1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler. 10 // It contains code to translate the data produced by the decoder into 11 // MCInsts. 12 // 13 // 14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and 15 // 64-bit X86 instruction sets. The main decode sequence for an assembly 16 // instruction in this disassembler is: 17 // 18 // 1. Read the prefix bytes and determine the attributes of the instruction. 19 // These attributes, recorded in enum attributeBits 20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM 21 // provides a mapping from bitmasks to contexts, which are represented by 22 // enum InstructionContext (ibid.). 23 // 24 // 2. Read the opcode, and determine what kind of opcode it is. The 25 // disassembler distinguishes four kinds of opcodes, which are enumerated in 26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte 27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a 28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. 29 // 30 // 3. Depending on the opcode type, look in one of four ClassDecision structures 31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which 32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get 33 // a ModRMDecision (ibid.). 34 // 35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even 36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the 37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from 38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the 39 // ModR/M byte is required and how to interpret it. 40 // 41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID 42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in 43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and 44 // meanings of its operands. 45 // 46 // 6. For each operand, its encoding is an entry from OperandEncoding 47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from 48 // OperandType (ibid.). The encoding indicates how to read it from the 49 // instruction; the type indicates how to interpret the value once it has 50 // been read. For example, a register operand could be stored in the R/M 51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to 52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM 53 // register, for instance). Given this information, the operands can be 54 // extracted and interpreted. 55 // 56 // 7. As the last step, the disassembler translates the instruction information 57 // and operands into a format understandable by the client - in this case, an 58 // MCInst for use by the MC infrastructure. 59 // 60 // The disassembler is broken broadly into two parts: the table emitter that 61 // emits the instruction decode tables discussed above during compilation, and 62 // the disassembler itself. The table emitter is documented in more detail in 63 // utils/TableGen/X86DisassemblerEmitter.h. 64 // 65 // X86Disassembler.cpp contains the code responsible for step 7, and for 66 // invoking the decoder to execute steps 1-6. 67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the 68 // table emitter and the disassembler. 69 // X86DisassemblerDecoder.h contains the public interface of the decoder, 70 // factored out into C for possible use by other projects. 71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is 72 // responsible for steps 1-6. 73 // 74 //===----------------------------------------------------------------------===// 75 76 #include "MCTargetDesc/X86BaseInfo.h" 77 #include "MCTargetDesc/X86MCTargetDesc.h" 78 #include "TargetInfo/X86TargetInfo.h" 79 #include "X86DisassemblerDecoder.h" 80 #include "llvm/MC/MCContext.h" 81 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 82 #include "llvm/MC/MCExpr.h" 83 #include "llvm/MC/MCInst.h" 84 #include "llvm/MC/MCInstrInfo.h" 85 #include "llvm/MC/MCSubtargetInfo.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/TargetRegistry.h" 88 #include "llvm/Support/raw_ostream.h" 89 90 using namespace llvm; 91 using namespace llvm::X86Disassembler; 92 93 #define DEBUG_TYPE "x86-disassembler" 94 95 void llvm::X86Disassembler::Debug(const char *file, unsigned line, 96 const char *s) { 97 dbgs() << file << ":" << line << ": " << s; 98 } 99 100 StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode, 101 const void *mii) { 102 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii); 103 return MII->getName(Opcode); 104 } 105 106 #define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s)); 107 108 namespace llvm { 109 110 // Fill-ins to make the compiler happy. These constants are never actually 111 // assigned; they are just filler to make an automatically-generated switch 112 // statement work. 113 namespace X86 { 114 enum { 115 BX_SI = 500, 116 BX_DI = 501, 117 BP_SI = 502, 118 BP_DI = 503, 119 sib = 504, 120 sib64 = 505 121 }; 122 } 123 124 } 125 126 static bool translateInstruction(MCInst &target, 127 InternalInstruction &source, 128 const MCDisassembler *Dis); 129 130 namespace { 131 132 /// Generic disassembler for all X86 platforms. All each platform class should 133 /// have to do is subclass the constructor, and provide a different 134 /// disassemblerMode value. 135 class X86GenericDisassembler : public MCDisassembler { 136 std::unique_ptr<const MCInstrInfo> MII; 137 public: 138 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, 139 std::unique_ptr<const MCInstrInfo> MII); 140 public: 141 DecodeStatus getInstruction(MCInst &instr, uint64_t &size, 142 ArrayRef<uint8_t> Bytes, uint64_t Address, 143 raw_ostream &vStream, 144 raw_ostream &cStream) const override; 145 146 private: 147 DisassemblerMode fMode; 148 }; 149 150 } 151 152 X86GenericDisassembler::X86GenericDisassembler( 153 const MCSubtargetInfo &STI, 154 MCContext &Ctx, 155 std::unique_ptr<const MCInstrInfo> MII) 156 : MCDisassembler(STI, Ctx), MII(std::move(MII)) { 157 const FeatureBitset &FB = STI.getFeatureBits(); 158 if (FB[X86::Mode16Bit]) { 159 fMode = MODE_16BIT; 160 return; 161 } else if (FB[X86::Mode32Bit]) { 162 fMode = MODE_32BIT; 163 return; 164 } else if (FB[X86::Mode64Bit]) { 165 fMode = MODE_64BIT; 166 return; 167 } 168 169 llvm_unreachable("Invalid CPU mode"); 170 } 171 172 namespace { 173 struct Region { 174 ArrayRef<uint8_t> Bytes; 175 uint64_t Base; 176 Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {} 177 }; 178 } // end anonymous namespace 179 180 /// A callback function that wraps the readByte method from Region. 181 /// 182 /// @param Arg - The generic callback parameter. In this case, this should 183 /// be a pointer to a Region. 184 /// @param Byte - A pointer to the byte to be read. 185 /// @param Address - The address to be read. 186 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) { 187 auto *R = static_cast<const Region *>(Arg); 188 ArrayRef<uint8_t> Bytes = R->Bytes; 189 unsigned Index = Address - R->Base; 190 if (Bytes.size() <= Index) 191 return -1; 192 *Byte = Bytes[Index]; 193 return 0; 194 } 195 196 /// logger - a callback function that wraps the operator<< method from 197 /// raw_ostream. 198 /// 199 /// @param arg - The generic callback parameter. This should be a pointe 200 /// to a raw_ostream. 201 /// @param log - A string to be logged. logger() adds a newline. 202 static void logger(void* arg, const char* log) { 203 if (!arg) 204 return; 205 206 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg)); 207 vStream << log << "\n"; 208 } 209 210 // 211 // Public interface for the disassembler 212 // 213 214 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( 215 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, 216 raw_ostream &VStream, raw_ostream &CStream) const { 217 CommentStream = &CStream; 218 219 InternalInstruction InternalInstr; 220 221 dlog_t LoggerFn = logger; 222 if (&VStream == &nulls()) 223 LoggerFn = nullptr; // Disable logging completely if it's going to nulls(). 224 225 Region R(Bytes, Address); 226 227 int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R, 228 LoggerFn, (void *)&VStream, 229 (const void *)MII.get(), Address, fMode); 230 231 if (Ret) { 232 Size = InternalInstr.readerCursor - Address; 233 return Fail; 234 } else { 235 Size = InternalInstr.length; 236 bool Ret = translateInstruction(Instr, InternalInstr, this); 237 if (!Ret) { 238 unsigned Flags = X86::IP_NO_PREFIX; 239 if (InternalInstr.hasAdSize) 240 Flags |= X86::IP_HAS_AD_SIZE; 241 if (!InternalInstr.mandatoryPrefix) { 242 if (InternalInstr.hasOpSize) 243 Flags |= X86::IP_HAS_OP_SIZE; 244 if (InternalInstr.repeatPrefix == 0xf2) 245 Flags |= X86::IP_HAS_REPEAT_NE; 246 else if (InternalInstr.repeatPrefix == 0xf3 && 247 // It should not be 'pause' f3 90 248 InternalInstr.opcode != 0x90) 249 Flags |= X86::IP_HAS_REPEAT; 250 if (InternalInstr.hasLockPrefix) 251 Flags |= X86::IP_HAS_LOCK; 252 } 253 Instr.setFlags(Flags); 254 } 255 return (!Ret) ? Success : Fail; 256 } 257 } 258 259 // 260 // Private code that translates from struct InternalInstructions to MCInsts. 261 // 262 263 /// translateRegister - Translates an internal register to the appropriate LLVM 264 /// register, and appends it as an operand to an MCInst. 265 /// 266 /// @param mcInst - The MCInst to append to. 267 /// @param reg - The Reg to append. 268 static void translateRegister(MCInst &mcInst, Reg reg) { 269 #define ENTRY(x) X86::x, 270 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; 271 #undef ENTRY 272 273 MCPhysReg llvmRegnum = llvmRegnums[reg]; 274 mcInst.addOperand(MCOperand::createReg(llvmRegnum)); 275 } 276 277 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the 278 /// immediate Value in the MCInst. 279 /// 280 /// @param Value - The immediate Value, has had any PC adjustment made by 281 /// the caller. 282 /// @param isBranch - If the instruction is a branch instruction 283 /// @param Address - The starting address of the instruction 284 /// @param Offset - The byte offset to this immediate in the instruction 285 /// @param Width - The byte width of this immediate in the instruction 286 /// 287 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was 288 /// called then that function is called to get any symbolic information for the 289 /// immediate in the instruction using the Address, Offset and Width. If that 290 /// returns non-zero then the symbolic information it returns is used to create 291 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() 292 /// returns zero and isBranch is true then a symbol look up for immediate Value 293 /// is done and if a symbol is found an MCExpr is created with that, else 294 /// an MCExpr with the immediate Value is created. This function returns true 295 /// if it adds an operand to the MCInst and false otherwise. 296 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, 297 uint64_t Address, uint64_t Offset, 298 uint64_t Width, MCInst &MI, 299 const MCDisassembler *Dis) { 300 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, 301 Offset, Width); 302 } 303 304 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being 305 /// referenced by a load instruction with the base register that is the rip. 306 /// These can often be addresses in a literal pool. The Address of the 307 /// instruction and its immediate Value are used to determine the address 308 /// being referenced in the literal pool entry. The SymbolLookUp call back will 309 /// return a pointer to a literal 'C' string if the referenced address is an 310 /// address into a section with 'C' string literals. 311 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, 312 const void *Decoder) { 313 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); 314 Dis->tryAddingPcLoadReferenceComment(Value, Address); 315 } 316 317 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 318 0, // SEG_OVERRIDE_NONE 319 X86::CS, 320 X86::SS, 321 X86::DS, 322 X86::ES, 323 X86::FS, 324 X86::GS 325 }; 326 327 /// translateSrcIndex - Appends a source index operand to an MCInst. 328 /// 329 /// @param mcInst - The MCInst to append to. 330 /// @param insn - The internal instruction. 331 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { 332 unsigned baseRegNo; 333 334 if (insn.mode == MODE_64BIT) 335 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; 336 else if (insn.mode == MODE_32BIT) 337 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; 338 else { 339 assert(insn.mode == MODE_16BIT); 340 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; 341 } 342 MCOperand baseReg = MCOperand::createReg(baseRegNo); 343 mcInst.addOperand(baseReg); 344 345 MCOperand segmentReg; 346 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 347 mcInst.addOperand(segmentReg); 348 return false; 349 } 350 351 /// translateDstIndex - Appends a destination index operand to an MCInst. 352 /// 353 /// @param mcInst - The MCInst to append to. 354 /// @param insn - The internal instruction. 355 356 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { 357 unsigned baseRegNo; 358 359 if (insn.mode == MODE_64BIT) 360 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; 361 else if (insn.mode == MODE_32BIT) 362 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; 363 else { 364 assert(insn.mode == MODE_16BIT); 365 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; 366 } 367 MCOperand baseReg = MCOperand::createReg(baseRegNo); 368 mcInst.addOperand(baseReg); 369 return false; 370 } 371 372 /// translateImmediate - Appends an immediate operand to an MCInst. 373 /// 374 /// @param mcInst - The MCInst to append to. 375 /// @param immediate - The immediate value to append. 376 /// @param operand - The operand, as stored in the descriptor table. 377 /// @param insn - The internal instruction. 378 static void translateImmediate(MCInst &mcInst, uint64_t immediate, 379 const OperandSpecifier &operand, 380 InternalInstruction &insn, 381 const MCDisassembler *Dis) { 382 // Sign-extend the immediate if necessary. 383 384 OperandType type = (OperandType)operand.type; 385 386 bool isBranch = false; 387 uint64_t pcrel = 0; 388 if (type == TYPE_REL) { 389 isBranch = true; 390 pcrel = insn.startLocation + 391 insn.immediateOffset + insn.immediateSize; 392 switch (operand.encoding) { 393 default: 394 break; 395 case ENCODING_Iv: 396 switch (insn.displacementSize) { 397 default: 398 break; 399 case 1: 400 if(immediate & 0x80) 401 immediate |= ~(0xffull); 402 break; 403 case 2: 404 if(immediate & 0x8000) 405 immediate |= ~(0xffffull); 406 break; 407 case 4: 408 if(immediate & 0x80000000) 409 immediate |= ~(0xffffffffull); 410 break; 411 case 8: 412 break; 413 } 414 break; 415 case ENCODING_IB: 416 if(immediate & 0x80) 417 immediate |= ~(0xffull); 418 break; 419 case ENCODING_IW: 420 if(immediate & 0x8000) 421 immediate |= ~(0xffffull); 422 break; 423 case ENCODING_ID: 424 if(immediate & 0x80000000) 425 immediate |= ~(0xffffffffull); 426 break; 427 } 428 } 429 // By default sign-extend all X86 immediates based on their encoding. 430 else if (type == TYPE_IMM) { 431 switch (operand.encoding) { 432 default: 433 break; 434 case ENCODING_IB: 435 if(immediate & 0x80) 436 immediate |= ~(0xffull); 437 break; 438 case ENCODING_IW: 439 if(immediate & 0x8000) 440 immediate |= ~(0xffffull); 441 break; 442 case ENCODING_ID: 443 if(immediate & 0x80000000) 444 immediate |= ~(0xffffffffull); 445 break; 446 case ENCODING_IO: 447 break; 448 } 449 } 450 451 switch (type) { 452 case TYPE_XMM: 453 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); 454 return; 455 case TYPE_YMM: 456 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); 457 return; 458 case TYPE_ZMM: 459 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); 460 return; 461 default: 462 // operand is 64 bits wide. Do nothing. 463 break; 464 } 465 466 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, 467 insn.immediateOffset, insn.immediateSize, 468 mcInst, Dis)) 469 mcInst.addOperand(MCOperand::createImm(immediate)); 470 471 if (type == TYPE_MOFFS) { 472 MCOperand segmentReg; 473 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 474 mcInst.addOperand(segmentReg); 475 } 476 } 477 478 /// translateRMRegister - Translates a register stored in the R/M field of the 479 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. 480 /// @param mcInst - The MCInst to append to. 481 /// @param insn - The internal instruction to extract the R/M field 482 /// from. 483 /// @return - 0 on success; -1 otherwise 484 static bool translateRMRegister(MCInst &mcInst, 485 InternalInstruction &insn) { 486 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 487 debug("A R/M register operand may not have a SIB byte"); 488 return true; 489 } 490 491 switch (insn.eaBase) { 492 default: 493 debug("Unexpected EA base register"); 494 return true; 495 case EA_BASE_NONE: 496 debug("EA_BASE_NONE for ModR/M base"); 497 return true; 498 #define ENTRY(x) case EA_BASE_##x: 499 ALL_EA_BASES 500 #undef ENTRY 501 debug("A R/M register operand may not have a base; " 502 "the operand must be a register."); 503 return true; 504 #define ENTRY(x) \ 505 case EA_REG_##x: \ 506 mcInst.addOperand(MCOperand::createReg(X86::x)); break; 507 ALL_REGS 508 #undef ENTRY 509 } 510 511 return false; 512 } 513 514 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M 515 /// fields of an internal instruction (and possibly its SIB byte) to a memory 516 /// operand in LLVM's format, and appends it to an MCInst. 517 /// 518 /// @param mcInst - The MCInst to append to. 519 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 520 /// from. 521 /// @return - 0 on success; nonzero otherwise 522 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, 523 const MCDisassembler *Dis) { 524 // Addresses in an MCInst are represented as five operands: 525 // 1. basereg (register) The R/M base, or (if there is a SIB) the 526 // SIB base 527 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified 528 // scale amount 529 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) 530 // the index (which is multiplied by the 531 // scale amount) 532 // 4. displacement (immediate) 0, or the displacement if there is one 533 // 5. segmentreg (register) x86_registerNONE for now, but could be set 534 // if we have segment overrides 535 536 MCOperand baseReg; 537 MCOperand scaleAmount; 538 MCOperand indexReg; 539 MCOperand displacement; 540 MCOperand segmentReg; 541 uint64_t pcrel = 0; 542 543 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 544 if (insn.sibBase != SIB_BASE_NONE) { 545 switch (insn.sibBase) { 546 default: 547 debug("Unexpected sibBase"); 548 return true; 549 #define ENTRY(x) \ 550 case SIB_BASE_##x: \ 551 baseReg = MCOperand::createReg(X86::x); break; 552 ALL_SIB_BASES 553 #undef ENTRY 554 } 555 } else { 556 baseReg = MCOperand::createReg(X86::NoRegister); 557 } 558 559 if (insn.sibIndex != SIB_INDEX_NONE) { 560 switch (insn.sibIndex) { 561 default: 562 debug("Unexpected sibIndex"); 563 return true; 564 #define ENTRY(x) \ 565 case SIB_INDEX_##x: \ 566 indexReg = MCOperand::createReg(X86::x); break; 567 EA_BASES_32BIT 568 EA_BASES_64BIT 569 REGS_XMM 570 REGS_YMM 571 REGS_ZMM 572 #undef ENTRY 573 } 574 } else { 575 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, 576 // but no index is used and modrm alone should have been enough. 577 // -No base register in 32-bit mode. In 64-bit mode this is used to 578 // avoid rip-relative addressing. 579 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a 580 // base always requires a SIB byte. 581 // -A scale other than 1 is used. 582 if (insn.sibScale != 1 || 583 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || 584 (insn.sibBase != SIB_BASE_NONE && 585 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && 586 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) { 587 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : 588 X86::RIZ); 589 } else 590 indexReg = MCOperand::createReg(X86::NoRegister); 591 } 592 593 scaleAmount = MCOperand::createImm(insn.sibScale); 594 } else { 595 switch (insn.eaBase) { 596 case EA_BASE_NONE: 597 if (insn.eaDisplacement == EA_DISP_NONE) { 598 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); 599 return true; 600 } 601 if (insn.mode == MODE_64BIT){ 602 pcrel = insn.startLocation + 603 insn.displacementOffset + insn.displacementSize; 604 tryAddingPcLoadReferenceComment(insn.startLocation + 605 insn.displacementOffset, 606 insn.displacement + pcrel, Dis); 607 // Section 2.2.1.6 608 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : 609 X86::RIP); 610 } 611 else 612 baseReg = MCOperand::createReg(X86::NoRegister); 613 614 indexReg = MCOperand::createReg(X86::NoRegister); 615 break; 616 case EA_BASE_BX_SI: 617 baseReg = MCOperand::createReg(X86::BX); 618 indexReg = MCOperand::createReg(X86::SI); 619 break; 620 case EA_BASE_BX_DI: 621 baseReg = MCOperand::createReg(X86::BX); 622 indexReg = MCOperand::createReg(X86::DI); 623 break; 624 case EA_BASE_BP_SI: 625 baseReg = MCOperand::createReg(X86::BP); 626 indexReg = MCOperand::createReg(X86::SI); 627 break; 628 case EA_BASE_BP_DI: 629 baseReg = MCOperand::createReg(X86::BP); 630 indexReg = MCOperand::createReg(X86::DI); 631 break; 632 default: 633 indexReg = MCOperand::createReg(X86::NoRegister); 634 switch (insn.eaBase) { 635 default: 636 debug("Unexpected eaBase"); 637 return true; 638 // Here, we will use the fill-ins defined above. However, 639 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and 640 // sib and sib64 were handled in the top-level if, so they're only 641 // placeholders to keep the compiler happy. 642 #define ENTRY(x) \ 643 case EA_BASE_##x: \ 644 baseReg = MCOperand::createReg(X86::x); break; 645 ALL_EA_BASES 646 #undef ENTRY 647 #define ENTRY(x) case EA_REG_##x: 648 ALL_REGS 649 #undef ENTRY 650 debug("A R/M memory operand may not be a register; " 651 "the base field must be a base."); 652 return true; 653 } 654 } 655 656 scaleAmount = MCOperand::createImm(1); 657 } 658 659 displacement = MCOperand::createImm(insn.displacement); 660 661 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 662 663 mcInst.addOperand(baseReg); 664 mcInst.addOperand(scaleAmount); 665 mcInst.addOperand(indexReg); 666 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, 667 insn.startLocation, insn.displacementOffset, 668 insn.displacementSize, mcInst, Dis)) 669 mcInst.addOperand(displacement); 670 mcInst.addOperand(segmentReg); 671 return false; 672 } 673 674 /// translateRM - Translates an operand stored in the R/M (and possibly SIB) 675 /// byte of an instruction to LLVM form, and appends it to an MCInst. 676 /// 677 /// @param mcInst - The MCInst to append to. 678 /// @param operand - The operand, as stored in the descriptor table. 679 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 680 /// from. 681 /// @return - 0 on success; nonzero otherwise 682 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, 683 InternalInstruction &insn, const MCDisassembler *Dis) { 684 switch (operand.type) { 685 default: 686 debug("Unexpected type for a R/M operand"); 687 return true; 688 case TYPE_R8: 689 case TYPE_R16: 690 case TYPE_R32: 691 case TYPE_R64: 692 case TYPE_Rv: 693 case TYPE_MM64: 694 case TYPE_XMM: 695 case TYPE_YMM: 696 case TYPE_ZMM: 697 case TYPE_VK_PAIR: 698 case TYPE_VK: 699 case TYPE_DEBUGREG: 700 case TYPE_CONTROLREG: 701 case TYPE_BNDR: 702 return translateRMRegister(mcInst, insn); 703 case TYPE_M: 704 case TYPE_MVSIBX: 705 case TYPE_MVSIBY: 706 case TYPE_MVSIBZ: 707 return translateRMMemory(mcInst, insn, Dis); 708 } 709 } 710 711 /// translateFPRegister - Translates a stack position on the FPU stack to its 712 /// LLVM form, and appends it to an MCInst. 713 /// 714 /// @param mcInst - The MCInst to append to. 715 /// @param stackPos - The stack position to translate. 716 static void translateFPRegister(MCInst &mcInst, 717 uint8_t stackPos) { 718 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); 719 } 720 721 /// translateMaskRegister - Translates a 3-bit mask register number to 722 /// LLVM form, and appends it to an MCInst. 723 /// 724 /// @param mcInst - The MCInst to append to. 725 /// @param maskRegNum - Number of mask register from 0 to 7. 726 /// @return - false on success; true otherwise. 727 static bool translateMaskRegister(MCInst &mcInst, 728 uint8_t maskRegNum) { 729 if (maskRegNum >= 8) { 730 debug("Invalid mask register number"); 731 return true; 732 } 733 734 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); 735 return false; 736 } 737 738 /// translateOperand - Translates an operand stored in an internal instruction 739 /// to LLVM's format and appends it to an MCInst. 740 /// 741 /// @param mcInst - The MCInst to append to. 742 /// @param operand - The operand, as stored in the descriptor table. 743 /// @param insn - The internal instruction. 744 /// @return - false on success; true otherwise. 745 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, 746 InternalInstruction &insn, 747 const MCDisassembler *Dis) { 748 switch (operand.encoding) { 749 default: 750 debug("Unhandled operand encoding during translation"); 751 return true; 752 case ENCODING_REG: 753 translateRegister(mcInst, insn.reg); 754 return false; 755 case ENCODING_WRITEMASK: 756 return translateMaskRegister(mcInst, insn.writemask); 757 CASE_ENCODING_RM: 758 CASE_ENCODING_VSIB: 759 return translateRM(mcInst, operand, insn, Dis); 760 case ENCODING_IB: 761 case ENCODING_IW: 762 case ENCODING_ID: 763 case ENCODING_IO: 764 case ENCODING_Iv: 765 case ENCODING_Ia: 766 translateImmediate(mcInst, 767 insn.immediates[insn.numImmediatesTranslated++], 768 operand, 769 insn, 770 Dis); 771 return false; 772 case ENCODING_IRC: 773 mcInst.addOperand(MCOperand::createImm(insn.RC)); 774 return false; 775 case ENCODING_SI: 776 return translateSrcIndex(mcInst, insn); 777 case ENCODING_DI: 778 return translateDstIndex(mcInst, insn); 779 case ENCODING_RB: 780 case ENCODING_RW: 781 case ENCODING_RD: 782 case ENCODING_RO: 783 case ENCODING_Rv: 784 translateRegister(mcInst, insn.opcodeRegister); 785 return false; 786 case ENCODING_CC: 787 mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); 788 return false; 789 case ENCODING_FP: 790 translateFPRegister(mcInst, insn.modRM & 7); 791 return false; 792 case ENCODING_VVVV: 793 translateRegister(mcInst, insn.vvvv); 794 return false; 795 case ENCODING_DUP: 796 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], 797 insn, Dis); 798 } 799 } 800 801 /// translateInstruction - Translates an internal instruction and all its 802 /// operands to an MCInst. 803 /// 804 /// @param mcInst - The MCInst to populate with the instruction's data. 805 /// @param insn - The internal instruction. 806 /// @return - false on success; true otherwise. 807 static bool translateInstruction(MCInst &mcInst, 808 InternalInstruction &insn, 809 const MCDisassembler *Dis) { 810 if (!insn.spec) { 811 debug("Instruction has no specification"); 812 return true; 813 } 814 815 mcInst.clear(); 816 mcInst.setOpcode(insn.instructionID); 817 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 818 // prefix bytes should be disassembled as xrelease and xacquire then set the 819 // opcode to those instead of the rep and repne opcodes. 820 if (insn.xAcquireRelease) { 821 if(mcInst.getOpcode() == X86::REP_PREFIX) 822 mcInst.setOpcode(X86::XRELEASE_PREFIX); 823 else if(mcInst.getOpcode() == X86::REPNE_PREFIX) 824 mcInst.setOpcode(X86::XACQUIRE_PREFIX); 825 } 826 827 insn.numImmediatesTranslated = 0; 828 829 for (const auto &Op : insn.operands) { 830 if (Op.encoding != ENCODING_NONE) { 831 if (translateOperand(mcInst, Op, insn, Dis)) { 832 return true; 833 } 834 } 835 } 836 837 return false; 838 } 839 840 static MCDisassembler *createX86Disassembler(const Target &T, 841 const MCSubtargetInfo &STI, 842 MCContext &Ctx) { 843 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); 844 return new X86GenericDisassembler(STI, Ctx, std::move(MII)); 845 } 846 847 extern "C" void LLVMInitializeX86Disassembler() { 848 // Register the disassembler. 849 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), 850 createX86Disassembler); 851 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), 852 createX86Disassembler); 853 } 854