << "}";
350         } else {
351           if (Desc.TSFlags & X86II::EVEX_L2)
352             printzmmwordmem(MI, CurOp--, OS);
353           else if (Desc.TSFlags & X86II::VEX_L)
354             printymmwordmem(MI, CurOp--, OS);
355           else
356             printxmmwordmem(MI, CurOp--, OS);
357         }
358       } else {
359         printOperand(MI, CurOp--, OS);
360       }
361 
362       OS << ", ";
363       printOperand(MI, CurOp--, OS);
364       OS << ", ";
365       printOperand(MI, 0, OS);
366       if (CurOp > 0) {
367         // Print mask operand.
368         OS << " {";
369         printOperand(MI, CurOp--, OS);
370         OS << "}";
371       }
372 
373       return true;
374     }
375     break;
376   }
377 
378   return false;
379 }
380 
381 void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
382                                      raw_ostream &O) {
383   const MCOperand &Op = MI->getOperand(OpNo);
384   if (Op.isReg()) {
385     printRegName(O, Op.getReg());
386   } else if (Op.isImm()) {
387     // Print immediates as signed values.
388     int64_t Imm = Op.getImm();
389     O << markup("<imm:") << '$' << formatImm(Imm) << markup(">");
390 
391     // TODO: This should be in a helper function in the base class, so it can
392     // be used by other printers.
393 
394     // If there are no instruction-specific comments, add a comment clarifying
395     // the hex value of the immediate operand when it isn't in the range
396     // [-256,255].
397     if (CommentStream && !HasCustomInstComment && (Imm > 255 || Imm < -256)) {
398       // Don't print unnecessary hex sign bits.
399       if (Imm == (int16_t)(Imm))
400         *CommentStream << format("imm = 0x%" PRIX16 "\n", (uint16_t)Imm);
401       else if (Imm == (int32_t)(Imm))
402         *CommentStream << format("imm = 0x%" PRIX32 "\n", (uint32_t)Imm);
403       else
404         *CommentStream << format("imm = 0x%" PRIX64 "\n", (uint64_t)Imm);
405     }
406   } else {
407     assert(Op.isExpr() && "unknown operand kind in printOperand");
408     O << markup("<imm:") << '$';
409     Op.getExpr()->print(O, &MAI);
410     O << markup(">");
411   }
412 }
413 
414 void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
415                                           raw_ostream &O) {
416   // Do not print the exact form of the memory operand if it references a known
417   // binary object.
418   if (SymbolizeOperands && MIA) {
419     uint64_t Target;
420     if (MIA->evaluateBranch(*MI, 0, 0, Target))
421       return;
422     if (MIA->evaluateMemoryOperandAddress(*MI, /*STI=*/nullptr, 0, 0))
423       return;
424   }
425 
426   const MCOperand &BaseReg = MI->getOperand(Op + X86::AddrBaseReg);
427   const MCOperand &IndexReg = MI->getOperand(Op + X86::AddrIndexReg);
428   const MCOperand &DispSpec = MI->getOperand(Op + X86::AddrDisp);
429 
430   O << markup("<mem:");
431 
432   // If this has a segment register, print it.
433   printOptionalSegReg(MI, Op + X86::AddrSegmentReg, O);
434 
435   if (DispSpec.isImm()) {
436     int64_t DispVal = DispSpec.getImm();
437     if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg()))
438       O << formatImm(DispVal);
439   } else {
440     assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
441     DispSpec.getExpr()->print(O, &MAI);
442   }
443 
444   if (IndexReg.getReg() || BaseReg.getReg()) {
445     O << '(';
446     if (BaseReg.getReg())
447       printOperand(MI, Op + X86::AddrBaseReg, O);
448 
449     if (IndexReg.getReg()) {
450       O << ',';
451       printOperand(MI, Op + X86::AddrIndexReg, O);
452       unsigned ScaleVal = MI->getOperand(Op + X86::AddrScaleAmt).getImm();
453       if (ScaleVal != 1) {
454         O << ',' << markup("<imm:") << ScaleVal // never printed in hex.
455           << markup(">");
456       }
457     }
458     O << ')';
459   }
460 
461   O << markup(">");
462 }
463 
464 void X86ATTInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
465                                     raw_ostream &O) {
466   O << markup("<mem:");
467 
468   // If this has a segment register, print it.
469   printOptionalSegReg(MI, Op + 1, O);
470 
471   O << "(";
472   printOperand(MI, Op, O);
473   O << ")";
474 
475   O << markup(">");
476 }
477 
478 void X86ATTInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
479                                     raw_ostream &O) {
480   O << markup("<mem:");
481 
482   O << "%es:(";
483   printOperand(MI, Op, O);
484   O << ")";
485 
486   O << markup(">");
487 }
488 
489 void X86ATTInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
490                                        raw_ostream &O) {
491   const MCOperand &DispSpec = MI->getOperand(Op);
492 
493   O << markup("<mem:");
494 
495   // If this has a segment register, print it.
496   printOptionalSegReg(MI, Op + 1, O);
497 
498   if (DispSpec.isImm()) {
499     O << formatImm(DispSpec.getImm());
500   } else {
501     assert(DispSpec.isExpr() && "non-immediate displacement?");
502     DispSpec.getExpr()->print(O, &MAI);
503   }
504 
505   O << markup(">");
506 }
507 
508 void X86ATTInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
509                                    raw_ostream &O) {
510   if (MI->getOperand(Op).isExpr())
511     return printOperand(MI, Op, O);
512 
513   O << markup("<imm:") << '$' << formatImm(MI->getOperand(Op).getImm() & 0xff)
514     << markup(">");
515 }
516 
517 void X86ATTInstPrinter::printSTiRegOperand(const MCInst *MI, unsigned OpNo,
518                                            raw_ostream &OS) {
519   const MCOperand &Op = MI->getOperand(OpNo);
520   unsigned Reg = Op.getReg();
521   // Override the default printing to print st(0) instead st.
522   if (Reg == X86::ST0)
523     OS << markup("<reg:") << "%st(0)" << markup(">");
524   else
525     printRegName(OS, Reg);
526 }
527