1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler. 10 // It contains code to translate the data produced by the decoder into 11 // MCInsts. 12 // 13 // 14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and 15 // 64-bit X86 instruction sets. The main decode sequence for an assembly 16 // instruction in this disassembler is: 17 // 18 // 1. Read the prefix bytes and determine the attributes of the instruction. 19 // These attributes, recorded in enum attributeBits 20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM 21 // provides a mapping from bitmasks to contexts, which are represented by 22 // enum InstructionContext (ibid.). 23 // 24 // 2. Read the opcode, and determine what kind of opcode it is. The 25 // disassembler distinguishes four kinds of opcodes, which are enumerated in 26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte 27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a 28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. 29 // 30 // 3. Depending on the opcode type, look in one of four ClassDecision structures 31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which 32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get 33 // a ModRMDecision (ibid.). 34 // 35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even 36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the 37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from 38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the 39 // ModR/M byte is required and how to interpret it. 40 // 41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID 42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in 43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and 44 // meanings of its operands. 45 // 46 // 6. For each operand, its encoding is an entry from OperandEncoding 47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from 48 // OperandType (ibid.). The encoding indicates how to read it from the 49 // instruction; the type indicates how to interpret the value once it has 50 // been read. For example, a register operand could be stored in the R/M 51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to 52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM 53 // register, for instance). Given this information, the operands can be 54 // extracted and interpreted. 55 // 56 // 7. As the last step, the disassembler translates the instruction information 57 // and operands into a format understandable by the client - in this case, an 58 // MCInst for use by the MC infrastructure. 59 // 60 // The disassembler is broken broadly into two parts: the table emitter that 61 // emits the instruction decode tables discussed above during compilation, and 62 // the disassembler itself. The table emitter is documented in more detail in 63 // utils/TableGen/X86DisassemblerEmitter.h. 64 // 65 // X86Disassembler.cpp contains the code responsible for step 7, and for 66 // invoking the decoder to execute steps 1-6. 67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the 68 // table emitter and the disassembler. 69 // X86DisassemblerDecoder.h contains the public interface of the decoder, 70 // factored out into C for possible use by other projects. 71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is 72 // responsible for steps 1-6. 73 // 74 //===----------------------------------------------------------------------===// 75 76 #include "MCTargetDesc/X86BaseInfo.h" 77 #include "MCTargetDesc/X86MCTargetDesc.h" 78 #include "TargetInfo/X86TargetInfo.h" 79 #include "X86DisassemblerDecoder.h" 80 #include "llvm/MC/MCContext.h" 81 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 82 #include "llvm/MC/MCExpr.h" 83 #include "llvm/MC/MCInst.h" 84 #include "llvm/MC/MCInstrInfo.h" 85 #include "llvm/MC/MCSubtargetInfo.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/TargetRegistry.h" 89 #include "llvm/Support/raw_ostream.h" 90 91 using namespace llvm; 92 using namespace llvm::X86Disassembler; 93 94 #define DEBUG_TYPE "x86-disassembler" 95 96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); 97 98 // Specifies whether a ModR/M byte is needed and (if so) which 99 // instruction each possible value of the ModR/M byte corresponds to. Once 100 // this information is known, we have narrowed down to a single instruction. 101 struct ModRMDecision { 102 uint8_t modrm_type; 103 uint16_t instructionIDs; 104 }; 105 106 // Specifies which set of ModR/M->instruction tables to look at 107 // given a particular opcode. 108 struct OpcodeDecision { 109 ModRMDecision modRMDecisions[256]; 110 }; 111 112 // Specifies which opcode->instruction tables to look at given 113 // a particular context (set of attributes). Since there are many possible 114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context 115 // applies given a specific set of attributes. Hence there are only IC_max 116 // entries in this table, rather than 2^(ATTR_max). 117 struct ContextDecision { 118 OpcodeDecision opcodeDecisions[IC_max]; 119 }; 120 121 #include "X86GenDisassemblerTables.inc" 122 123 static InstrUID decode(OpcodeType type, InstructionContext insnContext, 124 uint8_t opcode, uint8_t modRM) { 125 const struct ModRMDecision *dec; 126 127 switch (type) { 128 case ONEBYTE: 129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 130 break; 131 case TWOBYTE: 132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 133 break; 134 case THREEBYTE_38: 135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 136 break; 137 case THREEBYTE_3A: 138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 139 break; 140 case XOP8_MAP: 141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 142 break; 143 case XOP9_MAP: 144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 145 break; 146 case XOPA_MAP: 147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 148 break; 149 case THREEDNOW_MAP: 150 dec = 151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 152 break; 153 } 154 155 switch (dec->modrm_type) { 156 default: 157 llvm_unreachable("Corrupt table! Unknown modrm_type"); 158 return 0; 159 case MODRM_ONEENTRY: 160 return modRMTable[dec->instructionIDs]; 161 case MODRM_SPLITRM: 162 if (modFromModRM(modRM) == 0x3) 163 return modRMTable[dec->instructionIDs + 1]; 164 return modRMTable[dec->instructionIDs]; 165 case MODRM_SPLITREG: 166 if (modFromModRM(modRM) == 0x3) 167 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; 168 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 169 case MODRM_SPLITMISC: 170 if (modFromModRM(modRM) == 0x3) 171 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; 172 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 173 case MODRM_FULL: 174 return modRMTable[dec->instructionIDs + modRM]; 175 } 176 } 177 178 static bool peek(struct InternalInstruction *insn, uint8_t &byte) { 179 uint64_t offset = insn->readerCursor - insn->startLocation; 180 if (offset >= insn->bytes.size()) 181 return true; 182 byte = insn->bytes[offset]; 183 return false; 184 } 185 186 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { 187 auto r = insn->bytes; 188 uint64_t offset = insn->readerCursor - insn->startLocation; 189 if (offset + sizeof(T) > r.size()) 190 return true; 191 T ret = 0; 192 for (unsigned i = 0; i < sizeof(T); ++i) 193 ret |= (uint64_t)r[offset + i] << (i * 8); 194 ptr = ret; 195 insn->readerCursor += sizeof(T); 196 return false; 197 } 198 199 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { 200 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; 201 } 202 203 // Consumes all of an instruction's prefix bytes, and marks the 204 // instruction as having them. Also sets the instruction's default operand, 205 // address, and other relevant data sizes to report operands correctly. 206 // 207 // insn must not be empty. 208 static int readPrefixes(struct InternalInstruction *insn) { 209 bool isPrefix = true; 210 uint8_t byte = 0; 211 uint8_t nextByte; 212 213 LLVM_DEBUG(dbgs() << "readPrefixes()"); 214 215 while (isPrefix) { 216 // If we fail reading prefixes, just stop here and let the opcode reader 217 // deal with it. 218 if (consume(insn, byte)) 219 break; 220 221 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then 222 // break and let it be disassembled as a normal "instruction". 223 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK 224 break; 225 226 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) { 227 // If the byte is 0xf2 or 0xf3, and any of the following conditions are 228 // met: 229 // - it is followed by a LOCK (0xf0) prefix 230 // - it is followed by an xchg instruction 231 // then it should be disassembled as a xacquire/xrelease not repne/rep. 232 if (((nextByte == 0xf0) || 233 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { 234 insn->xAcquireRelease = true; 235 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support 236 break; 237 } 238 // Also if the byte is 0xf3, and the following condition is met: 239 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or 240 // "mov mem, imm" (opcode 0xc6/0xc7) instructions. 241 // then it should be disassembled as an xrelease not rep. 242 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || 243 nextByte == 0xc6 || nextByte == 0xc7)) { 244 insn->xAcquireRelease = true; 245 break; 246 } 247 if (isREX(insn, nextByte)) { 248 uint8_t nnextByte; 249 // Go to REX prefix after the current one 250 if (consume(insn, nnextByte)) 251 return -1; 252 // We should be able to read next byte after REX prefix 253 if (peek(insn, nnextByte)) 254 return -1; 255 --insn->readerCursor; 256 } 257 } 258 259 switch (byte) { 260 case 0xf0: // LOCK 261 insn->hasLockPrefix = true; 262 break; 263 case 0xf2: // REPNE/REPNZ 264 case 0xf3: { // REP or REPE/REPZ 265 uint8_t nextByte; 266 if (peek(insn, nextByte)) 267 break; 268 // TODO: 269 // 1. There could be several 0x66 270 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then 271 // it's not mandatory prefix 272 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need 273 // 0x0f exactly after it to be mandatory prefix 274 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) 275 // The last of 0xf2 /0xf3 is mandatory prefix 276 insn->mandatoryPrefix = byte; 277 insn->repeatPrefix = byte; 278 break; 279 } 280 case 0x2e: // CS segment override -OR- Branch not taken 281 insn->segmentOverride = SEG_OVERRIDE_CS; 282 break; 283 case 0x36: // SS segment override -OR- Branch taken 284 insn->segmentOverride = SEG_OVERRIDE_SS; 285 break; 286 case 0x3e: // DS segment override 287 insn->segmentOverride = SEG_OVERRIDE_DS; 288 break; 289 case 0x26: // ES segment override 290 insn->segmentOverride = SEG_OVERRIDE_ES; 291 break; 292 case 0x64: // FS segment override 293 insn->segmentOverride = SEG_OVERRIDE_FS; 294 break; 295 case 0x65: // GS segment override 296 insn->segmentOverride = SEG_OVERRIDE_GS; 297 break; 298 case 0x66: { // Operand-size override { 299 uint8_t nextByte; 300 insn->hasOpSize = true; 301 if (peek(insn, nextByte)) 302 break; 303 // 0x66 can't overwrite existing mandatory prefix and should be ignored 304 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) 305 insn->mandatoryPrefix = byte; 306 break; 307 } 308 case 0x67: // Address-size override 309 insn->hasAdSize = true; 310 break; 311 default: // Not a prefix byte 312 isPrefix = false; 313 break; 314 } 315 316 if (isPrefix) 317 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte)); 318 } 319 320 insn->vectorExtensionType = TYPE_NO_VEX_XOP; 321 322 if (byte == 0x62) { 323 uint8_t byte1, byte2; 324 if (consume(insn, byte1)) { 325 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix"); 326 return -1; 327 } 328 329 if (peek(insn, byte2)) { 330 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 331 return -1; 332 } 333 334 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && 335 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) { 336 insn->vectorExtensionType = TYPE_EVEX; 337 } else { 338 --insn->readerCursor; // unconsume byte1 339 --insn->readerCursor; // unconsume byte 340 } 341 342 if (insn->vectorExtensionType == TYPE_EVEX) { 343 insn->vectorExtensionPrefix[0] = byte; 344 insn->vectorExtensionPrefix[1] = byte1; 345 if (consume(insn, insn->vectorExtensionPrefix[2])) { 346 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 347 return -1; 348 } 349 if (consume(insn, insn->vectorExtensionPrefix[3])) { 350 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix"); 351 return -1; 352 } 353 354 // We simulate the REX prefix for simplicity's sake 355 if (insn->mode == MODE_64BIT) { 356 insn->rexPrefix = 0x40 | 357 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | 358 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | 359 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | 360 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); 361 } 362 363 LLVM_DEBUG( 364 dbgs() << format( 365 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", 366 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], 367 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); 368 } 369 } else if (byte == 0xc4) { 370 uint8_t byte1; 371 if (peek(insn, byte1)) { 372 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 373 return -1; 374 } 375 376 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 377 insn->vectorExtensionType = TYPE_VEX_3B; 378 else 379 --insn->readerCursor; 380 381 if (insn->vectorExtensionType == TYPE_VEX_3B) { 382 insn->vectorExtensionPrefix[0] = byte; 383 consume(insn, insn->vectorExtensionPrefix[1]); 384 consume(insn, insn->vectorExtensionPrefix[2]); 385 386 // We simulate the REX prefix for simplicity's sake 387 388 if (insn->mode == MODE_64BIT) 389 insn->rexPrefix = 0x40 | 390 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | 391 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | 392 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | 393 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); 394 395 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", 396 insn->vectorExtensionPrefix[0], 397 insn->vectorExtensionPrefix[1], 398 insn->vectorExtensionPrefix[2])); 399 } 400 } else if (byte == 0xc5) { 401 uint8_t byte1; 402 if (peek(insn, byte1)) { 403 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 404 return -1; 405 } 406 407 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 408 insn->vectorExtensionType = TYPE_VEX_2B; 409 else 410 --insn->readerCursor; 411 412 if (insn->vectorExtensionType == TYPE_VEX_2B) { 413 insn->vectorExtensionPrefix[0] = byte; 414 consume(insn, insn->vectorExtensionPrefix[1]); 415 416 if (insn->mode == MODE_64BIT) 417 insn->rexPrefix = 418 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); 419 420 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 421 default: 422 break; 423 case VEX_PREFIX_66: 424 insn->hasOpSize = true; 425 break; 426 } 427 428 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx", 429 insn->vectorExtensionPrefix[0], 430 insn->vectorExtensionPrefix[1])); 431 } 432 } else if (byte == 0x8f) { 433 uint8_t byte1; 434 if (peek(insn, byte1)) { 435 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP"); 436 return -1; 437 } 438 439 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. 440 insn->vectorExtensionType = TYPE_XOP; 441 else 442 --insn->readerCursor; 443 444 if (insn->vectorExtensionType == TYPE_XOP) { 445 insn->vectorExtensionPrefix[0] = byte; 446 consume(insn, insn->vectorExtensionPrefix[1]); 447 consume(insn, insn->vectorExtensionPrefix[2]); 448 449 // We simulate the REX prefix for simplicity's sake 450 451 if (insn->mode == MODE_64BIT) 452 insn->rexPrefix = 0x40 | 453 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | 454 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | 455 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | 456 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); 457 458 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 459 default: 460 break; 461 case VEX_PREFIX_66: 462 insn->hasOpSize = true; 463 break; 464 } 465 466 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", 467 insn->vectorExtensionPrefix[0], 468 insn->vectorExtensionPrefix[1], 469 insn->vectorExtensionPrefix[2])); 470 } 471 } else if (isREX(insn, byte)) { 472 if (peek(insn, nextByte)) 473 return -1; 474 insn->rexPrefix = byte; 475 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte)); 476 } else 477 --insn->readerCursor; 478 479 if (insn->mode == MODE_16BIT) { 480 insn->registerSize = (insn->hasOpSize ? 4 : 2); 481 insn->addressSize = (insn->hasAdSize ? 4 : 2); 482 insn->displacementSize = (insn->hasAdSize ? 4 : 2); 483 insn->immediateSize = (insn->hasOpSize ? 4 : 2); 484 } else if (insn->mode == MODE_32BIT) { 485 insn->registerSize = (insn->hasOpSize ? 2 : 4); 486 insn->addressSize = (insn->hasAdSize ? 2 : 4); 487 insn->displacementSize = (insn->hasAdSize ? 2 : 4); 488 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 489 } else if (insn->mode == MODE_64BIT) { 490 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { 491 insn->registerSize = 8; 492 insn->addressSize = (insn->hasAdSize ? 4 : 8); 493 insn->displacementSize = 4; 494 insn->immediateSize = 4; 495 } else { 496 insn->registerSize = (insn->hasOpSize ? 2 : 4); 497 insn->addressSize = (insn->hasAdSize ? 4 : 8); 498 insn->displacementSize = (insn->hasOpSize ? 2 : 4); 499 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 500 } 501 } 502 503 return 0; 504 } 505 506 // Consumes the SIB byte to determine addressing information. 507 static int readSIB(struct InternalInstruction *insn) { 508 SIBBase sibBaseBase = SIB_BASE_NONE; 509 uint8_t index, base; 510 511 LLVM_DEBUG(dbgs() << "readSIB()"); 512 switch (insn->addressSize) { 513 case 2: 514 default: 515 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode"); 516 case 4: 517 insn->sibIndexBase = SIB_INDEX_EAX; 518 sibBaseBase = SIB_BASE_EAX; 519 break; 520 case 8: 521 insn->sibIndexBase = SIB_INDEX_RAX; 522 sibBaseBase = SIB_BASE_RAX; 523 break; 524 } 525 526 if (consume(insn, insn->sib)) 527 return -1; 528 529 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); 530 531 if (index == 0x4) { 532 insn->sibIndex = SIB_INDEX_NONE; 533 } else { 534 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); 535 } 536 537 insn->sibScale = 1 << scaleFromSIB(insn->sib); 538 539 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); 540 541 switch (base) { 542 case 0x5: 543 case 0xd: 544 switch (modFromModRM(insn->modRM)) { 545 case 0x0: 546 insn->eaDisplacement = EA_DISP_32; 547 insn->sibBase = SIB_BASE_NONE; 548 break; 549 case 0x1: 550 insn->eaDisplacement = EA_DISP_8; 551 insn->sibBase = (SIBBase)(sibBaseBase + base); 552 break; 553 case 0x2: 554 insn->eaDisplacement = EA_DISP_32; 555 insn->sibBase = (SIBBase)(sibBaseBase + base); 556 break; 557 default: 558 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte"); 559 } 560 break; 561 default: 562 insn->sibBase = (SIBBase)(sibBaseBase + base); 563 break; 564 } 565 566 return 0; 567 } 568 569 static int readDisplacement(struct InternalInstruction *insn) { 570 int8_t d8; 571 int16_t d16; 572 int32_t d32; 573 LLVM_DEBUG(dbgs() << "readDisplacement()"); 574 575 insn->displacementOffset = insn->readerCursor - insn->startLocation; 576 switch (insn->eaDisplacement) { 577 case EA_DISP_NONE: 578 break; 579 case EA_DISP_8: 580 if (consume(insn, d8)) 581 return -1; 582 insn->displacement = d8; 583 break; 584 case EA_DISP_16: 585 if (consume(insn, d16)) 586 return -1; 587 insn->displacement = d16; 588 break; 589 case EA_DISP_32: 590 if (consume(insn, d32)) 591 return -1; 592 insn->displacement = d32; 593 break; 594 } 595 596 return 0; 597 } 598 599 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. 600 static int readModRM(struct InternalInstruction *insn) { 601 uint8_t mod, rm, reg, evexrm; 602 LLVM_DEBUG(dbgs() << "readModRM()"); 603 604 if (insn->consumedModRM) 605 return 0; 606 607 if (consume(insn, insn->modRM)) 608 return -1; 609 insn->consumedModRM = true; 610 611 mod = modFromModRM(insn->modRM); 612 rm = rmFromModRM(insn->modRM); 613 reg = regFromModRM(insn->modRM); 614 615 // This goes by insn->registerSize to pick the correct register, which messes 616 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in 617 // fixupReg(). 618 switch (insn->registerSize) { 619 case 2: 620 insn->regBase = MODRM_REG_AX; 621 insn->eaRegBase = EA_REG_AX; 622 break; 623 case 4: 624 insn->regBase = MODRM_REG_EAX; 625 insn->eaRegBase = EA_REG_EAX; 626 break; 627 case 8: 628 insn->regBase = MODRM_REG_RAX; 629 insn->eaRegBase = EA_REG_RAX; 630 break; 631 } 632 633 reg |= rFromREX(insn->rexPrefix) << 3; 634 rm |= bFromREX(insn->rexPrefix) << 3; 635 636 evexrm = 0; 637 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) { 638 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; 639 evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; 640 } 641 642 insn->reg = (Reg)(insn->regBase + reg); 643 644 switch (insn->addressSize) { 645 case 2: { 646 EABase eaBaseBase = EA_BASE_BX_SI; 647 648 switch (mod) { 649 case 0x0: 650 if (rm == 0x6) { 651 insn->eaBase = EA_BASE_NONE; 652 insn->eaDisplacement = EA_DISP_16; 653 if (readDisplacement(insn)) 654 return -1; 655 } else { 656 insn->eaBase = (EABase)(eaBaseBase + rm); 657 insn->eaDisplacement = EA_DISP_NONE; 658 } 659 break; 660 case 0x1: 661 insn->eaBase = (EABase)(eaBaseBase + rm); 662 insn->eaDisplacement = EA_DISP_8; 663 insn->displacementSize = 1; 664 if (readDisplacement(insn)) 665 return -1; 666 break; 667 case 0x2: 668 insn->eaBase = (EABase)(eaBaseBase + rm); 669 insn->eaDisplacement = EA_DISP_16; 670 if (readDisplacement(insn)) 671 return -1; 672 break; 673 case 0x3: 674 insn->eaBase = (EABase)(insn->eaRegBase + rm); 675 if (readDisplacement(insn)) 676 return -1; 677 break; 678 } 679 break; 680 } 681 case 4: 682 case 8: { 683 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); 684 685 switch (mod) { 686 case 0x0: 687 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this 688 // In determining whether RIP-relative mode is used (rm=5), 689 // or whether a SIB byte is present (rm=4), 690 // the extension bits (REX.b and EVEX.x) are ignored. 691 switch (rm & 7) { 692 case 0x4: // SIB byte is present 693 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); 694 if (readSIB(insn) || readDisplacement(insn)) 695 return -1; 696 break; 697 case 0x5: // RIP-relative 698 insn->eaBase = EA_BASE_NONE; 699 insn->eaDisplacement = EA_DISP_32; 700 if (readDisplacement(insn)) 701 return -1; 702 break; 703 default: 704 insn->eaBase = (EABase)(eaBaseBase + rm); 705 break; 706 } 707 break; 708 case 0x1: 709 insn->displacementSize = 1; 710 LLVM_FALLTHROUGH; 711 case 0x2: 712 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); 713 switch (rm & 7) { 714 case 0x4: // SIB byte is present 715 insn->eaBase = EA_BASE_sib; 716 if (readSIB(insn) || readDisplacement(insn)) 717 return -1; 718 break; 719 default: 720 insn->eaBase = (EABase)(eaBaseBase + rm); 721 if (readDisplacement(insn)) 722 return -1; 723 break; 724 } 725 break; 726 case 0x3: 727 insn->eaDisplacement = EA_DISP_NONE; 728 insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); 729 break; 730 } 731 break; 732 } 733 } // switch (insn->addressSize) 734 735 return 0; 736 } 737 738 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \ 739 static uint16_t name(struct InternalInstruction *insn, OperandType type, \ 740 uint8_t index, uint8_t *valid) { \ 741 *valid = 1; \ 742 switch (type) { \ 743 default: \ 744 debug("Unhandled register type"); \ 745 *valid = 0; \ 746 return 0; \ 747 case TYPE_Rv: \ 748 return base + index; \ 749 case TYPE_R8: \ 750 index &= mask; \ 751 if (index > 0xf) \ 752 *valid = 0; \ 753 if (insn->rexPrefix && index >= 4 && index <= 7) { \ 754 return prefix##_SPL + (index - 4); \ 755 } else { \ 756 return prefix##_AL + index; \ 757 } \ 758 case TYPE_R16: \ 759 index &= mask; \ 760 if (index > 0xf) \ 761 *valid = 0; \ 762 return prefix##_AX + index; \ 763 case TYPE_R32: \ 764 index &= mask; \ 765 if (index > 0xf) \ 766 *valid = 0; \ 767 return prefix##_EAX + index; \ 768 case TYPE_R64: \ 769 index &= mask; \ 770 if (index > 0xf) \ 771 *valid = 0; \ 772 return prefix##_RAX + index; \ 773 case TYPE_ZMM: \ 774 return prefix##_ZMM0 + index; \ 775 case TYPE_YMM: \ 776 return prefix##_YMM0 + index; \ 777 case TYPE_XMM: \ 778 return prefix##_XMM0 + index; \ 779 case TYPE_VK: \ 780 index &= 0xf; \ 781 if (index > 7) \ 782 *valid = 0; \ 783 return prefix##_K0 + index; \ 784 case TYPE_VK_PAIR: \ 785 if (index > 7) \ 786 *valid = 0; \ 787 return prefix##_K0_K1 + (index / 2); \ 788 case TYPE_MM64: \ 789 return prefix##_MM0 + (index & 0x7); \ 790 case TYPE_SEGMENTREG: \ 791 if ((index & 7) > 5) \ 792 *valid = 0; \ 793 return prefix##_ES + (index & 7); \ 794 case TYPE_DEBUGREG: \ 795 return prefix##_DR0 + index; \ 796 case TYPE_CONTROLREG: \ 797 return prefix##_CR0 + index; \ 798 case TYPE_BNDR: \ 799 if (index > 3) \ 800 *valid = 0; \ 801 return prefix##_BND0 + index; \ 802 case TYPE_MVSIBX: \ 803 return prefix##_XMM0 + index; \ 804 case TYPE_MVSIBY: \ 805 return prefix##_YMM0 + index; \ 806 case TYPE_MVSIBZ: \ 807 return prefix##_ZMM0 + index; \ 808 } \ 809 } 810 811 // Consult an operand type to determine the meaning of the reg or R/M field. If 812 // the operand is an XMM operand, for example, an operand would be XMM0 instead 813 // of AX, which readModRM() would otherwise misinterpret it as. 814 // 815 // @param insn - The instruction containing the operand. 816 // @param type - The operand type. 817 // @param index - The existing value of the field as reported by readModRM(). 818 // @param valid - The address of a uint8_t. The target is set to 1 if the 819 // field is valid for the register class; 0 if not. 820 // @return - The proper value. 821 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f) 822 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf) 823 824 // Consult an operand specifier to determine which of the fixup*Value functions 825 // to use in correcting readModRM()'ss interpretation. 826 // 827 // @param insn - See fixup*Value(). 828 // @param op - The operand specifier. 829 // @return - 0 if fixup was successful; -1 if the register returned was 830 // invalid for its class. 831 static int fixupReg(struct InternalInstruction *insn, 832 const struct OperandSpecifier *op) { 833 uint8_t valid; 834 LLVM_DEBUG(dbgs() << "fixupReg()"); 835 836 switch ((OperandEncoding)op->encoding) { 837 default: 838 debug("Expected a REG or R/M encoding in fixupReg"); 839 return -1; 840 case ENCODING_VVVV: 841 insn->vvvv = 842 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid); 843 if (!valid) 844 return -1; 845 break; 846 case ENCODING_REG: 847 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, 848 insn->reg - insn->regBase, &valid); 849 if (!valid) 850 return -1; 851 break; 852 CASE_ENCODING_RM: 853 if (insn->eaBase >= insn->eaRegBase) { 854 insn->eaBase = (EABase)fixupRMValue( 855 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid); 856 if (!valid) 857 return -1; 858 } 859 break; 860 } 861 862 return 0; 863 } 864 865 // Read the opcode (except the ModR/M byte in the case of extended or escape 866 // opcodes). 867 static bool readOpcode(struct InternalInstruction *insn) { 868 uint8_t current; 869 LLVM_DEBUG(dbgs() << "readOpcode()"); 870 871 insn->opcodeType = ONEBYTE; 872 if (insn->vectorExtensionType == TYPE_EVEX) { 873 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { 874 default: 875 LLVM_DEBUG( 876 dbgs() << format("Unhandled mm field for instruction (0x%hhx)", 877 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); 878 return true; 879 case VEX_LOB_0F: 880 insn->opcodeType = TWOBYTE; 881 return consume(insn, insn->opcode); 882 case VEX_LOB_0F38: 883 insn->opcodeType = THREEBYTE_38; 884 return consume(insn, insn->opcode); 885 case VEX_LOB_0F3A: 886 insn->opcodeType = THREEBYTE_3A; 887 return consume(insn, insn->opcode); 888 } 889 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 890 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { 891 default: 892 LLVM_DEBUG( 893 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 894 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 895 return true; 896 case VEX_LOB_0F: 897 insn->opcodeType = TWOBYTE; 898 return consume(insn, insn->opcode); 899 case VEX_LOB_0F38: 900 insn->opcodeType = THREEBYTE_38; 901 return consume(insn, insn->opcode); 902 case VEX_LOB_0F3A: 903 insn->opcodeType = THREEBYTE_3A; 904 return consume(insn, insn->opcode); 905 } 906 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 907 insn->opcodeType = TWOBYTE; 908 return consume(insn, insn->opcode); 909 } else if (insn->vectorExtensionType == TYPE_XOP) { 910 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { 911 default: 912 LLVM_DEBUG( 913 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 914 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 915 return true; 916 case XOP_MAP_SELECT_8: 917 insn->opcodeType = XOP8_MAP; 918 return consume(insn, insn->opcode); 919 case XOP_MAP_SELECT_9: 920 insn->opcodeType = XOP9_MAP; 921 return consume(insn, insn->opcode); 922 case XOP_MAP_SELECT_A: 923 insn->opcodeType = XOPA_MAP; 924 return consume(insn, insn->opcode); 925 } 926 } 927 928 if (consume(insn, current)) 929 return true; 930 931 if (current == 0x0f) { 932 LLVM_DEBUG( 933 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current)); 934 if (consume(insn, current)) 935 return true; 936 937 if (current == 0x38) { 938 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 939 current)); 940 if (consume(insn, current)) 941 return true; 942 943 insn->opcodeType = THREEBYTE_38; 944 } else if (current == 0x3a) { 945 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 946 current)); 947 if (consume(insn, current)) 948 return true; 949 950 insn->opcodeType = THREEBYTE_3A; 951 } else if (current == 0x0f) { 952 LLVM_DEBUG( 953 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current)); 954 955 // Consume operands before the opcode to comply with the 3DNow encoding 956 if (readModRM(insn)) 957 return true; 958 959 if (consume(insn, current)) 960 return true; 961 962 insn->opcodeType = THREEDNOW_MAP; 963 } else { 964 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix"); 965 insn->opcodeType = TWOBYTE; 966 } 967 } else if (insn->mandatoryPrefix) 968 // The opcode with mandatory prefix must start with opcode escape. 969 // If not it's legacy repeat prefix 970 insn->mandatoryPrefix = 0; 971 972 // At this point we have consumed the full opcode. 973 // Anything we consume from here on must be unconsumed. 974 insn->opcode = current; 975 976 return false; 977 } 978 979 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). 980 static bool is16BitEquivalent(const char *orig, const char *equiv) { 981 for (int i = 0;; i++) { 982 if (orig[i] == '\0' && equiv[i] == '\0') 983 return true; 984 if (orig[i] == '\0' || equiv[i] == '\0') 985 return false; 986 if (orig[i] != equiv[i]) { 987 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') 988 continue; 989 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') 990 continue; 991 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') 992 continue; 993 return false; 994 } 995 } 996 } 997 998 // Determine whether this instruction is a 64-bit instruction. 999 static bool is64Bit(const char *name) { 1000 for (int i = 0;; ++i) { 1001 if (name[i] == '\0') 1002 return false; 1003 if (name[i] == '6' && name[i + 1] == '4') 1004 return true; 1005 } 1006 } 1007 1008 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1009 // for extended and escape opcodes, and using a supplied attribute mask. 1010 static int getInstructionIDWithAttrMask(uint16_t *instructionID, 1011 struct InternalInstruction *insn, 1012 uint16_t attrMask) { 1013 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); 1014 const ContextDecision *decision; 1015 switch (insn->opcodeType) { 1016 case ONEBYTE: 1017 decision = &ONEBYTE_SYM; 1018 break; 1019 case TWOBYTE: 1020 decision = &TWOBYTE_SYM; 1021 break; 1022 case THREEBYTE_38: 1023 decision = &THREEBYTE38_SYM; 1024 break; 1025 case THREEBYTE_3A: 1026 decision = &THREEBYTE3A_SYM; 1027 break; 1028 case XOP8_MAP: 1029 decision = &XOP8_MAP_SYM; 1030 break; 1031 case XOP9_MAP: 1032 decision = &XOP9_MAP_SYM; 1033 break; 1034 case XOPA_MAP: 1035 decision = &XOPA_MAP_SYM; 1036 break; 1037 case THREEDNOW_MAP: 1038 decision = &THREEDNOW_MAP_SYM; 1039 break; 1040 } 1041 1042 if (decision->opcodeDecisions[insnCtx] 1043 .modRMDecisions[insn->opcode] 1044 .modrm_type != MODRM_ONEENTRY) { 1045 if (readModRM(insn)) 1046 return -1; 1047 *instructionID = 1048 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM); 1049 } else { 1050 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0); 1051 } 1052 1053 return 0; 1054 } 1055 1056 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1057 // for extended and escape opcodes. Determines the attributes and context for 1058 // the instruction before doing so. 1059 static int getInstructionID(struct InternalInstruction *insn, 1060 const MCInstrInfo *mii) { 1061 uint16_t attrMask; 1062 uint16_t instructionID; 1063 1064 LLVM_DEBUG(dbgs() << "getID()"); 1065 1066 attrMask = ATTR_NONE; 1067 1068 if (insn->mode == MODE_64BIT) 1069 attrMask |= ATTR_64BIT; 1070 1071 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1072 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; 1073 1074 if (insn->vectorExtensionType == TYPE_EVEX) { 1075 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { 1076 case VEX_PREFIX_66: 1077 attrMask |= ATTR_OPSIZE; 1078 break; 1079 case VEX_PREFIX_F3: 1080 attrMask |= ATTR_XS; 1081 break; 1082 case VEX_PREFIX_F2: 1083 attrMask |= ATTR_XD; 1084 break; 1085 } 1086 1087 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1088 attrMask |= ATTR_EVEXKZ; 1089 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1090 attrMask |= ATTR_EVEXB; 1091 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1092 attrMask |= ATTR_EVEXK; 1093 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1094 attrMask |= ATTR_VEXL; 1095 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1096 attrMask |= ATTR_EVEXL2; 1097 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 1098 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { 1099 case VEX_PREFIX_66: 1100 attrMask |= ATTR_OPSIZE; 1101 break; 1102 case VEX_PREFIX_F3: 1103 attrMask |= ATTR_XS; 1104 break; 1105 case VEX_PREFIX_F2: 1106 attrMask |= ATTR_XD; 1107 break; 1108 } 1109 1110 if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) 1111 attrMask |= ATTR_VEXL; 1112 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 1113 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 1114 case VEX_PREFIX_66: 1115 attrMask |= ATTR_OPSIZE; 1116 break; 1117 case VEX_PREFIX_F3: 1118 attrMask |= ATTR_XS; 1119 break; 1120 case VEX_PREFIX_F2: 1121 attrMask |= ATTR_XD; 1122 break; 1123 } 1124 1125 if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) 1126 attrMask |= ATTR_VEXL; 1127 } else if (insn->vectorExtensionType == TYPE_XOP) { 1128 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 1129 case VEX_PREFIX_66: 1130 attrMask |= ATTR_OPSIZE; 1131 break; 1132 case VEX_PREFIX_F3: 1133 attrMask |= ATTR_XS; 1134 break; 1135 case VEX_PREFIX_F2: 1136 attrMask |= ATTR_XD; 1137 break; 1138 } 1139 1140 if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) 1141 attrMask |= ATTR_VEXL; 1142 } else { 1143 return -1; 1144 } 1145 } else if (!insn->mandatoryPrefix) { 1146 // If we don't have mandatory prefix we should use legacy prefixes here 1147 if (insn->hasOpSize && (insn->mode != MODE_16BIT)) 1148 attrMask |= ATTR_OPSIZE; 1149 if (insn->hasAdSize) 1150 attrMask |= ATTR_ADSIZE; 1151 if (insn->opcodeType == ONEBYTE) { 1152 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) 1153 // Special support for PAUSE 1154 attrMask |= ATTR_XS; 1155 } else { 1156 if (insn->repeatPrefix == 0xf2) 1157 attrMask |= ATTR_XD; 1158 else if (insn->repeatPrefix == 0xf3) 1159 attrMask |= ATTR_XS; 1160 } 1161 } else { 1162 switch (insn->mandatoryPrefix) { 1163 case 0xf2: 1164 attrMask |= ATTR_XD; 1165 break; 1166 case 0xf3: 1167 attrMask |= ATTR_XS; 1168 break; 1169 case 0x66: 1170 if (insn->mode != MODE_16BIT) 1171 attrMask |= ATTR_OPSIZE; 1172 break; 1173 case 0x67: 1174 attrMask |= ATTR_ADSIZE; 1175 break; 1176 } 1177 } 1178 1179 if (insn->rexPrefix & 0x08) { 1180 attrMask |= ATTR_REXW; 1181 attrMask &= ~ATTR_ADSIZE; 1182 } 1183 1184 if (insn->mode == MODE_16BIT) { 1185 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning 1186 // of the AdSize prefix is inverted w.r.t. 32-bit mode. 1187 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) 1188 attrMask ^= ATTR_ADSIZE; 1189 // If we're in 16-bit mode and this is one of the relative jumps and opsize 1190 // prefix isn't present, we need to force the opsize attribute since the 1191 // prefix is inverted relative to 32-bit mode. 1192 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && 1193 (insn->opcode == 0xE8 || insn->opcode == 0xE9)) 1194 attrMask |= ATTR_OPSIZE; 1195 1196 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && 1197 insn->opcode >= 0x80 && insn->opcode <= 0x8F) 1198 attrMask |= ATTR_OPSIZE; 1199 } 1200 1201 1202 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1203 return -1; 1204 1205 // The following clauses compensate for limitations of the tables. 1206 1207 if (insn->mode != MODE_64BIT && 1208 insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1209 // The tables can't distinquish between cases where the W-bit is used to 1210 // select register size and cases where its a required part of the opcode. 1211 if ((insn->vectorExtensionType == TYPE_EVEX && 1212 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || 1213 (insn->vectorExtensionType == TYPE_VEX_3B && 1214 wFromVEX3of3(insn->vectorExtensionPrefix[2])) || 1215 (insn->vectorExtensionType == TYPE_XOP && 1216 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { 1217 1218 uint16_t instructionIDWithREXW; 1219 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn, 1220 attrMask | ATTR_REXW)) { 1221 insn->instructionID = instructionID; 1222 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1223 return 0; 1224 } 1225 1226 auto SpecName = mii->getName(instructionIDWithREXW); 1227 // If not a 64-bit instruction. Switch the opcode. 1228 if (!is64Bit(SpecName.data())) { 1229 insn->instructionID = instructionIDWithREXW; 1230 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; 1231 return 0; 1232 } 1233 } 1234 } 1235 1236 // Absolute moves, umonitor, and movdir64b need special handling. 1237 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are 1238 // inverted w.r.t. 1239 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in 1240 // any position. 1241 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || 1242 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || 1243 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { 1244 // Make sure we observed the prefixes in any position. 1245 if (insn->hasAdSize) 1246 attrMask |= ATTR_ADSIZE; 1247 if (insn->hasOpSize) 1248 attrMask |= ATTR_OPSIZE; 1249 1250 // In 16-bit, invert the attributes. 1251 if (insn->mode == MODE_16BIT) { 1252 attrMask ^= ATTR_ADSIZE; 1253 1254 // The OpSize attribute is only valid with the absolute moves. 1255 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) 1256 attrMask ^= ATTR_OPSIZE; 1257 } 1258 1259 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1260 return -1; 1261 1262 insn->instructionID = instructionID; 1263 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1264 return 0; 1265 } 1266 1267 if ((insn->mode == MODE_16BIT || insn->hasOpSize) && 1268 !(attrMask & ATTR_OPSIZE)) { 1269 // The instruction tables make no distinction between instructions that 1270 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a 1271 // particular spot (i.e., many MMX operations). In general we're 1272 // conservative, but in the specific case where OpSize is present but not in 1273 // the right place we check if there's a 16-bit operation. 1274 const struct InstructionSpecifier *spec; 1275 uint16_t instructionIDWithOpsize; 1276 llvm::StringRef specName, specWithOpSizeName; 1277 1278 spec = &INSTRUCTIONS_SYM[instructionID]; 1279 1280 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn, 1281 attrMask | ATTR_OPSIZE)) { 1282 // ModRM required with OpSize but not present. Give up and return the 1283 // version without OpSize set. 1284 insn->instructionID = instructionID; 1285 insn->spec = spec; 1286 return 0; 1287 } 1288 1289 specName = mii->getName(instructionID); 1290 specWithOpSizeName = mii->getName(instructionIDWithOpsize); 1291 1292 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && 1293 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { 1294 insn->instructionID = instructionIDWithOpsize; 1295 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; 1296 } else { 1297 insn->instructionID = instructionID; 1298 insn->spec = spec; 1299 } 1300 return 0; 1301 } 1302 1303 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && 1304 insn->rexPrefix & 0x01) { 1305 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode 1306 // as XCHG %r8, %eax. 1307 const struct InstructionSpecifier *spec; 1308 uint16_t instructionIDWithNewOpcode; 1309 const struct InstructionSpecifier *specWithNewOpcode; 1310 1311 spec = &INSTRUCTIONS_SYM[instructionID]; 1312 1313 // Borrow opcode from one of the other XCHGar opcodes 1314 insn->opcode = 0x91; 1315 1316 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn, 1317 attrMask)) { 1318 insn->opcode = 0x90; 1319 1320 insn->instructionID = instructionID; 1321 insn->spec = spec; 1322 return 0; 1323 } 1324 1325 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; 1326 1327 // Change back 1328 insn->opcode = 0x90; 1329 1330 insn->instructionID = instructionIDWithNewOpcode; 1331 insn->spec = specWithNewOpcode; 1332 1333 return 0; 1334 } 1335 1336 insn->instructionID = instructionID; 1337 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; 1338 1339 return 0; 1340 } 1341 1342 // Read an operand from the opcode field of an instruction and interprets it 1343 // appropriately given the operand width. Handles AddRegFrm instructions. 1344 // 1345 // @param insn - the instruction whose opcode field is to be read. 1346 // @param size - The width (in bytes) of the register being specified. 1347 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means 1348 // RAX. 1349 // @return - 0 on success; nonzero otherwise. 1350 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { 1351 LLVM_DEBUG(dbgs() << "readOpcodeRegister()"); 1352 1353 if (size == 0) 1354 size = insn->registerSize; 1355 1356 switch (size) { 1357 case 1: 1358 insn->opcodeRegister = (Reg)( 1359 MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1360 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && 1361 insn->opcodeRegister < MODRM_REG_AL + 0x8) { 1362 insn->opcodeRegister = 1363 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); 1364 } 1365 1366 break; 1367 case 2: 1368 insn->opcodeRegister = (Reg)( 1369 MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1370 break; 1371 case 4: 1372 insn->opcodeRegister = 1373 (Reg)(MODRM_REG_EAX + 1374 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1375 break; 1376 case 8: 1377 insn->opcodeRegister = 1378 (Reg)(MODRM_REG_RAX + 1379 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1380 break; 1381 } 1382 1383 return 0; 1384 } 1385 1386 // Consume an immediate operand from an instruction, given the desired operand 1387 // size. 1388 // 1389 // @param insn - The instruction whose operand is to be read. 1390 // @param size - The width (in bytes) of the operand. 1391 // @return - 0 if the immediate was successfully consumed; nonzero 1392 // otherwise. 1393 static int readImmediate(struct InternalInstruction *insn, uint8_t size) { 1394 uint8_t imm8; 1395 uint16_t imm16; 1396 uint32_t imm32; 1397 uint64_t imm64; 1398 1399 LLVM_DEBUG(dbgs() << "readImmediate()"); 1400 1401 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates"); 1402 1403 insn->immediateSize = size; 1404 insn->immediateOffset = insn->readerCursor - insn->startLocation; 1405 1406 switch (size) { 1407 case 1: 1408 if (consume(insn, imm8)) 1409 return -1; 1410 insn->immediates[insn->numImmediatesConsumed] = imm8; 1411 break; 1412 case 2: 1413 if (consume(insn, imm16)) 1414 return -1; 1415 insn->immediates[insn->numImmediatesConsumed] = imm16; 1416 break; 1417 case 4: 1418 if (consume(insn, imm32)) 1419 return -1; 1420 insn->immediates[insn->numImmediatesConsumed] = imm32; 1421 break; 1422 case 8: 1423 if (consume(insn, imm64)) 1424 return -1; 1425 insn->immediates[insn->numImmediatesConsumed] = imm64; 1426 break; 1427 default: 1428 llvm_unreachable("invalid size"); 1429 } 1430 1431 insn->numImmediatesConsumed++; 1432 1433 return 0; 1434 } 1435 1436 // Consume vvvv from an instruction if it has a VEX prefix. 1437 static int readVVVV(struct InternalInstruction *insn) { 1438 LLVM_DEBUG(dbgs() << "readVVVV()"); 1439 1440 int vvvv; 1441 if (insn->vectorExtensionType == TYPE_EVEX) 1442 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | 1443 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); 1444 else if (insn->vectorExtensionType == TYPE_VEX_3B) 1445 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); 1446 else if (insn->vectorExtensionType == TYPE_VEX_2B) 1447 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); 1448 else if (insn->vectorExtensionType == TYPE_XOP) 1449 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); 1450 else 1451 return -1; 1452 1453 if (insn->mode != MODE_64BIT) 1454 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. 1455 1456 insn->vvvv = static_cast<Reg>(vvvv); 1457 return 0; 1458 } 1459 1460 // Read an mask register from the opcode field of an instruction. 1461 // 1462 // @param insn - The instruction whose opcode field is to be read. 1463 // @return - 0 on success; nonzero otherwise. 1464 static int readMaskRegister(struct InternalInstruction *insn) { 1465 LLVM_DEBUG(dbgs() << "readMaskRegister()"); 1466 1467 if (insn->vectorExtensionType != TYPE_EVEX) 1468 return -1; 1469 1470 insn->writemask = 1471 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); 1472 return 0; 1473 } 1474 1475 // Consults the specifier for an instruction and consumes all 1476 // operands for that instruction, interpreting them as it goes. 1477 static int readOperands(struct InternalInstruction *insn) { 1478 int hasVVVV, needVVVV; 1479 int sawRegImm = 0; 1480 1481 LLVM_DEBUG(dbgs() << "readOperands()"); 1482 1483 // If non-zero vvvv specified, make sure one of the operands uses it. 1484 hasVVVV = !readVVVV(insn); 1485 needVVVV = hasVVVV && (insn->vvvv != 0); 1486 1487 for (const auto &Op : x86OperandSets[insn->spec->operands]) { 1488 switch (Op.encoding) { 1489 case ENCODING_NONE: 1490 case ENCODING_SI: 1491 case ENCODING_DI: 1492 break; 1493 CASE_ENCODING_VSIB: 1494 // VSIB can use the V2 bit so check only the other bits. 1495 if (needVVVV) 1496 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); 1497 if (readModRM(insn)) 1498 return -1; 1499 1500 // Reject if SIB wasn't used. 1501 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) 1502 return -1; 1503 1504 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. 1505 if (insn->sibIndex == SIB_INDEX_NONE) 1506 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); 1507 1508 // If EVEX.v2 is set this is one of the 16-31 registers. 1509 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && 1510 v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1511 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); 1512 1513 // Adjust the index register to the correct size. 1514 switch ((OperandType)Op.type) { 1515 default: 1516 debug("Unhandled VSIB index type"); 1517 return -1; 1518 case TYPE_MVSIBX: 1519 insn->sibIndex = 1520 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); 1521 break; 1522 case TYPE_MVSIBY: 1523 insn->sibIndex = 1524 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); 1525 break; 1526 case TYPE_MVSIBZ: 1527 insn->sibIndex = 1528 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); 1529 break; 1530 } 1531 1532 // Apply the AVX512 compressed displacement scaling factor. 1533 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1534 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); 1535 break; 1536 case ENCODING_REG: 1537 CASE_ENCODING_RM: 1538 if (readModRM(insn)) 1539 return -1; 1540 if (fixupReg(insn, &Op)) 1541 return -1; 1542 // Apply the AVX512 compressed displacement scaling factor. 1543 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1544 insn->displacement *= 1 << (Op.encoding - ENCODING_RM); 1545 break; 1546 case ENCODING_IB: 1547 if (sawRegImm) { 1548 // Saw a register immediate so don't read again and instead split the 1549 // previous immediate. FIXME: This is a hack. 1550 insn->immediates[insn->numImmediatesConsumed] = 1551 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; 1552 ++insn->numImmediatesConsumed; 1553 break; 1554 } 1555 if (readImmediate(insn, 1)) 1556 return -1; 1557 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) 1558 sawRegImm = 1; 1559 break; 1560 case ENCODING_IW: 1561 if (readImmediate(insn, 2)) 1562 return -1; 1563 break; 1564 case ENCODING_ID: 1565 if (readImmediate(insn, 4)) 1566 return -1; 1567 break; 1568 case ENCODING_IO: 1569 if (readImmediate(insn, 8)) 1570 return -1; 1571 break; 1572 case ENCODING_Iv: 1573 if (readImmediate(insn, insn->immediateSize)) 1574 return -1; 1575 break; 1576 case ENCODING_Ia: 1577 if (readImmediate(insn, insn->addressSize)) 1578 return -1; 1579 break; 1580 case ENCODING_IRC: 1581 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | 1582 lFromEVEX4of4(insn->vectorExtensionPrefix[3]); 1583 break; 1584 case ENCODING_RB: 1585 if (readOpcodeRegister(insn, 1)) 1586 return -1; 1587 break; 1588 case ENCODING_RW: 1589 if (readOpcodeRegister(insn, 2)) 1590 return -1; 1591 break; 1592 case ENCODING_RD: 1593 if (readOpcodeRegister(insn, 4)) 1594 return -1; 1595 break; 1596 case ENCODING_RO: 1597 if (readOpcodeRegister(insn, 8)) 1598 return -1; 1599 break; 1600 case ENCODING_Rv: 1601 if (readOpcodeRegister(insn, 0)) 1602 return -1; 1603 break; 1604 case ENCODING_CC: 1605 insn->immediates[1] = insn->opcode & 0xf; 1606 break; 1607 case ENCODING_FP: 1608 break; 1609 case ENCODING_VVVV: 1610 needVVVV = 0; // Mark that we have found a VVVV operand. 1611 if (!hasVVVV) 1612 return -1; 1613 if (insn->mode != MODE_64BIT) 1614 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); 1615 if (fixupReg(insn, &Op)) 1616 return -1; 1617 break; 1618 case ENCODING_WRITEMASK: 1619 if (readMaskRegister(insn)) 1620 return -1; 1621 break; 1622 case ENCODING_DUP: 1623 break; 1624 default: 1625 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding."); 1626 return -1; 1627 } 1628 } 1629 1630 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail 1631 if (needVVVV) 1632 return -1; 1633 1634 return 0; 1635 } 1636 1637 namespace llvm { 1638 1639 // Fill-ins to make the compiler happy. These constants are never actually 1640 // assigned; they are just filler to make an automatically-generated switch 1641 // statement work. 1642 namespace X86 { 1643 enum { 1644 BX_SI = 500, 1645 BX_DI = 501, 1646 BP_SI = 502, 1647 BP_DI = 503, 1648 sib = 504, 1649 sib64 = 505 1650 }; 1651 } 1652 1653 } 1654 1655 static bool translateInstruction(MCInst &target, 1656 InternalInstruction &source, 1657 const MCDisassembler *Dis); 1658 1659 namespace { 1660 1661 /// Generic disassembler for all X86 platforms. All each platform class should 1662 /// have to do is subclass the constructor, and provide a different 1663 /// disassemblerMode value. 1664 class X86GenericDisassembler : public MCDisassembler { 1665 std::unique_ptr<const MCInstrInfo> MII; 1666 public: 1667 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, 1668 std::unique_ptr<const MCInstrInfo> MII); 1669 public: 1670 DecodeStatus getInstruction(MCInst &instr, uint64_t &size, 1671 ArrayRef<uint8_t> Bytes, uint64_t Address, 1672 raw_ostream &cStream) const override; 1673 1674 private: 1675 DisassemblerMode fMode; 1676 }; 1677 1678 } 1679 1680 X86GenericDisassembler::X86GenericDisassembler( 1681 const MCSubtargetInfo &STI, 1682 MCContext &Ctx, 1683 std::unique_ptr<const MCInstrInfo> MII) 1684 : MCDisassembler(STI, Ctx), MII(std::move(MII)) { 1685 const FeatureBitset &FB = STI.getFeatureBits(); 1686 if (FB[X86::Mode16Bit]) { 1687 fMode = MODE_16BIT; 1688 return; 1689 } else if (FB[X86::Mode32Bit]) { 1690 fMode = MODE_32BIT; 1691 return; 1692 } else if (FB[X86::Mode64Bit]) { 1693 fMode = MODE_64BIT; 1694 return; 1695 } 1696 1697 llvm_unreachable("Invalid CPU mode"); 1698 } 1699 1700 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( 1701 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, 1702 raw_ostream &CStream) const { 1703 CommentStream = &CStream; 1704 1705 InternalInstruction Insn; 1706 memset(&Insn, 0, sizeof(InternalInstruction)); 1707 Insn.bytes = Bytes; 1708 Insn.startLocation = Address; 1709 Insn.readerCursor = Address; 1710 Insn.mode = fMode; 1711 1712 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) || 1713 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 || 1714 readOperands(&Insn)) { 1715 Size = Insn.readerCursor - Address; 1716 return Fail; 1717 } 1718 1719 Insn.operands = x86OperandSets[Insn.spec->operands]; 1720 Insn.length = Insn.readerCursor - Insn.startLocation; 1721 Size = Insn.length; 1722 if (Size > 15) 1723 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit"); 1724 1725 bool Ret = translateInstruction(Instr, Insn, this); 1726 if (!Ret) { 1727 unsigned Flags = X86::IP_NO_PREFIX; 1728 if (Insn.hasAdSize) 1729 Flags |= X86::IP_HAS_AD_SIZE; 1730 if (!Insn.mandatoryPrefix) { 1731 if (Insn.hasOpSize) 1732 Flags |= X86::IP_HAS_OP_SIZE; 1733 if (Insn.repeatPrefix == 0xf2) 1734 Flags |= X86::IP_HAS_REPEAT_NE; 1735 else if (Insn.repeatPrefix == 0xf3 && 1736 // It should not be 'pause' f3 90 1737 Insn.opcode != 0x90) 1738 Flags |= X86::IP_HAS_REPEAT; 1739 if (Insn.hasLockPrefix) 1740 Flags |= X86::IP_HAS_LOCK; 1741 } 1742 Instr.setFlags(Flags); 1743 } 1744 return (!Ret) ? Success : Fail; 1745 } 1746 1747 // 1748 // Private code that translates from struct InternalInstructions to MCInsts. 1749 // 1750 1751 /// translateRegister - Translates an internal register to the appropriate LLVM 1752 /// register, and appends it as an operand to an MCInst. 1753 /// 1754 /// @param mcInst - The MCInst to append to. 1755 /// @param reg - The Reg to append. 1756 static void translateRegister(MCInst &mcInst, Reg reg) { 1757 #define ENTRY(x) X86::x, 1758 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; 1759 #undef ENTRY 1760 1761 MCPhysReg llvmRegnum = llvmRegnums[reg]; 1762 mcInst.addOperand(MCOperand::createReg(llvmRegnum)); 1763 } 1764 1765 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the 1766 /// immediate Value in the MCInst. 1767 /// 1768 /// @param Value - The immediate Value, has had any PC adjustment made by 1769 /// the caller. 1770 /// @param isBranch - If the instruction is a branch instruction 1771 /// @param Address - The starting address of the instruction 1772 /// @param Offset - The byte offset to this immediate in the instruction 1773 /// @param Width - The byte width of this immediate in the instruction 1774 /// 1775 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was 1776 /// called then that function is called to get any symbolic information for the 1777 /// immediate in the instruction using the Address, Offset and Width. If that 1778 /// returns non-zero then the symbolic information it returns is used to create 1779 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() 1780 /// returns zero and isBranch is true then a symbol look up for immediate Value 1781 /// is done and if a symbol is found an MCExpr is created with that, else 1782 /// an MCExpr with the immediate Value is created. This function returns true 1783 /// if it adds an operand to the MCInst and false otherwise. 1784 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, 1785 uint64_t Address, uint64_t Offset, 1786 uint64_t Width, MCInst &MI, 1787 const MCDisassembler *Dis) { 1788 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, 1789 Offset, Width); 1790 } 1791 1792 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being 1793 /// referenced by a load instruction with the base register that is the rip. 1794 /// These can often be addresses in a literal pool. The Address of the 1795 /// instruction and its immediate Value are used to determine the address 1796 /// being referenced in the literal pool entry. The SymbolLookUp call back will 1797 /// return a pointer to a literal 'C' string if the referenced address is an 1798 /// address into a section with 'C' string literals. 1799 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, 1800 const void *Decoder) { 1801 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); 1802 Dis->tryAddingPcLoadReferenceComment(Value, Address); 1803 } 1804 1805 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 1806 0, // SEG_OVERRIDE_NONE 1807 X86::CS, 1808 X86::SS, 1809 X86::DS, 1810 X86::ES, 1811 X86::FS, 1812 X86::GS 1813 }; 1814 1815 /// translateSrcIndex - Appends a source index operand to an MCInst. 1816 /// 1817 /// @param mcInst - The MCInst to append to. 1818 /// @param insn - The internal instruction. 1819 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { 1820 unsigned baseRegNo; 1821 1822 if (insn.mode == MODE_64BIT) 1823 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; 1824 else if (insn.mode == MODE_32BIT) 1825 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; 1826 else { 1827 assert(insn.mode == MODE_16BIT); 1828 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; 1829 } 1830 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1831 mcInst.addOperand(baseReg); 1832 1833 MCOperand segmentReg; 1834 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 1835 mcInst.addOperand(segmentReg); 1836 return false; 1837 } 1838 1839 /// translateDstIndex - Appends a destination index operand to an MCInst. 1840 /// 1841 /// @param mcInst - The MCInst to append to. 1842 /// @param insn - The internal instruction. 1843 1844 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { 1845 unsigned baseRegNo; 1846 1847 if (insn.mode == MODE_64BIT) 1848 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; 1849 else if (insn.mode == MODE_32BIT) 1850 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; 1851 else { 1852 assert(insn.mode == MODE_16BIT); 1853 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; 1854 } 1855 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1856 mcInst.addOperand(baseReg); 1857 return false; 1858 } 1859 1860 /// translateImmediate - Appends an immediate operand to an MCInst. 1861 /// 1862 /// @param mcInst - The MCInst to append to. 1863 /// @param immediate - The immediate value to append. 1864 /// @param operand - The operand, as stored in the descriptor table. 1865 /// @param insn - The internal instruction. 1866 static void translateImmediate(MCInst &mcInst, uint64_t immediate, 1867 const OperandSpecifier &operand, 1868 InternalInstruction &insn, 1869 const MCDisassembler *Dis) { 1870 // Sign-extend the immediate if necessary. 1871 1872 OperandType type = (OperandType)operand.type; 1873 1874 bool isBranch = false; 1875 uint64_t pcrel = 0; 1876 if (type == TYPE_REL) { 1877 isBranch = true; 1878 pcrel = insn.startLocation + 1879 insn.immediateOffset + insn.immediateSize; 1880 switch (operand.encoding) { 1881 default: 1882 break; 1883 case ENCODING_Iv: 1884 switch (insn.displacementSize) { 1885 default: 1886 break; 1887 case 1: 1888 if(immediate & 0x80) 1889 immediate |= ~(0xffull); 1890 break; 1891 case 2: 1892 if(immediate & 0x8000) 1893 immediate |= ~(0xffffull); 1894 break; 1895 case 4: 1896 if(immediate & 0x80000000) 1897 immediate |= ~(0xffffffffull); 1898 break; 1899 case 8: 1900 break; 1901 } 1902 break; 1903 case ENCODING_IB: 1904 if(immediate & 0x80) 1905 immediate |= ~(0xffull); 1906 break; 1907 case ENCODING_IW: 1908 if(immediate & 0x8000) 1909 immediate |= ~(0xffffull); 1910 break; 1911 case ENCODING_ID: 1912 if(immediate & 0x80000000) 1913 immediate |= ~(0xffffffffull); 1914 break; 1915 } 1916 } 1917 // By default sign-extend all X86 immediates based on their encoding. 1918 else if (type == TYPE_IMM) { 1919 switch (operand.encoding) { 1920 default: 1921 break; 1922 case ENCODING_IB: 1923 if(immediate & 0x80) 1924 immediate |= ~(0xffull); 1925 break; 1926 case ENCODING_IW: 1927 if(immediate & 0x8000) 1928 immediate |= ~(0xffffull); 1929 break; 1930 case ENCODING_ID: 1931 if(immediate & 0x80000000) 1932 immediate |= ~(0xffffffffull); 1933 break; 1934 case ENCODING_IO: 1935 break; 1936 } 1937 } 1938 1939 switch (type) { 1940 case TYPE_XMM: 1941 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); 1942 return; 1943 case TYPE_YMM: 1944 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); 1945 return; 1946 case TYPE_ZMM: 1947 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); 1948 return; 1949 default: 1950 // operand is 64 bits wide. Do nothing. 1951 break; 1952 } 1953 1954 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, 1955 insn.immediateOffset, insn.immediateSize, 1956 mcInst, Dis)) 1957 mcInst.addOperand(MCOperand::createImm(immediate)); 1958 1959 if (type == TYPE_MOFFS) { 1960 MCOperand segmentReg; 1961 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 1962 mcInst.addOperand(segmentReg); 1963 } 1964 } 1965 1966 /// translateRMRegister - Translates a register stored in the R/M field of the 1967 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. 1968 /// @param mcInst - The MCInst to append to. 1969 /// @param insn - The internal instruction to extract the R/M field 1970 /// from. 1971 /// @return - 0 on success; -1 otherwise 1972 static bool translateRMRegister(MCInst &mcInst, 1973 InternalInstruction &insn) { 1974 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 1975 debug("A R/M register operand may not have a SIB byte"); 1976 return true; 1977 } 1978 1979 switch (insn.eaBase) { 1980 default: 1981 debug("Unexpected EA base register"); 1982 return true; 1983 case EA_BASE_NONE: 1984 debug("EA_BASE_NONE for ModR/M base"); 1985 return true; 1986 #define ENTRY(x) case EA_BASE_##x: 1987 ALL_EA_BASES 1988 #undef ENTRY 1989 debug("A R/M register operand may not have a base; " 1990 "the operand must be a register."); 1991 return true; 1992 #define ENTRY(x) \ 1993 case EA_REG_##x: \ 1994 mcInst.addOperand(MCOperand::createReg(X86::x)); break; 1995 ALL_REGS 1996 #undef ENTRY 1997 } 1998 1999 return false; 2000 } 2001 2002 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M 2003 /// fields of an internal instruction (and possibly its SIB byte) to a memory 2004 /// operand in LLVM's format, and appends it to an MCInst. 2005 /// 2006 /// @param mcInst - The MCInst to append to. 2007 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2008 /// from. 2009 /// @return - 0 on success; nonzero otherwise 2010 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, 2011 const MCDisassembler *Dis) { 2012 // Addresses in an MCInst are represented as five operands: 2013 // 1. basereg (register) The R/M base, or (if there is a SIB) the 2014 // SIB base 2015 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified 2016 // scale amount 2017 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) 2018 // the index (which is multiplied by the 2019 // scale amount) 2020 // 4. displacement (immediate) 0, or the displacement if there is one 2021 // 5. segmentreg (register) x86_registerNONE for now, but could be set 2022 // if we have segment overrides 2023 2024 MCOperand baseReg; 2025 MCOperand scaleAmount; 2026 MCOperand indexReg; 2027 MCOperand displacement; 2028 MCOperand segmentReg; 2029 uint64_t pcrel = 0; 2030 2031 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 2032 if (insn.sibBase != SIB_BASE_NONE) { 2033 switch (insn.sibBase) { 2034 default: 2035 debug("Unexpected sibBase"); 2036 return true; 2037 #define ENTRY(x) \ 2038 case SIB_BASE_##x: \ 2039 baseReg = MCOperand::createReg(X86::x); break; 2040 ALL_SIB_BASES 2041 #undef ENTRY 2042 } 2043 } else { 2044 baseReg = MCOperand::createReg(X86::NoRegister); 2045 } 2046 2047 if (insn.sibIndex != SIB_INDEX_NONE) { 2048 switch (insn.sibIndex) { 2049 default: 2050 debug("Unexpected sibIndex"); 2051 return true; 2052 #define ENTRY(x) \ 2053 case SIB_INDEX_##x: \ 2054 indexReg = MCOperand::createReg(X86::x); break; 2055 EA_BASES_32BIT 2056 EA_BASES_64BIT 2057 REGS_XMM 2058 REGS_YMM 2059 REGS_ZMM 2060 #undef ENTRY 2061 } 2062 } else { 2063 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, 2064 // but no index is used and modrm alone should have been enough. 2065 // -No base register in 32-bit mode. In 64-bit mode this is used to 2066 // avoid rip-relative addressing. 2067 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a 2068 // base always requires a SIB byte. 2069 // -A scale other than 1 is used. 2070 if (insn.sibScale != 1 || 2071 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || 2072 (insn.sibBase != SIB_BASE_NONE && 2073 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && 2074 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) { 2075 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : 2076 X86::RIZ); 2077 } else 2078 indexReg = MCOperand::createReg(X86::NoRegister); 2079 } 2080 2081 scaleAmount = MCOperand::createImm(insn.sibScale); 2082 } else { 2083 switch (insn.eaBase) { 2084 case EA_BASE_NONE: 2085 if (insn.eaDisplacement == EA_DISP_NONE) { 2086 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); 2087 return true; 2088 } 2089 if (insn.mode == MODE_64BIT){ 2090 pcrel = insn.startLocation + 2091 insn.displacementOffset + insn.displacementSize; 2092 tryAddingPcLoadReferenceComment(insn.startLocation + 2093 insn.displacementOffset, 2094 insn.displacement + pcrel, Dis); 2095 // Section 2.2.1.6 2096 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : 2097 X86::RIP); 2098 } 2099 else 2100 baseReg = MCOperand::createReg(X86::NoRegister); 2101 2102 indexReg = MCOperand::createReg(X86::NoRegister); 2103 break; 2104 case EA_BASE_BX_SI: 2105 baseReg = MCOperand::createReg(X86::BX); 2106 indexReg = MCOperand::createReg(X86::SI); 2107 break; 2108 case EA_BASE_BX_DI: 2109 baseReg = MCOperand::createReg(X86::BX); 2110 indexReg = MCOperand::createReg(X86::DI); 2111 break; 2112 case EA_BASE_BP_SI: 2113 baseReg = MCOperand::createReg(X86::BP); 2114 indexReg = MCOperand::createReg(X86::SI); 2115 break; 2116 case EA_BASE_BP_DI: 2117 baseReg = MCOperand::createReg(X86::BP); 2118 indexReg = MCOperand::createReg(X86::DI); 2119 break; 2120 default: 2121 indexReg = MCOperand::createReg(X86::NoRegister); 2122 switch (insn.eaBase) { 2123 default: 2124 debug("Unexpected eaBase"); 2125 return true; 2126 // Here, we will use the fill-ins defined above. However, 2127 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and 2128 // sib and sib64 were handled in the top-level if, so they're only 2129 // placeholders to keep the compiler happy. 2130 #define ENTRY(x) \ 2131 case EA_BASE_##x: \ 2132 baseReg = MCOperand::createReg(X86::x); break; 2133 ALL_EA_BASES 2134 #undef ENTRY 2135 #define ENTRY(x) case EA_REG_##x: 2136 ALL_REGS 2137 #undef ENTRY 2138 debug("A R/M memory operand may not be a register; " 2139 "the base field must be a base."); 2140 return true; 2141 } 2142 } 2143 2144 scaleAmount = MCOperand::createImm(1); 2145 } 2146 2147 displacement = MCOperand::createImm(insn.displacement); 2148 2149 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 2150 2151 mcInst.addOperand(baseReg); 2152 mcInst.addOperand(scaleAmount); 2153 mcInst.addOperand(indexReg); 2154 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, 2155 insn.startLocation, insn.displacementOffset, 2156 insn.displacementSize, mcInst, Dis)) 2157 mcInst.addOperand(displacement); 2158 mcInst.addOperand(segmentReg); 2159 return false; 2160 } 2161 2162 /// translateRM - Translates an operand stored in the R/M (and possibly SIB) 2163 /// byte of an instruction to LLVM form, and appends it to an MCInst. 2164 /// 2165 /// @param mcInst - The MCInst to append to. 2166 /// @param operand - The operand, as stored in the descriptor table. 2167 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2168 /// from. 2169 /// @return - 0 on success; nonzero otherwise 2170 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, 2171 InternalInstruction &insn, const MCDisassembler *Dis) { 2172 switch (operand.type) { 2173 default: 2174 debug("Unexpected type for a R/M operand"); 2175 return true; 2176 case TYPE_R8: 2177 case TYPE_R16: 2178 case TYPE_R32: 2179 case TYPE_R64: 2180 case TYPE_Rv: 2181 case TYPE_MM64: 2182 case TYPE_XMM: 2183 case TYPE_YMM: 2184 case TYPE_ZMM: 2185 case TYPE_VK_PAIR: 2186 case TYPE_VK: 2187 case TYPE_DEBUGREG: 2188 case TYPE_CONTROLREG: 2189 case TYPE_BNDR: 2190 return translateRMRegister(mcInst, insn); 2191 case TYPE_M: 2192 case TYPE_MVSIBX: 2193 case TYPE_MVSIBY: 2194 case TYPE_MVSIBZ: 2195 return translateRMMemory(mcInst, insn, Dis); 2196 } 2197 } 2198 2199 /// translateFPRegister - Translates a stack position on the FPU stack to its 2200 /// LLVM form, and appends it to an MCInst. 2201 /// 2202 /// @param mcInst - The MCInst to append to. 2203 /// @param stackPos - The stack position to translate. 2204 static void translateFPRegister(MCInst &mcInst, 2205 uint8_t stackPos) { 2206 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); 2207 } 2208 2209 /// translateMaskRegister - Translates a 3-bit mask register number to 2210 /// LLVM form, and appends it to an MCInst. 2211 /// 2212 /// @param mcInst - The MCInst to append to. 2213 /// @param maskRegNum - Number of mask register from 0 to 7. 2214 /// @return - false on success; true otherwise. 2215 static bool translateMaskRegister(MCInst &mcInst, 2216 uint8_t maskRegNum) { 2217 if (maskRegNum >= 8) { 2218 debug("Invalid mask register number"); 2219 return true; 2220 } 2221 2222 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); 2223 return false; 2224 } 2225 2226 /// translateOperand - Translates an operand stored in an internal instruction 2227 /// to LLVM's format and appends it to an MCInst. 2228 /// 2229 /// @param mcInst - The MCInst to append to. 2230 /// @param operand - The operand, as stored in the descriptor table. 2231 /// @param insn - The internal instruction. 2232 /// @return - false on success; true otherwise. 2233 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, 2234 InternalInstruction &insn, 2235 const MCDisassembler *Dis) { 2236 switch (operand.encoding) { 2237 default: 2238 debug("Unhandled operand encoding during translation"); 2239 return true; 2240 case ENCODING_REG: 2241 translateRegister(mcInst, insn.reg); 2242 return false; 2243 case ENCODING_WRITEMASK: 2244 return translateMaskRegister(mcInst, insn.writemask); 2245 CASE_ENCODING_RM: 2246 CASE_ENCODING_VSIB: 2247 return translateRM(mcInst, operand, insn, Dis); 2248 case ENCODING_IB: 2249 case ENCODING_IW: 2250 case ENCODING_ID: 2251 case ENCODING_IO: 2252 case ENCODING_Iv: 2253 case ENCODING_Ia: 2254 translateImmediate(mcInst, 2255 insn.immediates[insn.numImmediatesTranslated++], 2256 operand, 2257 insn, 2258 Dis); 2259 return false; 2260 case ENCODING_IRC: 2261 mcInst.addOperand(MCOperand::createImm(insn.RC)); 2262 return false; 2263 case ENCODING_SI: 2264 return translateSrcIndex(mcInst, insn); 2265 case ENCODING_DI: 2266 return translateDstIndex(mcInst, insn); 2267 case ENCODING_RB: 2268 case ENCODING_RW: 2269 case ENCODING_RD: 2270 case ENCODING_RO: 2271 case ENCODING_Rv: 2272 translateRegister(mcInst, insn.opcodeRegister); 2273 return false; 2274 case ENCODING_CC: 2275 mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); 2276 return false; 2277 case ENCODING_FP: 2278 translateFPRegister(mcInst, insn.modRM & 7); 2279 return false; 2280 case ENCODING_VVVV: 2281 translateRegister(mcInst, insn.vvvv); 2282 return false; 2283 case ENCODING_DUP: 2284 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], 2285 insn, Dis); 2286 } 2287 } 2288 2289 /// translateInstruction - Translates an internal instruction and all its 2290 /// operands to an MCInst. 2291 /// 2292 /// @param mcInst - The MCInst to populate with the instruction's data. 2293 /// @param insn - The internal instruction. 2294 /// @return - false on success; true otherwise. 2295 static bool translateInstruction(MCInst &mcInst, 2296 InternalInstruction &insn, 2297 const MCDisassembler *Dis) { 2298 if (!insn.spec) { 2299 debug("Instruction has no specification"); 2300 return true; 2301 } 2302 2303 mcInst.clear(); 2304 mcInst.setOpcode(insn.instructionID); 2305 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 2306 // prefix bytes should be disassembled as xrelease and xacquire then set the 2307 // opcode to those instead of the rep and repne opcodes. 2308 if (insn.xAcquireRelease) { 2309 if(mcInst.getOpcode() == X86::REP_PREFIX) 2310 mcInst.setOpcode(X86::XRELEASE_PREFIX); 2311 else if(mcInst.getOpcode() == X86::REPNE_PREFIX) 2312 mcInst.setOpcode(X86::XACQUIRE_PREFIX); 2313 } 2314 2315 insn.numImmediatesTranslated = 0; 2316 2317 for (const auto &Op : insn.operands) { 2318 if (Op.encoding != ENCODING_NONE) { 2319 if (translateOperand(mcInst, Op, insn, Dis)) { 2320 return true; 2321 } 2322 } 2323 } 2324 2325 return false; 2326 } 2327 2328 static MCDisassembler *createX86Disassembler(const Target &T, 2329 const MCSubtargetInfo &STI, 2330 MCContext &Ctx) { 2331 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); 2332 return new X86GenericDisassembler(STI, Ctx, std::move(MII)); 2333 } 2334 2335 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() { 2336 // Register the disassembler. 2337 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), 2338 createX86Disassembler); 2339 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), 2340 createX86Disassembler); 2341 } 2342