xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/TargetRegistry.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   }
154 
155   switch (dec->modrm_type) {
156   default:
157     llvm_unreachable("Corrupt table!  Unknown modrm_type");
158     return 0;
159   case MODRM_ONEENTRY:
160     return modRMTable[dec->instructionIDs];
161   case MODRM_SPLITRM:
162     if (modFromModRM(modRM) == 0x3)
163       return modRMTable[dec->instructionIDs + 1];
164     return modRMTable[dec->instructionIDs];
165   case MODRM_SPLITREG:
166     if (modFromModRM(modRM) == 0x3)
167       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
168     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
169   case MODRM_SPLITMISC:
170     if (modFromModRM(modRM) == 0x3)
171       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
172     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
173   case MODRM_FULL:
174     return modRMTable[dec->instructionIDs + modRM];
175   }
176 }
177 
178 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
179   uint64_t offset = insn->readerCursor - insn->startLocation;
180   if (offset >= insn->bytes.size())
181     return true;
182   byte = insn->bytes[offset];
183   return false;
184 }
185 
186 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
187   auto r = insn->bytes;
188   uint64_t offset = insn->readerCursor - insn->startLocation;
189   if (offset + sizeof(T) > r.size())
190     return true;
191   T ret = 0;
192   for (unsigned i = 0; i < sizeof(T); ++i)
193     ret |= (uint64_t)r[offset + i] << (i * 8);
194   ptr = ret;
195   insn->readerCursor += sizeof(T);
196   return false;
197 }
198 
199 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
200   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
201 }
202 
203 // Consumes all of an instruction's prefix bytes, and marks the
204 // instruction as having them.  Also sets the instruction's default operand,
205 // address, and other relevant data sizes to report operands correctly.
206 //
207 // insn must not be empty.
208 static int readPrefixes(struct InternalInstruction *insn) {
209   bool isPrefix = true;
210   uint8_t byte = 0;
211   uint8_t nextByte;
212 
213   LLVM_DEBUG(dbgs() << "readPrefixes()");
214 
215   while (isPrefix) {
216     // If we fail reading prefixes, just stop here and let the opcode reader
217     // deal with it.
218     if (consume(insn, byte))
219       break;
220 
221     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
222     // break and let it be disassembled as a normal "instruction".
223     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
224       break;
225 
226     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
227       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
228       // met:
229       // - it is followed by a LOCK (0xf0) prefix
230       // - it is followed by an xchg instruction
231       // then it should be disassembled as a xacquire/xrelease not repne/rep.
232       if (((nextByte == 0xf0) ||
233            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
234         insn->xAcquireRelease = true;
235         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
236           break;
237       }
238       // Also if the byte is 0xf3, and the following condition is met:
239       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
240       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
241       // then it should be disassembled as an xrelease not rep.
242       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
243                            nextByte == 0xc6 || nextByte == 0xc7)) {
244         insn->xAcquireRelease = true;
245         break;
246       }
247       if (isREX(insn, nextByte)) {
248         uint8_t nnextByte;
249         // Go to REX prefix after the current one
250         if (consume(insn, nnextByte))
251           return -1;
252         // We should be able to read next byte after REX prefix
253         if (peek(insn, nnextByte))
254           return -1;
255         --insn->readerCursor;
256       }
257     }
258 
259     switch (byte) {
260     case 0xf0: // LOCK
261       insn->hasLockPrefix = true;
262       break;
263     case 0xf2: // REPNE/REPNZ
264     case 0xf3: { // REP or REPE/REPZ
265       uint8_t nextByte;
266       if (peek(insn, nextByte))
267         break;
268       // TODO:
269       //  1. There could be several 0x66
270       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
271       //      it's not mandatory prefix
272       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
273       //     0x0f exactly after it to be mandatory prefix
274       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
275         // The last of 0xf2 /0xf3 is mandatory prefix
276         insn->mandatoryPrefix = byte;
277       insn->repeatPrefix = byte;
278       break;
279     }
280     case 0x2e: // CS segment override -OR- Branch not taken
281       insn->segmentOverride = SEG_OVERRIDE_CS;
282       break;
283     case 0x36: // SS segment override -OR- Branch taken
284       insn->segmentOverride = SEG_OVERRIDE_SS;
285       break;
286     case 0x3e: // DS segment override
287       insn->segmentOverride = SEG_OVERRIDE_DS;
288       break;
289     case 0x26: // ES segment override
290       insn->segmentOverride = SEG_OVERRIDE_ES;
291       break;
292     case 0x64: // FS segment override
293       insn->segmentOverride = SEG_OVERRIDE_FS;
294       break;
295     case 0x65: // GS segment override
296       insn->segmentOverride = SEG_OVERRIDE_GS;
297       break;
298     case 0x66: { // Operand-size override {
299       uint8_t nextByte;
300       insn->hasOpSize = true;
301       if (peek(insn, nextByte))
302         break;
303       // 0x66 can't overwrite existing mandatory prefix and should be ignored
304       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
305         insn->mandatoryPrefix = byte;
306       break;
307     }
308     case 0x67: // Address-size override
309       insn->hasAdSize = true;
310       break;
311     default: // Not a prefix byte
312       isPrefix = false;
313       break;
314     }
315 
316     if (isPrefix)
317       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
318   }
319 
320   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
321 
322   if (byte == 0x62) {
323     uint8_t byte1, byte2;
324     if (consume(insn, byte1)) {
325       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
326       return -1;
327     }
328 
329     if (peek(insn, byte2)) {
330       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
331       return -1;
332     }
333 
334     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
335         ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
336       insn->vectorExtensionType = TYPE_EVEX;
337     } else {
338       --insn->readerCursor; // unconsume byte1
339       --insn->readerCursor; // unconsume byte
340     }
341 
342     if (insn->vectorExtensionType == TYPE_EVEX) {
343       insn->vectorExtensionPrefix[0] = byte;
344       insn->vectorExtensionPrefix[1] = byte1;
345       if (consume(insn, insn->vectorExtensionPrefix[2])) {
346         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
347         return -1;
348       }
349       if (consume(insn, insn->vectorExtensionPrefix[3])) {
350         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
351         return -1;
352       }
353 
354       // We simulate the REX prefix for simplicity's sake
355       if (insn->mode == MODE_64BIT) {
356         insn->rexPrefix = 0x40 |
357                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
358                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
359                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
360                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
361       }
362 
363       LLVM_DEBUG(
364           dbgs() << format(
365               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
366               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
367               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
368     }
369   } else if (byte == 0xc4) {
370     uint8_t byte1;
371     if (peek(insn, byte1)) {
372       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
373       return -1;
374     }
375 
376     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
377       insn->vectorExtensionType = TYPE_VEX_3B;
378     else
379       --insn->readerCursor;
380 
381     if (insn->vectorExtensionType == TYPE_VEX_3B) {
382       insn->vectorExtensionPrefix[0] = byte;
383       consume(insn, insn->vectorExtensionPrefix[1]);
384       consume(insn, insn->vectorExtensionPrefix[2]);
385 
386       // We simulate the REX prefix for simplicity's sake
387 
388       if (insn->mode == MODE_64BIT)
389         insn->rexPrefix = 0x40 |
390                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
391                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
392                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
393                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
394 
395       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
396                                   insn->vectorExtensionPrefix[0],
397                                   insn->vectorExtensionPrefix[1],
398                                   insn->vectorExtensionPrefix[2]));
399     }
400   } else if (byte == 0xc5) {
401     uint8_t byte1;
402     if (peek(insn, byte1)) {
403       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
404       return -1;
405     }
406 
407     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
408       insn->vectorExtensionType = TYPE_VEX_2B;
409     else
410       --insn->readerCursor;
411 
412     if (insn->vectorExtensionType == TYPE_VEX_2B) {
413       insn->vectorExtensionPrefix[0] = byte;
414       consume(insn, insn->vectorExtensionPrefix[1]);
415 
416       if (insn->mode == MODE_64BIT)
417         insn->rexPrefix =
418             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
419 
420       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
421       default:
422         break;
423       case VEX_PREFIX_66:
424         insn->hasOpSize = true;
425         break;
426       }
427 
428       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
429                                   insn->vectorExtensionPrefix[0],
430                                   insn->vectorExtensionPrefix[1]));
431     }
432   } else if (byte == 0x8f) {
433     uint8_t byte1;
434     if (peek(insn, byte1)) {
435       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
436       return -1;
437     }
438 
439     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
440       insn->vectorExtensionType = TYPE_XOP;
441     else
442       --insn->readerCursor;
443 
444     if (insn->vectorExtensionType == TYPE_XOP) {
445       insn->vectorExtensionPrefix[0] = byte;
446       consume(insn, insn->vectorExtensionPrefix[1]);
447       consume(insn, insn->vectorExtensionPrefix[2]);
448 
449       // We simulate the REX prefix for simplicity's sake
450 
451       if (insn->mode == MODE_64BIT)
452         insn->rexPrefix = 0x40 |
453                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
454                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
455                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
456                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
457 
458       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
459       default:
460         break;
461       case VEX_PREFIX_66:
462         insn->hasOpSize = true;
463         break;
464       }
465 
466       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
467                                   insn->vectorExtensionPrefix[0],
468                                   insn->vectorExtensionPrefix[1],
469                                   insn->vectorExtensionPrefix[2]));
470     }
471   } else if (isREX(insn, byte)) {
472     if (peek(insn, nextByte))
473       return -1;
474     insn->rexPrefix = byte;
475     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
476   } else
477     --insn->readerCursor;
478 
479   if (insn->mode == MODE_16BIT) {
480     insn->registerSize = (insn->hasOpSize ? 4 : 2);
481     insn->addressSize = (insn->hasAdSize ? 4 : 2);
482     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
483     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
484   } else if (insn->mode == MODE_32BIT) {
485     insn->registerSize = (insn->hasOpSize ? 2 : 4);
486     insn->addressSize = (insn->hasAdSize ? 2 : 4);
487     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
488     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
489   } else if (insn->mode == MODE_64BIT) {
490     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
491       insn->registerSize = 8;
492       insn->addressSize = (insn->hasAdSize ? 4 : 8);
493       insn->displacementSize = 4;
494       insn->immediateSize = 4;
495       insn->hasOpSize = false;
496     } else {
497       insn->registerSize = (insn->hasOpSize ? 2 : 4);
498       insn->addressSize = (insn->hasAdSize ? 4 : 8);
499       insn->displacementSize = (insn->hasOpSize ? 2 : 4);
500       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
501     }
502   }
503 
504   return 0;
505 }
506 
507 // Consumes the SIB byte to determine addressing information.
508 static int readSIB(struct InternalInstruction *insn) {
509   SIBBase sibBaseBase = SIB_BASE_NONE;
510   uint8_t index, base;
511 
512   LLVM_DEBUG(dbgs() << "readSIB()");
513   switch (insn->addressSize) {
514   case 2:
515   default:
516     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
517   case 4:
518     insn->sibIndexBase = SIB_INDEX_EAX;
519     sibBaseBase = SIB_BASE_EAX;
520     break;
521   case 8:
522     insn->sibIndexBase = SIB_INDEX_RAX;
523     sibBaseBase = SIB_BASE_RAX;
524     break;
525   }
526 
527   if (consume(insn, insn->sib))
528     return -1;
529 
530   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
531 
532   if (index == 0x4) {
533     insn->sibIndex = SIB_INDEX_NONE;
534   } else {
535     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
536   }
537 
538   insn->sibScale = 1 << scaleFromSIB(insn->sib);
539 
540   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
541 
542   switch (base) {
543   case 0x5:
544   case 0xd:
545     switch (modFromModRM(insn->modRM)) {
546     case 0x0:
547       insn->eaDisplacement = EA_DISP_32;
548       insn->sibBase = SIB_BASE_NONE;
549       break;
550     case 0x1:
551       insn->eaDisplacement = EA_DISP_8;
552       insn->sibBase = (SIBBase)(sibBaseBase + base);
553       break;
554     case 0x2:
555       insn->eaDisplacement = EA_DISP_32;
556       insn->sibBase = (SIBBase)(sibBaseBase + base);
557       break;
558     default:
559       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
560     }
561     break;
562   default:
563     insn->sibBase = (SIBBase)(sibBaseBase + base);
564     break;
565   }
566 
567   return 0;
568 }
569 
570 static int readDisplacement(struct InternalInstruction *insn) {
571   int8_t d8;
572   int16_t d16;
573   int32_t d32;
574   LLVM_DEBUG(dbgs() << "readDisplacement()");
575 
576   insn->displacementOffset = insn->readerCursor - insn->startLocation;
577   switch (insn->eaDisplacement) {
578   case EA_DISP_NONE:
579     break;
580   case EA_DISP_8:
581     if (consume(insn, d8))
582       return -1;
583     insn->displacement = d8;
584     break;
585   case EA_DISP_16:
586     if (consume(insn, d16))
587       return -1;
588     insn->displacement = d16;
589     break;
590   case EA_DISP_32:
591     if (consume(insn, d32))
592       return -1;
593     insn->displacement = d32;
594     break;
595   }
596 
597   return 0;
598 }
599 
600 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
601 static int readModRM(struct InternalInstruction *insn) {
602   uint8_t mod, rm, reg, evexrm;
603   LLVM_DEBUG(dbgs() << "readModRM()");
604 
605   if (insn->consumedModRM)
606     return 0;
607 
608   if (consume(insn, insn->modRM))
609     return -1;
610   insn->consumedModRM = true;
611 
612   mod = modFromModRM(insn->modRM);
613   rm = rmFromModRM(insn->modRM);
614   reg = regFromModRM(insn->modRM);
615 
616   // This goes by insn->registerSize to pick the correct register, which messes
617   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
618   // fixupReg().
619   switch (insn->registerSize) {
620   case 2:
621     insn->regBase = MODRM_REG_AX;
622     insn->eaRegBase = EA_REG_AX;
623     break;
624   case 4:
625     insn->regBase = MODRM_REG_EAX;
626     insn->eaRegBase = EA_REG_EAX;
627     break;
628   case 8:
629     insn->regBase = MODRM_REG_RAX;
630     insn->eaRegBase = EA_REG_RAX;
631     break;
632   }
633 
634   reg |= rFromREX(insn->rexPrefix) << 3;
635   rm |= bFromREX(insn->rexPrefix) << 3;
636 
637   evexrm = 0;
638   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
639     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
640     evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
641   }
642 
643   insn->reg = (Reg)(insn->regBase + reg);
644 
645   switch (insn->addressSize) {
646   case 2: {
647     EABase eaBaseBase = EA_BASE_BX_SI;
648 
649     switch (mod) {
650     case 0x0:
651       if (rm == 0x6) {
652         insn->eaBase = EA_BASE_NONE;
653         insn->eaDisplacement = EA_DISP_16;
654         if (readDisplacement(insn))
655           return -1;
656       } else {
657         insn->eaBase = (EABase)(eaBaseBase + rm);
658         insn->eaDisplacement = EA_DISP_NONE;
659       }
660       break;
661     case 0x1:
662       insn->eaBase = (EABase)(eaBaseBase + rm);
663       insn->eaDisplacement = EA_DISP_8;
664       insn->displacementSize = 1;
665       if (readDisplacement(insn))
666         return -1;
667       break;
668     case 0x2:
669       insn->eaBase = (EABase)(eaBaseBase + rm);
670       insn->eaDisplacement = EA_DISP_16;
671       if (readDisplacement(insn))
672         return -1;
673       break;
674     case 0x3:
675       insn->eaBase = (EABase)(insn->eaRegBase + rm);
676       if (readDisplacement(insn))
677         return -1;
678       break;
679     }
680     break;
681   }
682   case 4:
683   case 8: {
684     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
685 
686     switch (mod) {
687     case 0x0:
688       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
689       // In determining whether RIP-relative mode is used (rm=5),
690       // or whether a SIB byte is present (rm=4),
691       // the extension bits (REX.b and EVEX.x) are ignored.
692       switch (rm & 7) {
693       case 0x4: // SIB byte is present
694         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
695         if (readSIB(insn) || readDisplacement(insn))
696           return -1;
697         break;
698       case 0x5: // RIP-relative
699         insn->eaBase = EA_BASE_NONE;
700         insn->eaDisplacement = EA_DISP_32;
701         if (readDisplacement(insn))
702           return -1;
703         break;
704       default:
705         insn->eaBase = (EABase)(eaBaseBase + rm);
706         break;
707       }
708       break;
709     case 0x1:
710       insn->displacementSize = 1;
711       LLVM_FALLTHROUGH;
712     case 0x2:
713       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
714       switch (rm & 7) {
715       case 0x4: // SIB byte is present
716         insn->eaBase = EA_BASE_sib;
717         if (readSIB(insn) || readDisplacement(insn))
718           return -1;
719         break;
720       default:
721         insn->eaBase = (EABase)(eaBaseBase + rm);
722         if (readDisplacement(insn))
723           return -1;
724         break;
725       }
726       break;
727     case 0x3:
728       insn->eaDisplacement = EA_DISP_NONE;
729       insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
730       break;
731     }
732     break;
733   }
734   } // switch (insn->addressSize)
735 
736   return 0;
737 }
738 
739 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask)                           \
740   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
741                        uint8_t index, uint8_t *valid) {                        \
742     *valid = 1;                                                                \
743     switch (type) {                                                            \
744     default:                                                                   \
745       debug("Unhandled register type");                                        \
746       *valid = 0;                                                              \
747       return 0;                                                                \
748     case TYPE_Rv:                                                              \
749       return base + index;                                                     \
750     case TYPE_R8:                                                              \
751       index &= mask;                                                           \
752       if (index > 0xf)                                                         \
753         *valid = 0;                                                            \
754       if (insn->rexPrefix && index >= 4 && index <= 7) {                       \
755         return prefix##_SPL + (index - 4);                                     \
756       } else {                                                                 \
757         return prefix##_AL + index;                                            \
758       }                                                                        \
759     case TYPE_R16:                                                             \
760       index &= mask;                                                           \
761       if (index > 0xf)                                                         \
762         *valid = 0;                                                            \
763       return prefix##_AX + index;                                              \
764     case TYPE_R32:                                                             \
765       index &= mask;                                                           \
766       if (index > 0xf)                                                         \
767         *valid = 0;                                                            \
768       return prefix##_EAX + index;                                             \
769     case TYPE_R64:                                                             \
770       index &= mask;                                                           \
771       if (index > 0xf)                                                         \
772         *valid = 0;                                                            \
773       return prefix##_RAX + index;                                             \
774     case TYPE_ZMM:                                                             \
775       return prefix##_ZMM0 + index;                                            \
776     case TYPE_YMM:                                                             \
777       return prefix##_YMM0 + index;                                            \
778     case TYPE_XMM:                                                             \
779       return prefix##_XMM0 + index;                                            \
780     case TYPE_TMM:                                                             \
781       if (index > 7)                                                           \
782         *valid = 0;                                                            \
783       return prefix##_TMM0 + index;                                            \
784     case TYPE_VK:                                                              \
785       index &= 0xf;                                                            \
786       if (index > 7)                                                           \
787         *valid = 0;                                                            \
788       return prefix##_K0 + index;                                              \
789     case TYPE_VK_PAIR:                                                         \
790       if (index > 7)                                                           \
791         *valid = 0;                                                            \
792       return prefix##_K0_K1 + (index / 2);                                     \
793     case TYPE_MM64:                                                            \
794       return prefix##_MM0 + (index & 0x7);                                     \
795     case TYPE_SEGMENTREG:                                                      \
796       if ((index & 7) > 5)                                                     \
797         *valid = 0;                                                            \
798       return prefix##_ES + (index & 7);                                        \
799     case TYPE_DEBUGREG:                                                        \
800       return prefix##_DR0 + index;                                             \
801     case TYPE_CONTROLREG:                                                      \
802       return prefix##_CR0 + index;                                             \
803     case TYPE_BNDR:                                                            \
804       if (index > 3)                                                           \
805         *valid = 0;                                                            \
806       return prefix##_BND0 + index;                                            \
807     case TYPE_MVSIBX:                                                          \
808       return prefix##_XMM0 + index;                                            \
809     case TYPE_MVSIBY:                                                          \
810       return prefix##_YMM0 + index;                                            \
811     case TYPE_MVSIBZ:                                                          \
812       return prefix##_ZMM0 + index;                                            \
813     }                                                                          \
814   }
815 
816 // Consult an operand type to determine the meaning of the reg or R/M field. If
817 // the operand is an XMM operand, for example, an operand would be XMM0 instead
818 // of AX, which readModRM() would otherwise misinterpret it as.
819 //
820 // @param insn  - The instruction containing the operand.
821 // @param type  - The operand type.
822 // @param index - The existing value of the field as reported by readModRM().
823 // @param valid - The address of a uint8_t.  The target is set to 1 if the
824 //                field is valid for the register class; 0 if not.
825 // @return      - The proper value.
826 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
827 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
828 
829 // Consult an operand specifier to determine which of the fixup*Value functions
830 // to use in correcting readModRM()'ss interpretation.
831 //
832 // @param insn  - See fixup*Value().
833 // @param op    - The operand specifier.
834 // @return      - 0 if fixup was successful; -1 if the register returned was
835 //                invalid for its class.
836 static int fixupReg(struct InternalInstruction *insn,
837                     const struct OperandSpecifier *op) {
838   uint8_t valid;
839   LLVM_DEBUG(dbgs() << "fixupReg()");
840 
841   switch ((OperandEncoding)op->encoding) {
842   default:
843     debug("Expected a REG or R/M encoding in fixupReg");
844     return -1;
845   case ENCODING_VVVV:
846     insn->vvvv =
847         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
848     if (!valid)
849       return -1;
850     break;
851   case ENCODING_REG:
852     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
853                                    insn->reg - insn->regBase, &valid);
854     if (!valid)
855       return -1;
856     break;
857   case ENCODING_SIB:
858   CASE_ENCODING_RM:
859     if (insn->eaBase >= insn->eaRegBase) {
860       insn->eaBase = (EABase)fixupRMValue(
861           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
862       if (!valid)
863         return -1;
864     }
865     break;
866   }
867 
868   return 0;
869 }
870 
871 // Read the opcode (except the ModR/M byte in the case of extended or escape
872 // opcodes).
873 static bool readOpcode(struct InternalInstruction *insn) {
874   uint8_t current;
875   LLVM_DEBUG(dbgs() << "readOpcode()");
876 
877   insn->opcodeType = ONEBYTE;
878   if (insn->vectorExtensionType == TYPE_EVEX) {
879     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
880     default:
881       LLVM_DEBUG(
882           dbgs() << format("Unhandled mm field for instruction (0x%hhx)",
883                            mmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
884       return true;
885     case VEX_LOB_0F:
886       insn->opcodeType = TWOBYTE;
887       return consume(insn, insn->opcode);
888     case VEX_LOB_0F38:
889       insn->opcodeType = THREEBYTE_38;
890       return consume(insn, insn->opcode);
891     case VEX_LOB_0F3A:
892       insn->opcodeType = THREEBYTE_3A;
893       return consume(insn, insn->opcode);
894     }
895   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
896     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
897     default:
898       LLVM_DEBUG(
899           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
900                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
901       return true;
902     case VEX_LOB_0F:
903       insn->opcodeType = TWOBYTE;
904       return consume(insn, insn->opcode);
905     case VEX_LOB_0F38:
906       insn->opcodeType = THREEBYTE_38;
907       return consume(insn, insn->opcode);
908     case VEX_LOB_0F3A:
909       insn->opcodeType = THREEBYTE_3A;
910       return consume(insn, insn->opcode);
911     }
912   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
913     insn->opcodeType = TWOBYTE;
914     return consume(insn, insn->opcode);
915   } else if (insn->vectorExtensionType == TYPE_XOP) {
916     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
917     default:
918       LLVM_DEBUG(
919           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
920                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
921       return true;
922     case XOP_MAP_SELECT_8:
923       insn->opcodeType = XOP8_MAP;
924       return consume(insn, insn->opcode);
925     case XOP_MAP_SELECT_9:
926       insn->opcodeType = XOP9_MAP;
927       return consume(insn, insn->opcode);
928     case XOP_MAP_SELECT_A:
929       insn->opcodeType = XOPA_MAP;
930       return consume(insn, insn->opcode);
931     }
932   }
933 
934   if (consume(insn, current))
935     return true;
936 
937   if (current == 0x0f) {
938     LLVM_DEBUG(
939         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
940     if (consume(insn, current))
941       return true;
942 
943     if (current == 0x38) {
944       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
945                                   current));
946       if (consume(insn, current))
947         return true;
948 
949       insn->opcodeType = THREEBYTE_38;
950     } else if (current == 0x3a) {
951       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
952                                   current));
953       if (consume(insn, current))
954         return true;
955 
956       insn->opcodeType = THREEBYTE_3A;
957     } else if (current == 0x0f) {
958       LLVM_DEBUG(
959           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
960 
961       // Consume operands before the opcode to comply with the 3DNow encoding
962       if (readModRM(insn))
963         return true;
964 
965       if (consume(insn, current))
966         return true;
967 
968       insn->opcodeType = THREEDNOW_MAP;
969     } else {
970       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
971       insn->opcodeType = TWOBYTE;
972     }
973   } else if (insn->mandatoryPrefix)
974     // The opcode with mandatory prefix must start with opcode escape.
975     // If not it's legacy repeat prefix
976     insn->mandatoryPrefix = 0;
977 
978   // At this point we have consumed the full opcode.
979   // Anything we consume from here on must be unconsumed.
980   insn->opcode = current;
981 
982   return false;
983 }
984 
985 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
986 static bool is16BitEquivalent(const char *orig, const char *equiv) {
987   for (int i = 0;; i++) {
988     if (orig[i] == '\0' && equiv[i] == '\0')
989       return true;
990     if (orig[i] == '\0' || equiv[i] == '\0')
991       return false;
992     if (orig[i] != equiv[i]) {
993       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
994         continue;
995       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
996         continue;
997       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
998         continue;
999       return false;
1000     }
1001   }
1002 }
1003 
1004 // Determine whether this instruction is a 64-bit instruction.
1005 static bool is64Bit(const char *name) {
1006   for (int i = 0;; ++i) {
1007     if (name[i] == '\0')
1008       return false;
1009     if (name[i] == '6' && name[i + 1] == '4')
1010       return true;
1011   }
1012 }
1013 
1014 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1015 // for extended and escape opcodes, and using a supplied attribute mask.
1016 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1017                                         struct InternalInstruction *insn,
1018                                         uint16_t attrMask) {
1019   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1020   const ContextDecision *decision;
1021   switch (insn->opcodeType) {
1022   case ONEBYTE:
1023     decision = &ONEBYTE_SYM;
1024     break;
1025   case TWOBYTE:
1026     decision = &TWOBYTE_SYM;
1027     break;
1028   case THREEBYTE_38:
1029     decision = &THREEBYTE38_SYM;
1030     break;
1031   case THREEBYTE_3A:
1032     decision = &THREEBYTE3A_SYM;
1033     break;
1034   case XOP8_MAP:
1035     decision = &XOP8_MAP_SYM;
1036     break;
1037   case XOP9_MAP:
1038     decision = &XOP9_MAP_SYM;
1039     break;
1040   case XOPA_MAP:
1041     decision = &XOPA_MAP_SYM;
1042     break;
1043   case THREEDNOW_MAP:
1044     decision = &THREEDNOW_MAP_SYM;
1045     break;
1046   }
1047 
1048   if (decision->opcodeDecisions[insnCtx]
1049           .modRMDecisions[insn->opcode]
1050           .modrm_type != MODRM_ONEENTRY) {
1051     if (readModRM(insn))
1052       return -1;
1053     *instructionID =
1054         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1055   } else {
1056     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1057   }
1058 
1059   return 0;
1060 }
1061 
1062 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1063 // for extended and escape opcodes. Determines the attributes and context for
1064 // the instruction before doing so.
1065 static int getInstructionID(struct InternalInstruction *insn,
1066                             const MCInstrInfo *mii) {
1067   uint16_t attrMask;
1068   uint16_t instructionID;
1069 
1070   LLVM_DEBUG(dbgs() << "getID()");
1071 
1072   attrMask = ATTR_NONE;
1073 
1074   if (insn->mode == MODE_64BIT)
1075     attrMask |= ATTR_64BIT;
1076 
1077   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1078     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1079 
1080     if (insn->vectorExtensionType == TYPE_EVEX) {
1081       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1082       case VEX_PREFIX_66:
1083         attrMask |= ATTR_OPSIZE;
1084         break;
1085       case VEX_PREFIX_F3:
1086         attrMask |= ATTR_XS;
1087         break;
1088       case VEX_PREFIX_F2:
1089         attrMask |= ATTR_XD;
1090         break;
1091       }
1092 
1093       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1094         attrMask |= ATTR_EVEXKZ;
1095       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1096         attrMask |= ATTR_EVEXB;
1097       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1098         attrMask |= ATTR_EVEXK;
1099       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1100         attrMask |= ATTR_VEXL;
1101       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1102         attrMask |= ATTR_EVEXL2;
1103     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1104       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1105       case VEX_PREFIX_66:
1106         attrMask |= ATTR_OPSIZE;
1107         break;
1108       case VEX_PREFIX_F3:
1109         attrMask |= ATTR_XS;
1110         break;
1111       case VEX_PREFIX_F2:
1112         attrMask |= ATTR_XD;
1113         break;
1114       }
1115 
1116       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1117         attrMask |= ATTR_VEXL;
1118     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1119       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1120       case VEX_PREFIX_66:
1121         attrMask |= ATTR_OPSIZE;
1122         break;
1123       case VEX_PREFIX_F3:
1124         attrMask |= ATTR_XS;
1125         break;
1126       case VEX_PREFIX_F2:
1127         attrMask |= ATTR_XD;
1128         break;
1129       }
1130 
1131       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1132         attrMask |= ATTR_VEXL;
1133     } else if (insn->vectorExtensionType == TYPE_XOP) {
1134       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1135       case VEX_PREFIX_66:
1136         attrMask |= ATTR_OPSIZE;
1137         break;
1138       case VEX_PREFIX_F3:
1139         attrMask |= ATTR_XS;
1140         break;
1141       case VEX_PREFIX_F2:
1142         attrMask |= ATTR_XD;
1143         break;
1144       }
1145 
1146       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1147         attrMask |= ATTR_VEXL;
1148     } else {
1149       return -1;
1150     }
1151   } else if (!insn->mandatoryPrefix) {
1152     // If we don't have mandatory prefix we should use legacy prefixes here
1153     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1154       attrMask |= ATTR_OPSIZE;
1155     if (insn->hasAdSize)
1156       attrMask |= ATTR_ADSIZE;
1157     if (insn->opcodeType == ONEBYTE) {
1158       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1159         // Special support for PAUSE
1160         attrMask |= ATTR_XS;
1161     } else {
1162       if (insn->repeatPrefix == 0xf2)
1163         attrMask |= ATTR_XD;
1164       else if (insn->repeatPrefix == 0xf3)
1165         attrMask |= ATTR_XS;
1166     }
1167   } else {
1168     switch (insn->mandatoryPrefix) {
1169     case 0xf2:
1170       attrMask |= ATTR_XD;
1171       break;
1172     case 0xf3:
1173       attrMask |= ATTR_XS;
1174       break;
1175     case 0x66:
1176       if (insn->mode != MODE_16BIT)
1177         attrMask |= ATTR_OPSIZE;
1178       break;
1179     case 0x67:
1180       attrMask |= ATTR_ADSIZE;
1181       break;
1182     }
1183   }
1184 
1185   if (insn->rexPrefix & 0x08) {
1186     attrMask |= ATTR_REXW;
1187     attrMask &= ~ATTR_ADSIZE;
1188   }
1189 
1190   if (insn->mode == MODE_16BIT) {
1191     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1192     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1193     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1194       attrMask ^= ATTR_ADSIZE;
1195     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1196     // prefix isn't present, we need to force the opsize attribute since the
1197     // prefix is inverted relative to 32-bit mode.
1198     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1199         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1200       attrMask |= ATTR_OPSIZE;
1201 
1202     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1203         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1204       attrMask |= ATTR_OPSIZE;
1205   }
1206 
1207 
1208   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1209     return -1;
1210 
1211   // The following clauses compensate for limitations of the tables.
1212 
1213   if (insn->mode != MODE_64BIT &&
1214       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1215     // The tables can't distinquish between cases where the W-bit is used to
1216     // select register size and cases where its a required part of the opcode.
1217     if ((insn->vectorExtensionType == TYPE_EVEX &&
1218          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1219         (insn->vectorExtensionType == TYPE_VEX_3B &&
1220          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1221         (insn->vectorExtensionType == TYPE_XOP &&
1222          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1223 
1224       uint16_t instructionIDWithREXW;
1225       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1226                                        attrMask | ATTR_REXW)) {
1227         insn->instructionID = instructionID;
1228         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1229         return 0;
1230       }
1231 
1232       auto SpecName = mii->getName(instructionIDWithREXW);
1233       // If not a 64-bit instruction. Switch the opcode.
1234       if (!is64Bit(SpecName.data())) {
1235         insn->instructionID = instructionIDWithREXW;
1236         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1237         return 0;
1238       }
1239     }
1240   }
1241 
1242   // Absolute moves, umonitor, and movdir64b need special handling.
1243   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1244   //  inverted w.r.t.
1245   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1246   //  any position.
1247   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1248       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1249       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1250     // Make sure we observed the prefixes in any position.
1251     if (insn->hasAdSize)
1252       attrMask |= ATTR_ADSIZE;
1253     if (insn->hasOpSize)
1254       attrMask |= ATTR_OPSIZE;
1255 
1256     // In 16-bit, invert the attributes.
1257     if (insn->mode == MODE_16BIT) {
1258       attrMask ^= ATTR_ADSIZE;
1259 
1260       // The OpSize attribute is only valid with the absolute moves.
1261       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1262         attrMask ^= ATTR_OPSIZE;
1263     }
1264 
1265     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1266       return -1;
1267 
1268     insn->instructionID = instructionID;
1269     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1270     return 0;
1271   }
1272 
1273   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1274       !(attrMask & ATTR_OPSIZE)) {
1275     // The instruction tables make no distinction between instructions that
1276     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1277     // particular spot (i.e., many MMX operations). In general we're
1278     // conservative, but in the specific case where OpSize is present but not in
1279     // the right place we check if there's a 16-bit operation.
1280     const struct InstructionSpecifier *spec;
1281     uint16_t instructionIDWithOpsize;
1282     llvm::StringRef specName, specWithOpSizeName;
1283 
1284     spec = &INSTRUCTIONS_SYM[instructionID];
1285 
1286     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1287                                      attrMask | ATTR_OPSIZE)) {
1288       // ModRM required with OpSize but not present. Give up and return the
1289       // version without OpSize set.
1290       insn->instructionID = instructionID;
1291       insn->spec = spec;
1292       return 0;
1293     }
1294 
1295     specName = mii->getName(instructionID);
1296     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1297 
1298     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1299         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1300       insn->instructionID = instructionIDWithOpsize;
1301       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1302     } else {
1303       insn->instructionID = instructionID;
1304       insn->spec = spec;
1305     }
1306     return 0;
1307   }
1308 
1309   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1310       insn->rexPrefix & 0x01) {
1311     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1312     // as XCHG %r8, %eax.
1313     const struct InstructionSpecifier *spec;
1314     uint16_t instructionIDWithNewOpcode;
1315     const struct InstructionSpecifier *specWithNewOpcode;
1316 
1317     spec = &INSTRUCTIONS_SYM[instructionID];
1318 
1319     // Borrow opcode from one of the other XCHGar opcodes
1320     insn->opcode = 0x91;
1321 
1322     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1323                                      attrMask)) {
1324       insn->opcode = 0x90;
1325 
1326       insn->instructionID = instructionID;
1327       insn->spec = spec;
1328       return 0;
1329     }
1330 
1331     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1332 
1333     // Change back
1334     insn->opcode = 0x90;
1335 
1336     insn->instructionID = instructionIDWithNewOpcode;
1337     insn->spec = specWithNewOpcode;
1338 
1339     return 0;
1340   }
1341 
1342   insn->instructionID = instructionID;
1343   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1344 
1345   return 0;
1346 }
1347 
1348 // Read an operand from the opcode field of an instruction and interprets it
1349 // appropriately given the operand width. Handles AddRegFrm instructions.
1350 //
1351 // @param insn  - the instruction whose opcode field is to be read.
1352 // @param size  - The width (in bytes) of the register being specified.
1353 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1354 //                RAX.
1355 // @return      - 0 on success; nonzero otherwise.
1356 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1357   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1358 
1359   if (size == 0)
1360     size = insn->registerSize;
1361 
1362   switch (size) {
1363   case 1:
1364     insn->opcodeRegister = (Reg)(
1365         MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1366     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1367         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1368       insn->opcodeRegister =
1369           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1370     }
1371 
1372     break;
1373   case 2:
1374     insn->opcodeRegister = (Reg)(
1375         MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1376     break;
1377   case 4:
1378     insn->opcodeRegister =
1379         (Reg)(MODRM_REG_EAX +
1380               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1381     break;
1382   case 8:
1383     insn->opcodeRegister =
1384         (Reg)(MODRM_REG_RAX +
1385               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1386     break;
1387   }
1388 
1389   return 0;
1390 }
1391 
1392 // Consume an immediate operand from an instruction, given the desired operand
1393 // size.
1394 //
1395 // @param insn  - The instruction whose operand is to be read.
1396 // @param size  - The width (in bytes) of the operand.
1397 // @return      - 0 if the immediate was successfully consumed; nonzero
1398 //                otherwise.
1399 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1400   uint8_t imm8;
1401   uint16_t imm16;
1402   uint32_t imm32;
1403   uint64_t imm64;
1404 
1405   LLVM_DEBUG(dbgs() << "readImmediate()");
1406 
1407   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1408 
1409   insn->immediateSize = size;
1410   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1411 
1412   switch (size) {
1413   case 1:
1414     if (consume(insn, imm8))
1415       return -1;
1416     insn->immediates[insn->numImmediatesConsumed] = imm8;
1417     break;
1418   case 2:
1419     if (consume(insn, imm16))
1420       return -1;
1421     insn->immediates[insn->numImmediatesConsumed] = imm16;
1422     break;
1423   case 4:
1424     if (consume(insn, imm32))
1425       return -1;
1426     insn->immediates[insn->numImmediatesConsumed] = imm32;
1427     break;
1428   case 8:
1429     if (consume(insn, imm64))
1430       return -1;
1431     insn->immediates[insn->numImmediatesConsumed] = imm64;
1432     break;
1433   default:
1434     llvm_unreachable("invalid size");
1435   }
1436 
1437   insn->numImmediatesConsumed++;
1438 
1439   return 0;
1440 }
1441 
1442 // Consume vvvv from an instruction if it has a VEX prefix.
1443 static int readVVVV(struct InternalInstruction *insn) {
1444   LLVM_DEBUG(dbgs() << "readVVVV()");
1445 
1446   int vvvv;
1447   if (insn->vectorExtensionType == TYPE_EVEX)
1448     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1449             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1450   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1451     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1452   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1453     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1454   else if (insn->vectorExtensionType == TYPE_XOP)
1455     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1456   else
1457     return -1;
1458 
1459   if (insn->mode != MODE_64BIT)
1460     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1461 
1462   insn->vvvv = static_cast<Reg>(vvvv);
1463   return 0;
1464 }
1465 
1466 // Read an mask register from the opcode field of an instruction.
1467 //
1468 // @param insn    - The instruction whose opcode field is to be read.
1469 // @return        - 0 on success; nonzero otherwise.
1470 static int readMaskRegister(struct InternalInstruction *insn) {
1471   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1472 
1473   if (insn->vectorExtensionType != TYPE_EVEX)
1474     return -1;
1475 
1476   insn->writemask =
1477       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1478   return 0;
1479 }
1480 
1481 // Consults the specifier for an instruction and consumes all
1482 // operands for that instruction, interpreting them as it goes.
1483 static int readOperands(struct InternalInstruction *insn) {
1484   int hasVVVV, needVVVV;
1485   int sawRegImm = 0;
1486 
1487   LLVM_DEBUG(dbgs() << "readOperands()");
1488 
1489   // If non-zero vvvv specified, make sure one of the operands uses it.
1490   hasVVVV = !readVVVV(insn);
1491   needVVVV = hasVVVV && (insn->vvvv != 0);
1492 
1493   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1494     switch (Op.encoding) {
1495     case ENCODING_NONE:
1496     case ENCODING_SI:
1497     case ENCODING_DI:
1498       break;
1499     CASE_ENCODING_VSIB:
1500       // VSIB can use the V2 bit so check only the other bits.
1501       if (needVVVV)
1502         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1503       if (readModRM(insn))
1504         return -1;
1505 
1506       // Reject if SIB wasn't used.
1507       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1508         return -1;
1509 
1510       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1511       if (insn->sibIndex == SIB_INDEX_NONE)
1512         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1513 
1514       // If EVEX.v2 is set this is one of the 16-31 registers.
1515       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1516           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1517         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1518 
1519       // Adjust the index register to the correct size.
1520       switch ((OperandType)Op.type) {
1521       default:
1522         debug("Unhandled VSIB index type");
1523         return -1;
1524       case TYPE_MVSIBX:
1525         insn->sibIndex =
1526             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1527         break;
1528       case TYPE_MVSIBY:
1529         insn->sibIndex =
1530             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1531         break;
1532       case TYPE_MVSIBZ:
1533         insn->sibIndex =
1534             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1535         break;
1536       }
1537 
1538       // Apply the AVX512 compressed displacement scaling factor.
1539       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1540         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1541       break;
1542     case ENCODING_SIB:
1543       // Reject if SIB wasn't used.
1544       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1545         return -1;
1546       if (readModRM(insn))
1547         return -1;
1548       if (fixupReg(insn, &Op))
1549         return -1;
1550       break;
1551     case ENCODING_REG:
1552     CASE_ENCODING_RM:
1553       if (readModRM(insn))
1554         return -1;
1555       if (fixupReg(insn, &Op))
1556         return -1;
1557       // Apply the AVX512 compressed displacement scaling factor.
1558       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1559         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1560       break;
1561     case ENCODING_IB:
1562       if (sawRegImm) {
1563         // Saw a register immediate so don't read again and instead split the
1564         // previous immediate. FIXME: This is a hack.
1565         insn->immediates[insn->numImmediatesConsumed] =
1566             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1567         ++insn->numImmediatesConsumed;
1568         break;
1569       }
1570       if (readImmediate(insn, 1))
1571         return -1;
1572       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1573         sawRegImm = 1;
1574       break;
1575     case ENCODING_IW:
1576       if (readImmediate(insn, 2))
1577         return -1;
1578       break;
1579     case ENCODING_ID:
1580       if (readImmediate(insn, 4))
1581         return -1;
1582       break;
1583     case ENCODING_IO:
1584       if (readImmediate(insn, 8))
1585         return -1;
1586       break;
1587     case ENCODING_Iv:
1588       if (readImmediate(insn, insn->immediateSize))
1589         return -1;
1590       break;
1591     case ENCODING_Ia:
1592       if (readImmediate(insn, insn->addressSize))
1593         return -1;
1594       break;
1595     case ENCODING_IRC:
1596       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1597                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1598       break;
1599     case ENCODING_RB:
1600       if (readOpcodeRegister(insn, 1))
1601         return -1;
1602       break;
1603     case ENCODING_RW:
1604       if (readOpcodeRegister(insn, 2))
1605         return -1;
1606       break;
1607     case ENCODING_RD:
1608       if (readOpcodeRegister(insn, 4))
1609         return -1;
1610       break;
1611     case ENCODING_RO:
1612       if (readOpcodeRegister(insn, 8))
1613         return -1;
1614       break;
1615     case ENCODING_Rv:
1616       if (readOpcodeRegister(insn, 0))
1617         return -1;
1618       break;
1619     case ENCODING_CC:
1620       insn->immediates[1] = insn->opcode & 0xf;
1621       break;
1622     case ENCODING_FP:
1623       break;
1624     case ENCODING_VVVV:
1625       needVVVV = 0; // Mark that we have found a VVVV operand.
1626       if (!hasVVVV)
1627         return -1;
1628       if (insn->mode != MODE_64BIT)
1629         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1630       if (fixupReg(insn, &Op))
1631         return -1;
1632       break;
1633     case ENCODING_WRITEMASK:
1634       if (readMaskRegister(insn))
1635         return -1;
1636       break;
1637     case ENCODING_DUP:
1638       break;
1639     default:
1640       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1641       return -1;
1642     }
1643   }
1644 
1645   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1646   if (needVVVV)
1647     return -1;
1648 
1649   return 0;
1650 }
1651 
1652 namespace llvm {
1653 
1654 // Fill-ins to make the compiler happy. These constants are never actually
1655 // assigned; they are just filler to make an automatically-generated switch
1656 // statement work.
1657 namespace X86 {
1658   enum {
1659     BX_SI = 500,
1660     BX_DI = 501,
1661     BP_SI = 502,
1662     BP_DI = 503,
1663     sib   = 504,
1664     sib64 = 505
1665   };
1666 } // namespace X86
1667 
1668 } // namespace llvm
1669 
1670 static bool translateInstruction(MCInst &target,
1671                                 InternalInstruction &source,
1672                                 const MCDisassembler *Dis);
1673 
1674 namespace {
1675 
1676 /// Generic disassembler for all X86 platforms. All each platform class should
1677 /// have to do is subclass the constructor, and provide a different
1678 /// disassemblerMode value.
1679 class X86GenericDisassembler : public MCDisassembler {
1680   std::unique_ptr<const MCInstrInfo> MII;
1681 public:
1682   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1683                          std::unique_ptr<const MCInstrInfo> MII);
1684 public:
1685   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1686                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1687                               raw_ostream &cStream) const override;
1688 
1689 private:
1690   DisassemblerMode              fMode;
1691 };
1692 
1693 } // namespace
1694 
1695 X86GenericDisassembler::X86GenericDisassembler(
1696                                          const MCSubtargetInfo &STI,
1697                                          MCContext &Ctx,
1698                                          std::unique_ptr<const MCInstrInfo> MII)
1699   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1700   const FeatureBitset &FB = STI.getFeatureBits();
1701   if (FB[X86::Mode16Bit]) {
1702     fMode = MODE_16BIT;
1703     return;
1704   } else if (FB[X86::Mode32Bit]) {
1705     fMode = MODE_32BIT;
1706     return;
1707   } else if (FB[X86::Mode64Bit]) {
1708     fMode = MODE_64BIT;
1709     return;
1710   }
1711 
1712   llvm_unreachable("Invalid CPU mode");
1713 }
1714 
1715 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1716     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1717     raw_ostream &CStream) const {
1718   CommentStream = &CStream;
1719 
1720   InternalInstruction Insn;
1721   memset(&Insn, 0, sizeof(InternalInstruction));
1722   Insn.bytes = Bytes;
1723   Insn.startLocation = Address;
1724   Insn.readerCursor = Address;
1725   Insn.mode = fMode;
1726 
1727   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1728       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1729       readOperands(&Insn)) {
1730     Size = Insn.readerCursor - Address;
1731     return Fail;
1732   }
1733 
1734   Insn.operands = x86OperandSets[Insn.spec->operands];
1735   Insn.length = Insn.readerCursor - Insn.startLocation;
1736   Size = Insn.length;
1737   if (Size > 15)
1738     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1739 
1740   bool Ret = translateInstruction(Instr, Insn, this);
1741   if (!Ret) {
1742     unsigned Flags = X86::IP_NO_PREFIX;
1743     if (Insn.hasAdSize)
1744       Flags |= X86::IP_HAS_AD_SIZE;
1745     if (!Insn.mandatoryPrefix) {
1746       if (Insn.hasOpSize)
1747         Flags |= X86::IP_HAS_OP_SIZE;
1748       if (Insn.repeatPrefix == 0xf2)
1749         Flags |= X86::IP_HAS_REPEAT_NE;
1750       else if (Insn.repeatPrefix == 0xf3 &&
1751                // It should not be 'pause' f3 90
1752                Insn.opcode != 0x90)
1753         Flags |= X86::IP_HAS_REPEAT;
1754       if (Insn.hasLockPrefix)
1755         Flags |= X86::IP_HAS_LOCK;
1756     }
1757     Instr.setFlags(Flags);
1758   }
1759   return (!Ret) ? Success : Fail;
1760 }
1761 
1762 //
1763 // Private code that translates from struct InternalInstructions to MCInsts.
1764 //
1765 
1766 /// translateRegister - Translates an internal register to the appropriate LLVM
1767 ///   register, and appends it as an operand to an MCInst.
1768 ///
1769 /// @param mcInst     - The MCInst to append to.
1770 /// @param reg        - The Reg to append.
1771 static void translateRegister(MCInst &mcInst, Reg reg) {
1772 #define ENTRY(x) X86::x,
1773   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1774 #undef ENTRY
1775 
1776   MCPhysReg llvmRegnum = llvmRegnums[reg];
1777   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1778 }
1779 
1780 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
1781 /// immediate Value in the MCInst.
1782 ///
1783 /// @param Value      - The immediate Value, has had any PC adjustment made by
1784 ///                     the caller.
1785 /// @param isBranch   - If the instruction is a branch instruction
1786 /// @param Address    - The starting address of the instruction
1787 /// @param Offset     - The byte offset to this immediate in the instruction
1788 /// @param Width      - The byte width of this immediate in the instruction
1789 ///
1790 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
1791 /// called then that function is called to get any symbolic information for the
1792 /// immediate in the instruction using the Address, Offset and Width.  If that
1793 /// returns non-zero then the symbolic information it returns is used to create
1794 /// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
1795 /// returns zero and isBranch is true then a symbol look up for immediate Value
1796 /// is done and if a symbol is found an MCExpr is created with that, else
1797 /// an MCExpr with the immediate Value is created.  This function returns true
1798 /// if it adds an operand to the MCInst and false otherwise.
1799 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
1800                                      uint64_t Address, uint64_t Offset,
1801                                      uint64_t Width, MCInst &MI,
1802                                      const MCDisassembler *Dis) {
1803   return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
1804                                        Offset, Width);
1805 }
1806 
1807 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
1808 /// referenced by a load instruction with the base register that is the rip.
1809 /// These can often be addresses in a literal pool.  The Address of the
1810 /// instruction and its immediate Value are used to determine the address
1811 /// being referenced in the literal pool entry.  The SymbolLookUp call back will
1812 /// return a pointer to a literal 'C' string if the referenced address is an
1813 /// address into a section with 'C' string literals.
1814 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
1815                                             const void *Decoder) {
1816   const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
1817   Dis->tryAddingPcLoadReferenceComment(Value, Address);
1818 }
1819 
1820 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1821   0,        // SEG_OVERRIDE_NONE
1822   X86::CS,
1823   X86::SS,
1824   X86::DS,
1825   X86::ES,
1826   X86::FS,
1827   X86::GS
1828 };
1829 
1830 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1831 ///
1832 /// @param mcInst       - The MCInst to append to.
1833 /// @param insn         - The internal instruction.
1834 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1835   unsigned baseRegNo;
1836 
1837   if (insn.mode == MODE_64BIT)
1838     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1839   else if (insn.mode == MODE_32BIT)
1840     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1841   else {
1842     assert(insn.mode == MODE_16BIT);
1843     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1844   }
1845   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1846   mcInst.addOperand(baseReg);
1847 
1848   MCOperand segmentReg;
1849   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1850   mcInst.addOperand(segmentReg);
1851   return false;
1852 }
1853 
1854 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1855 ///
1856 /// @param mcInst       - The MCInst to append to.
1857 /// @param insn         - The internal instruction.
1858 
1859 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1860   unsigned baseRegNo;
1861 
1862   if (insn.mode == MODE_64BIT)
1863     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1864   else if (insn.mode == MODE_32BIT)
1865     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1866   else {
1867     assert(insn.mode == MODE_16BIT);
1868     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1869   }
1870   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1871   mcInst.addOperand(baseReg);
1872   return false;
1873 }
1874 
1875 /// translateImmediate  - Appends an immediate operand to an MCInst.
1876 ///
1877 /// @param mcInst       - The MCInst to append to.
1878 /// @param immediate    - The immediate value to append.
1879 /// @param operand      - The operand, as stored in the descriptor table.
1880 /// @param insn         - The internal instruction.
1881 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1882                                const OperandSpecifier &operand,
1883                                InternalInstruction &insn,
1884                                const MCDisassembler *Dis) {
1885   // Sign-extend the immediate if necessary.
1886 
1887   OperandType type = (OperandType)operand.type;
1888 
1889   bool isBranch = false;
1890   uint64_t pcrel = 0;
1891   if (type == TYPE_REL) {
1892     isBranch = true;
1893     pcrel = insn.startLocation +
1894             insn.immediateOffset + insn.immediateSize;
1895     switch (operand.encoding) {
1896     default:
1897       break;
1898     case ENCODING_Iv:
1899       switch (insn.displacementSize) {
1900       default:
1901         break;
1902       case 1:
1903         if(immediate & 0x80)
1904           immediate |= ~(0xffull);
1905         break;
1906       case 2:
1907         if(immediate & 0x8000)
1908           immediate |= ~(0xffffull);
1909         break;
1910       case 4:
1911         if(immediate & 0x80000000)
1912           immediate |= ~(0xffffffffull);
1913         break;
1914       case 8:
1915         break;
1916       }
1917       break;
1918     case ENCODING_IB:
1919       if(immediate & 0x80)
1920         immediate |= ~(0xffull);
1921       break;
1922     case ENCODING_IW:
1923       if(immediate & 0x8000)
1924         immediate |= ~(0xffffull);
1925       break;
1926     case ENCODING_ID:
1927       if(immediate & 0x80000000)
1928         immediate |= ~(0xffffffffull);
1929       break;
1930     }
1931   }
1932   // By default sign-extend all X86 immediates based on their encoding.
1933   else if (type == TYPE_IMM) {
1934     switch (operand.encoding) {
1935     default:
1936       break;
1937     case ENCODING_IB:
1938       if(immediate & 0x80)
1939         immediate |= ~(0xffull);
1940       break;
1941     case ENCODING_IW:
1942       if(immediate & 0x8000)
1943         immediate |= ~(0xffffull);
1944       break;
1945     case ENCODING_ID:
1946       if(immediate & 0x80000000)
1947         immediate |= ~(0xffffffffull);
1948       break;
1949     case ENCODING_IO:
1950       break;
1951     }
1952   }
1953 
1954   switch (type) {
1955   case TYPE_XMM:
1956     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
1957     return;
1958   case TYPE_YMM:
1959     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
1960     return;
1961   case TYPE_ZMM:
1962     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
1963     return;
1964   default:
1965     // operand is 64 bits wide.  Do nothing.
1966     break;
1967   }
1968 
1969   if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
1970                                insn.immediateOffset, insn.immediateSize,
1971                                mcInst, Dis))
1972     mcInst.addOperand(MCOperand::createImm(immediate));
1973 
1974   if (type == TYPE_MOFFS) {
1975     MCOperand segmentReg;
1976     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1977     mcInst.addOperand(segmentReg);
1978   }
1979 }
1980 
1981 /// translateRMRegister - Translates a register stored in the R/M field of the
1982 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
1983 /// @param mcInst       - The MCInst to append to.
1984 /// @param insn         - The internal instruction to extract the R/M field
1985 ///                       from.
1986 /// @return             - 0 on success; -1 otherwise
1987 static bool translateRMRegister(MCInst &mcInst,
1988                                 InternalInstruction &insn) {
1989   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
1990     debug("A R/M register operand may not have a SIB byte");
1991     return true;
1992   }
1993 
1994   switch (insn.eaBase) {
1995   default:
1996     debug("Unexpected EA base register");
1997     return true;
1998   case EA_BASE_NONE:
1999     debug("EA_BASE_NONE for ModR/M base");
2000     return true;
2001 #define ENTRY(x) case EA_BASE_##x:
2002   ALL_EA_BASES
2003 #undef ENTRY
2004     debug("A R/M register operand may not have a base; "
2005           "the operand must be a register.");
2006     return true;
2007 #define ENTRY(x)                                                      \
2008   case EA_REG_##x:                                                    \
2009     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2010   ALL_REGS
2011 #undef ENTRY
2012   }
2013 
2014   return false;
2015 }
2016 
2017 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2018 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2019 ///   operand in LLVM's format, and appends it to an MCInst.
2020 ///
2021 /// @param mcInst       - The MCInst to append to.
2022 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2023 ///                       from.
2024 /// @param ForceSIB     - The instruction must use SIB.
2025 /// @return             - 0 on success; nonzero otherwise
2026 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2027                               const MCDisassembler *Dis,
2028                               bool ForceSIB = false) {
2029   // Addresses in an MCInst are represented as five operands:
2030   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2031   //                                SIB base
2032   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2033   //                                scale amount
2034   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2035   //                                the index (which is multiplied by the
2036   //                                scale amount)
2037   //   4. displacement  (immediate) 0, or the displacement if there is one
2038   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2039   //                                if we have segment overrides
2040 
2041   MCOperand baseReg;
2042   MCOperand scaleAmount;
2043   MCOperand indexReg;
2044   MCOperand displacement;
2045   MCOperand segmentReg;
2046   uint64_t pcrel = 0;
2047 
2048   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2049     if (insn.sibBase != SIB_BASE_NONE) {
2050       switch (insn.sibBase) {
2051       default:
2052         debug("Unexpected sibBase");
2053         return true;
2054 #define ENTRY(x)                                          \
2055       case SIB_BASE_##x:                                  \
2056         baseReg = MCOperand::createReg(X86::x); break;
2057       ALL_SIB_BASES
2058 #undef ENTRY
2059       }
2060     } else {
2061       baseReg = MCOperand::createReg(X86::NoRegister);
2062     }
2063 
2064     if (insn.sibIndex != SIB_INDEX_NONE) {
2065       switch (insn.sibIndex) {
2066       default:
2067         debug("Unexpected sibIndex");
2068         return true;
2069 #define ENTRY(x)                                          \
2070       case SIB_INDEX_##x:                                 \
2071         indexReg = MCOperand::createReg(X86::x); break;
2072       EA_BASES_32BIT
2073       EA_BASES_64BIT
2074       REGS_XMM
2075       REGS_YMM
2076       REGS_ZMM
2077 #undef ENTRY
2078       }
2079     } else {
2080       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2081       // but no index is used and modrm alone should have been enough.
2082       // -No base register in 32-bit mode. In 64-bit mode this is used to
2083       //  avoid rip-relative addressing.
2084       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2085       //  base always requires a SIB byte.
2086       // -A scale other than 1 is used.
2087       if (!ForceSIB &&
2088           (insn.sibScale != 1 ||
2089            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2090            (insn.sibBase != SIB_BASE_NONE &&
2091             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2092             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2093         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2094                                                                 X86::RIZ);
2095       } else
2096         indexReg = MCOperand::createReg(X86::NoRegister);
2097     }
2098 
2099     scaleAmount = MCOperand::createImm(insn.sibScale);
2100   } else {
2101     switch (insn.eaBase) {
2102     case EA_BASE_NONE:
2103       if (insn.eaDisplacement == EA_DISP_NONE) {
2104         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2105         return true;
2106       }
2107       if (insn.mode == MODE_64BIT){
2108         pcrel = insn.startLocation +
2109                 insn.displacementOffset + insn.displacementSize;
2110         tryAddingPcLoadReferenceComment(insn.startLocation +
2111                                         insn.displacementOffset,
2112                                         insn.displacement + pcrel, Dis);
2113         // Section 2.2.1.6
2114         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2115                                                                X86::RIP);
2116       }
2117       else
2118         baseReg = MCOperand::createReg(X86::NoRegister);
2119 
2120       indexReg = MCOperand::createReg(X86::NoRegister);
2121       break;
2122     case EA_BASE_BX_SI:
2123       baseReg = MCOperand::createReg(X86::BX);
2124       indexReg = MCOperand::createReg(X86::SI);
2125       break;
2126     case EA_BASE_BX_DI:
2127       baseReg = MCOperand::createReg(X86::BX);
2128       indexReg = MCOperand::createReg(X86::DI);
2129       break;
2130     case EA_BASE_BP_SI:
2131       baseReg = MCOperand::createReg(X86::BP);
2132       indexReg = MCOperand::createReg(X86::SI);
2133       break;
2134     case EA_BASE_BP_DI:
2135       baseReg = MCOperand::createReg(X86::BP);
2136       indexReg = MCOperand::createReg(X86::DI);
2137       break;
2138     default:
2139       indexReg = MCOperand::createReg(X86::NoRegister);
2140       switch (insn.eaBase) {
2141       default:
2142         debug("Unexpected eaBase");
2143         return true;
2144         // Here, we will use the fill-ins defined above.  However,
2145         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2146         //   sib and sib64 were handled in the top-level if, so they're only
2147         //   placeholders to keep the compiler happy.
2148 #define ENTRY(x)                                        \
2149       case EA_BASE_##x:                                 \
2150         baseReg = MCOperand::createReg(X86::x); break;
2151       ALL_EA_BASES
2152 #undef ENTRY
2153 #define ENTRY(x) case EA_REG_##x:
2154       ALL_REGS
2155 #undef ENTRY
2156         debug("A R/M memory operand may not be a register; "
2157               "the base field must be a base.");
2158         return true;
2159       }
2160     }
2161 
2162     scaleAmount = MCOperand::createImm(1);
2163   }
2164 
2165   displacement = MCOperand::createImm(insn.displacement);
2166 
2167   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2168 
2169   mcInst.addOperand(baseReg);
2170   mcInst.addOperand(scaleAmount);
2171   mcInst.addOperand(indexReg);
2172   if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
2173                                insn.startLocation, insn.displacementOffset,
2174                                insn.displacementSize, mcInst, Dis))
2175     mcInst.addOperand(displacement);
2176   mcInst.addOperand(segmentReg);
2177   return false;
2178 }
2179 
2180 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2181 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2182 ///
2183 /// @param mcInst       - The MCInst to append to.
2184 /// @param operand      - The operand, as stored in the descriptor table.
2185 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2186 ///                       from.
2187 /// @return             - 0 on success; nonzero otherwise
2188 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2189                         InternalInstruction &insn, const MCDisassembler *Dis) {
2190   switch (operand.type) {
2191   default:
2192     debug("Unexpected type for a R/M operand");
2193     return true;
2194   case TYPE_R8:
2195   case TYPE_R16:
2196   case TYPE_R32:
2197   case TYPE_R64:
2198   case TYPE_Rv:
2199   case TYPE_MM64:
2200   case TYPE_XMM:
2201   case TYPE_YMM:
2202   case TYPE_ZMM:
2203   case TYPE_TMM:
2204   case TYPE_VK_PAIR:
2205   case TYPE_VK:
2206   case TYPE_DEBUGREG:
2207   case TYPE_CONTROLREG:
2208   case TYPE_BNDR:
2209     return translateRMRegister(mcInst, insn);
2210   case TYPE_M:
2211   case TYPE_MVSIBX:
2212   case TYPE_MVSIBY:
2213   case TYPE_MVSIBZ:
2214     return translateRMMemory(mcInst, insn, Dis);
2215   case TYPE_MSIB:
2216     return translateRMMemory(mcInst, insn, Dis, true);
2217   }
2218 }
2219 
2220 /// translateFPRegister - Translates a stack position on the FPU stack to its
2221 ///   LLVM form, and appends it to an MCInst.
2222 ///
2223 /// @param mcInst       - The MCInst to append to.
2224 /// @param stackPos     - The stack position to translate.
2225 static void translateFPRegister(MCInst &mcInst,
2226                                 uint8_t stackPos) {
2227   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2228 }
2229 
2230 /// translateMaskRegister - Translates a 3-bit mask register number to
2231 ///   LLVM form, and appends it to an MCInst.
2232 ///
2233 /// @param mcInst       - The MCInst to append to.
2234 /// @param maskRegNum   - Number of mask register from 0 to 7.
2235 /// @return             - false on success; true otherwise.
2236 static bool translateMaskRegister(MCInst &mcInst,
2237                                 uint8_t maskRegNum) {
2238   if (maskRegNum >= 8) {
2239     debug("Invalid mask register number");
2240     return true;
2241   }
2242 
2243   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2244   return false;
2245 }
2246 
2247 /// translateOperand - Translates an operand stored in an internal instruction
2248 ///   to LLVM's format and appends it to an MCInst.
2249 ///
2250 /// @param mcInst       - The MCInst to append to.
2251 /// @param operand      - The operand, as stored in the descriptor table.
2252 /// @param insn         - The internal instruction.
2253 /// @return             - false on success; true otherwise.
2254 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2255                              InternalInstruction &insn,
2256                              const MCDisassembler *Dis) {
2257   switch (operand.encoding) {
2258   default:
2259     debug("Unhandled operand encoding during translation");
2260     return true;
2261   case ENCODING_REG:
2262     translateRegister(mcInst, insn.reg);
2263     return false;
2264   case ENCODING_WRITEMASK:
2265     return translateMaskRegister(mcInst, insn.writemask);
2266   case ENCODING_SIB:
2267   CASE_ENCODING_RM:
2268   CASE_ENCODING_VSIB:
2269     return translateRM(mcInst, operand, insn, Dis);
2270   case ENCODING_IB:
2271   case ENCODING_IW:
2272   case ENCODING_ID:
2273   case ENCODING_IO:
2274   case ENCODING_Iv:
2275   case ENCODING_Ia:
2276     translateImmediate(mcInst,
2277                        insn.immediates[insn.numImmediatesTranslated++],
2278                        operand,
2279                        insn,
2280                        Dis);
2281     return false;
2282   case ENCODING_IRC:
2283     mcInst.addOperand(MCOperand::createImm(insn.RC));
2284     return false;
2285   case ENCODING_SI:
2286     return translateSrcIndex(mcInst, insn);
2287   case ENCODING_DI:
2288     return translateDstIndex(mcInst, insn);
2289   case ENCODING_RB:
2290   case ENCODING_RW:
2291   case ENCODING_RD:
2292   case ENCODING_RO:
2293   case ENCODING_Rv:
2294     translateRegister(mcInst, insn.opcodeRegister);
2295     return false;
2296   case ENCODING_CC:
2297     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2298     return false;
2299   case ENCODING_FP:
2300     translateFPRegister(mcInst, insn.modRM & 7);
2301     return false;
2302   case ENCODING_VVVV:
2303     translateRegister(mcInst, insn.vvvv);
2304     return false;
2305   case ENCODING_DUP:
2306     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2307                             insn, Dis);
2308   }
2309 }
2310 
2311 /// translateInstruction - Translates an internal instruction and all its
2312 ///   operands to an MCInst.
2313 ///
2314 /// @param mcInst       - The MCInst to populate with the instruction's data.
2315 /// @param insn         - The internal instruction.
2316 /// @return             - false on success; true otherwise.
2317 static bool translateInstruction(MCInst &mcInst,
2318                                 InternalInstruction &insn,
2319                                 const MCDisassembler *Dis) {
2320   if (!insn.spec) {
2321     debug("Instruction has no specification");
2322     return true;
2323   }
2324 
2325   mcInst.clear();
2326   mcInst.setOpcode(insn.instructionID);
2327   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2328   // prefix bytes should be disassembled as xrelease and xacquire then set the
2329   // opcode to those instead of the rep and repne opcodes.
2330   if (insn.xAcquireRelease) {
2331     if(mcInst.getOpcode() == X86::REP_PREFIX)
2332       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2333     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2334       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2335   }
2336 
2337   insn.numImmediatesTranslated = 0;
2338 
2339   for (const auto &Op : insn.operands) {
2340     if (Op.encoding != ENCODING_NONE) {
2341       if (translateOperand(mcInst, Op, insn, Dis)) {
2342         return true;
2343       }
2344     }
2345   }
2346 
2347   return false;
2348 }
2349 
2350 static MCDisassembler *createX86Disassembler(const Target &T,
2351                                              const MCSubtargetInfo &STI,
2352                                              MCContext &Ctx) {
2353   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2354   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2355 }
2356 
2357 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2358   // Register the disassembler.
2359   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2360                                          createX86Disassembler);
2361   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2362                                          createX86Disassembler);
2363 }
2364