xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP5:
154     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP6:
157     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   }
160 
161   switch (dec->modrm_type) {
162   default:
163     llvm_unreachable("Corrupt table!  Unknown modrm_type");
164     return 0;
165   case MODRM_ONEENTRY:
166     return modRMTable[dec->instructionIDs];
167   case MODRM_SPLITRM:
168     if (modFromModRM(modRM) == 0x3)
169       return modRMTable[dec->instructionIDs + 1];
170     return modRMTable[dec->instructionIDs];
171   case MODRM_SPLITREG:
172     if (modFromModRM(modRM) == 0x3)
173       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
174     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
175   case MODRM_SPLITMISC:
176     if (modFromModRM(modRM) == 0x3)
177       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
178     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
179   case MODRM_FULL:
180     return modRMTable[dec->instructionIDs + modRM];
181   }
182 }
183 
184 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
185   uint64_t offset = insn->readerCursor - insn->startLocation;
186   if (offset >= insn->bytes.size())
187     return true;
188   byte = insn->bytes[offset];
189   return false;
190 }
191 
192 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
193   auto r = insn->bytes;
194   uint64_t offset = insn->readerCursor - insn->startLocation;
195   if (offset + sizeof(T) > r.size())
196     return true;
197   ptr = support::endian::read<T>(&r[offset], support::little);
198   insn->readerCursor += sizeof(T);
199   return false;
200 }
201 
202 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
203   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
204 }
205 
206 // Consumes all of an instruction's prefix bytes, and marks the
207 // instruction as having them.  Also sets the instruction's default operand,
208 // address, and other relevant data sizes to report operands correctly.
209 //
210 // insn must not be empty.
211 static int readPrefixes(struct InternalInstruction *insn) {
212   bool isPrefix = true;
213   uint8_t byte = 0;
214   uint8_t nextByte;
215 
216   LLVM_DEBUG(dbgs() << "readPrefixes()");
217 
218   while (isPrefix) {
219     // If we fail reading prefixes, just stop here and let the opcode reader
220     // deal with it.
221     if (consume(insn, byte))
222       break;
223 
224     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
225     // break and let it be disassembled as a normal "instruction".
226     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
227       break;
228 
229     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
230       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
231       // met:
232       // - it is followed by a LOCK (0xf0) prefix
233       // - it is followed by an xchg instruction
234       // then it should be disassembled as a xacquire/xrelease not repne/rep.
235       if (((nextByte == 0xf0) ||
236            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
237         insn->xAcquireRelease = true;
238         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
239           break;
240       }
241       // Also if the byte is 0xf3, and the following condition is met:
242       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
243       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
244       // then it should be disassembled as an xrelease not rep.
245       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
246                            nextByte == 0xc6 || nextByte == 0xc7)) {
247         insn->xAcquireRelease = true;
248         break;
249       }
250       if (isREX(insn, nextByte)) {
251         uint8_t nnextByte;
252         // Go to REX prefix after the current one
253         if (consume(insn, nnextByte))
254           return -1;
255         // We should be able to read next byte after REX prefix
256         if (peek(insn, nnextByte))
257           return -1;
258         --insn->readerCursor;
259       }
260     }
261 
262     switch (byte) {
263     case 0xf0: // LOCK
264       insn->hasLockPrefix = true;
265       break;
266     case 0xf2: // REPNE/REPNZ
267     case 0xf3: { // REP or REPE/REPZ
268       uint8_t nextByte;
269       if (peek(insn, nextByte))
270         break;
271       // TODO:
272       //  1. There could be several 0x66
273       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
274       //      it's not mandatory prefix
275       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
276       //     0x0f exactly after it to be mandatory prefix
277       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
278         // The last of 0xf2 /0xf3 is mandatory prefix
279         insn->mandatoryPrefix = byte;
280       insn->repeatPrefix = byte;
281       break;
282     }
283     case 0x2e: // CS segment override -OR- Branch not taken
284       insn->segmentOverride = SEG_OVERRIDE_CS;
285       break;
286     case 0x36: // SS segment override -OR- Branch taken
287       insn->segmentOverride = SEG_OVERRIDE_SS;
288       break;
289     case 0x3e: // DS segment override
290       insn->segmentOverride = SEG_OVERRIDE_DS;
291       break;
292     case 0x26: // ES segment override
293       insn->segmentOverride = SEG_OVERRIDE_ES;
294       break;
295     case 0x64: // FS segment override
296       insn->segmentOverride = SEG_OVERRIDE_FS;
297       break;
298     case 0x65: // GS segment override
299       insn->segmentOverride = SEG_OVERRIDE_GS;
300       break;
301     case 0x66: { // Operand-size override {
302       uint8_t nextByte;
303       insn->hasOpSize = true;
304       if (peek(insn, nextByte))
305         break;
306       // 0x66 can't overwrite existing mandatory prefix and should be ignored
307       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
308         insn->mandatoryPrefix = byte;
309       break;
310     }
311     case 0x67: // Address-size override
312       insn->hasAdSize = true;
313       break;
314     default: // Not a prefix byte
315       isPrefix = false;
316       break;
317     }
318 
319     if (isPrefix)
320       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
321   }
322 
323   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
324 
325   if (byte == 0x62) {
326     uint8_t byte1, byte2;
327     if (consume(insn, byte1)) {
328       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
329       return -1;
330     }
331 
332     if (peek(insn, byte2)) {
333       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
334       return -1;
335     }
336 
337     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
338         ((~byte1 & 0x8) == 0x8) && ((byte2 & 0x4) == 0x4)) {
339       insn->vectorExtensionType = TYPE_EVEX;
340     } else {
341       --insn->readerCursor; // unconsume byte1
342       --insn->readerCursor; // unconsume byte
343     }
344 
345     if (insn->vectorExtensionType == TYPE_EVEX) {
346       insn->vectorExtensionPrefix[0] = byte;
347       insn->vectorExtensionPrefix[1] = byte1;
348       if (consume(insn, insn->vectorExtensionPrefix[2])) {
349         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
350         return -1;
351       }
352       if (consume(insn, insn->vectorExtensionPrefix[3])) {
353         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
354         return -1;
355       }
356 
357       // We simulate the REX prefix for simplicity's sake
358       if (insn->mode == MODE_64BIT) {
359         insn->rexPrefix = 0x40 |
360                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
361                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
362                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
363                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
364       }
365 
366       LLVM_DEBUG(
367           dbgs() << format(
368               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
369               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
370               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
371     }
372   } else if (byte == 0xc4) {
373     uint8_t byte1;
374     if (peek(insn, byte1)) {
375       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
376       return -1;
377     }
378 
379     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
380       insn->vectorExtensionType = TYPE_VEX_3B;
381     else
382       --insn->readerCursor;
383 
384     if (insn->vectorExtensionType == TYPE_VEX_3B) {
385       insn->vectorExtensionPrefix[0] = byte;
386       consume(insn, insn->vectorExtensionPrefix[1]);
387       consume(insn, insn->vectorExtensionPrefix[2]);
388 
389       // We simulate the REX prefix for simplicity's sake
390 
391       if (insn->mode == MODE_64BIT)
392         insn->rexPrefix = 0x40 |
393                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
394                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
395                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
396                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
397 
398       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
399                                   insn->vectorExtensionPrefix[0],
400                                   insn->vectorExtensionPrefix[1],
401                                   insn->vectorExtensionPrefix[2]));
402     }
403   } else if (byte == 0xc5) {
404     uint8_t byte1;
405     if (peek(insn, byte1)) {
406       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
407       return -1;
408     }
409 
410     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
411       insn->vectorExtensionType = TYPE_VEX_2B;
412     else
413       --insn->readerCursor;
414 
415     if (insn->vectorExtensionType == TYPE_VEX_2B) {
416       insn->vectorExtensionPrefix[0] = byte;
417       consume(insn, insn->vectorExtensionPrefix[1]);
418 
419       if (insn->mode == MODE_64BIT)
420         insn->rexPrefix =
421             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
422 
423       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
424       default:
425         break;
426       case VEX_PREFIX_66:
427         insn->hasOpSize = true;
428         break;
429       }
430 
431       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
432                                   insn->vectorExtensionPrefix[0],
433                                   insn->vectorExtensionPrefix[1]));
434     }
435   } else if (byte == 0x8f) {
436     uint8_t byte1;
437     if (peek(insn, byte1)) {
438       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
439       return -1;
440     }
441 
442     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
443       insn->vectorExtensionType = TYPE_XOP;
444     else
445       --insn->readerCursor;
446 
447     if (insn->vectorExtensionType == TYPE_XOP) {
448       insn->vectorExtensionPrefix[0] = byte;
449       consume(insn, insn->vectorExtensionPrefix[1]);
450       consume(insn, insn->vectorExtensionPrefix[2]);
451 
452       // We simulate the REX prefix for simplicity's sake
453 
454       if (insn->mode == MODE_64BIT)
455         insn->rexPrefix = 0x40 |
456                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
457                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
458                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
459                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
460 
461       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
462       default:
463         break;
464       case VEX_PREFIX_66:
465         insn->hasOpSize = true;
466         break;
467       }
468 
469       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
470                                   insn->vectorExtensionPrefix[0],
471                                   insn->vectorExtensionPrefix[1],
472                                   insn->vectorExtensionPrefix[2]));
473     }
474   } else if (isREX(insn, byte)) {
475     if (peek(insn, nextByte))
476       return -1;
477     insn->rexPrefix = byte;
478     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
479   } else
480     --insn->readerCursor;
481 
482   if (insn->mode == MODE_16BIT) {
483     insn->registerSize = (insn->hasOpSize ? 4 : 2);
484     insn->addressSize = (insn->hasAdSize ? 4 : 2);
485     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
486     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
487   } else if (insn->mode == MODE_32BIT) {
488     insn->registerSize = (insn->hasOpSize ? 2 : 4);
489     insn->addressSize = (insn->hasAdSize ? 2 : 4);
490     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
491     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
492   } else if (insn->mode == MODE_64BIT) {
493     insn->displacementSize = 4;
494     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
495       insn->registerSize = 8;
496       insn->addressSize = (insn->hasAdSize ? 4 : 8);
497       insn->immediateSize = 4;
498       insn->hasOpSize = false;
499     } else {
500       insn->registerSize = (insn->hasOpSize ? 2 : 4);
501       insn->addressSize = (insn->hasAdSize ? 4 : 8);
502       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
503     }
504   }
505 
506   return 0;
507 }
508 
509 // Consumes the SIB byte to determine addressing information.
510 static int readSIB(struct InternalInstruction *insn) {
511   SIBBase sibBaseBase = SIB_BASE_NONE;
512   uint8_t index, base;
513 
514   LLVM_DEBUG(dbgs() << "readSIB()");
515   switch (insn->addressSize) {
516   case 2:
517   default:
518     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
519   case 4:
520     insn->sibIndexBase = SIB_INDEX_EAX;
521     sibBaseBase = SIB_BASE_EAX;
522     break;
523   case 8:
524     insn->sibIndexBase = SIB_INDEX_RAX;
525     sibBaseBase = SIB_BASE_RAX;
526     break;
527   }
528 
529   if (consume(insn, insn->sib))
530     return -1;
531 
532   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
533 
534   if (index == 0x4) {
535     insn->sibIndex = SIB_INDEX_NONE;
536   } else {
537     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
538   }
539 
540   insn->sibScale = 1 << scaleFromSIB(insn->sib);
541 
542   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
543 
544   switch (base) {
545   case 0x5:
546   case 0xd:
547     switch (modFromModRM(insn->modRM)) {
548     case 0x0:
549       insn->eaDisplacement = EA_DISP_32;
550       insn->sibBase = SIB_BASE_NONE;
551       break;
552     case 0x1:
553       insn->eaDisplacement = EA_DISP_8;
554       insn->sibBase = (SIBBase)(sibBaseBase + base);
555       break;
556     case 0x2:
557       insn->eaDisplacement = EA_DISP_32;
558       insn->sibBase = (SIBBase)(sibBaseBase + base);
559       break;
560     default:
561       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
562     }
563     break;
564   default:
565     insn->sibBase = (SIBBase)(sibBaseBase + base);
566     break;
567   }
568 
569   return 0;
570 }
571 
572 static int readDisplacement(struct InternalInstruction *insn) {
573   int8_t d8;
574   int16_t d16;
575   int32_t d32;
576   LLVM_DEBUG(dbgs() << "readDisplacement()");
577 
578   insn->displacementOffset = insn->readerCursor - insn->startLocation;
579   switch (insn->eaDisplacement) {
580   case EA_DISP_NONE:
581     break;
582   case EA_DISP_8:
583     if (consume(insn, d8))
584       return -1;
585     insn->displacement = d8;
586     break;
587   case EA_DISP_16:
588     if (consume(insn, d16))
589       return -1;
590     insn->displacement = d16;
591     break;
592   case EA_DISP_32:
593     if (consume(insn, d32))
594       return -1;
595     insn->displacement = d32;
596     break;
597   }
598 
599   return 0;
600 }
601 
602 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
603 static int readModRM(struct InternalInstruction *insn) {
604   uint8_t mod, rm, reg, evexrm;
605   LLVM_DEBUG(dbgs() << "readModRM()");
606 
607   if (insn->consumedModRM)
608     return 0;
609 
610   if (consume(insn, insn->modRM))
611     return -1;
612   insn->consumedModRM = true;
613 
614   mod = modFromModRM(insn->modRM);
615   rm = rmFromModRM(insn->modRM);
616   reg = regFromModRM(insn->modRM);
617 
618   // This goes by insn->registerSize to pick the correct register, which messes
619   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
620   // fixupReg().
621   switch (insn->registerSize) {
622   case 2:
623     insn->regBase = MODRM_REG_AX;
624     insn->eaRegBase = EA_REG_AX;
625     break;
626   case 4:
627     insn->regBase = MODRM_REG_EAX;
628     insn->eaRegBase = EA_REG_EAX;
629     break;
630   case 8:
631     insn->regBase = MODRM_REG_RAX;
632     insn->eaRegBase = EA_REG_RAX;
633     break;
634   }
635 
636   reg |= rFromREX(insn->rexPrefix) << 3;
637   rm |= bFromREX(insn->rexPrefix) << 3;
638 
639   evexrm = 0;
640   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
641     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
642     evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
643   }
644 
645   insn->reg = (Reg)(insn->regBase + reg);
646 
647   switch (insn->addressSize) {
648   case 2: {
649     EABase eaBaseBase = EA_BASE_BX_SI;
650 
651     switch (mod) {
652     case 0x0:
653       if (rm == 0x6) {
654         insn->eaBase = EA_BASE_NONE;
655         insn->eaDisplacement = EA_DISP_16;
656         if (readDisplacement(insn))
657           return -1;
658       } else {
659         insn->eaBase = (EABase)(eaBaseBase + rm);
660         insn->eaDisplacement = EA_DISP_NONE;
661       }
662       break;
663     case 0x1:
664       insn->eaBase = (EABase)(eaBaseBase + rm);
665       insn->eaDisplacement = EA_DISP_8;
666       insn->displacementSize = 1;
667       if (readDisplacement(insn))
668         return -1;
669       break;
670     case 0x2:
671       insn->eaBase = (EABase)(eaBaseBase + rm);
672       insn->eaDisplacement = EA_DISP_16;
673       if (readDisplacement(insn))
674         return -1;
675       break;
676     case 0x3:
677       insn->eaBase = (EABase)(insn->eaRegBase + rm);
678       if (readDisplacement(insn))
679         return -1;
680       break;
681     }
682     break;
683   }
684   case 4:
685   case 8: {
686     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
687 
688     switch (mod) {
689     case 0x0:
690       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
691       // In determining whether RIP-relative mode is used (rm=5),
692       // or whether a SIB byte is present (rm=4),
693       // the extension bits (REX.b and EVEX.x) are ignored.
694       switch (rm & 7) {
695       case 0x4: // SIB byte is present
696         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
697         if (readSIB(insn) || readDisplacement(insn))
698           return -1;
699         break;
700       case 0x5: // RIP-relative
701         insn->eaBase = EA_BASE_NONE;
702         insn->eaDisplacement = EA_DISP_32;
703         if (readDisplacement(insn))
704           return -1;
705         break;
706       default:
707         insn->eaBase = (EABase)(eaBaseBase + rm);
708         break;
709       }
710       break;
711     case 0x1:
712       insn->displacementSize = 1;
713       [[fallthrough]];
714     case 0x2:
715       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
716       switch (rm & 7) {
717       case 0x4: // SIB byte is present
718         insn->eaBase = EA_BASE_sib;
719         if (readSIB(insn) || readDisplacement(insn))
720           return -1;
721         break;
722       default:
723         insn->eaBase = (EABase)(eaBaseBase + rm);
724         if (readDisplacement(insn))
725           return -1;
726         break;
727       }
728       break;
729     case 0x3:
730       insn->eaDisplacement = EA_DISP_NONE;
731       insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
732       break;
733     }
734     break;
735   }
736   } // switch (insn->addressSize)
737 
738   return 0;
739 }
740 
741 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask)                           \
742   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
743                        uint8_t index, uint8_t *valid) {                        \
744     *valid = 1;                                                                \
745     switch (type) {                                                            \
746     default:                                                                   \
747       debug("Unhandled register type");                                        \
748       *valid = 0;                                                              \
749       return 0;                                                                \
750     case TYPE_Rv:                                                              \
751       return base + index;                                                     \
752     case TYPE_R8:                                                              \
753       index &= mask;                                                           \
754       if (index > 0xf)                                                         \
755         *valid = 0;                                                            \
756       if (insn->rexPrefix && index >= 4 && index <= 7) {                       \
757         return prefix##_SPL + (index - 4);                                     \
758       } else {                                                                 \
759         return prefix##_AL + index;                                            \
760       }                                                                        \
761     case TYPE_R16:                                                             \
762       index &= mask;                                                           \
763       if (index > 0xf)                                                         \
764         *valid = 0;                                                            \
765       return prefix##_AX + index;                                              \
766     case TYPE_R32:                                                             \
767       index &= mask;                                                           \
768       if (index > 0xf)                                                         \
769         *valid = 0;                                                            \
770       return prefix##_EAX + index;                                             \
771     case TYPE_R64:                                                             \
772       index &= mask;                                                           \
773       if (index > 0xf)                                                         \
774         *valid = 0;                                                            \
775       return prefix##_RAX + index;                                             \
776     case TYPE_ZMM:                                                             \
777       return prefix##_ZMM0 + index;                                            \
778     case TYPE_YMM:                                                             \
779       return prefix##_YMM0 + index;                                            \
780     case TYPE_XMM:                                                             \
781       return prefix##_XMM0 + index;                                            \
782     case TYPE_TMM:                                                             \
783       if (index > 7)                                                           \
784         *valid = 0;                                                            \
785       return prefix##_TMM0 + index;                                            \
786     case TYPE_VK:                                                              \
787       index &= 0xf;                                                            \
788       if (index > 7)                                                           \
789         *valid = 0;                                                            \
790       return prefix##_K0 + index;                                              \
791     case TYPE_VK_PAIR:                                                         \
792       if (index > 7)                                                           \
793         *valid = 0;                                                            \
794       return prefix##_K0_K1 + (index / 2);                                     \
795     case TYPE_MM64:                                                            \
796       return prefix##_MM0 + (index & 0x7);                                     \
797     case TYPE_SEGMENTREG:                                                      \
798       if ((index & 7) > 5)                                                     \
799         *valid = 0;                                                            \
800       return prefix##_ES + (index & 7);                                        \
801     case TYPE_DEBUGREG:                                                        \
802       return prefix##_DR0 + index;                                             \
803     case TYPE_CONTROLREG:                                                      \
804       return prefix##_CR0 + index;                                             \
805     case TYPE_MVSIBX:                                                          \
806       return prefix##_XMM0 + index;                                            \
807     case TYPE_MVSIBY:                                                          \
808       return prefix##_YMM0 + index;                                            \
809     case TYPE_MVSIBZ:                                                          \
810       return prefix##_ZMM0 + index;                                            \
811     }                                                                          \
812   }
813 
814 // Consult an operand type to determine the meaning of the reg or R/M field. If
815 // the operand is an XMM operand, for example, an operand would be XMM0 instead
816 // of AX, which readModRM() would otherwise misinterpret it as.
817 //
818 // @param insn  - The instruction containing the operand.
819 // @param type  - The operand type.
820 // @param index - The existing value of the field as reported by readModRM().
821 // @param valid - The address of a uint8_t.  The target is set to 1 if the
822 //                field is valid for the register class; 0 if not.
823 // @return      - The proper value.
824 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
825 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
826 
827 // Consult an operand specifier to determine which of the fixup*Value functions
828 // to use in correcting readModRM()'ss interpretation.
829 //
830 // @param insn  - See fixup*Value().
831 // @param op    - The operand specifier.
832 // @return      - 0 if fixup was successful; -1 if the register returned was
833 //                invalid for its class.
834 static int fixupReg(struct InternalInstruction *insn,
835                     const struct OperandSpecifier *op) {
836   uint8_t valid;
837   LLVM_DEBUG(dbgs() << "fixupReg()");
838 
839   switch ((OperandEncoding)op->encoding) {
840   default:
841     debug("Expected a REG or R/M encoding in fixupReg");
842     return -1;
843   case ENCODING_VVVV:
844     insn->vvvv =
845         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
846     if (!valid)
847       return -1;
848     break;
849   case ENCODING_REG:
850     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
851                                    insn->reg - insn->regBase, &valid);
852     if (!valid)
853       return -1;
854     break;
855   case ENCODING_SIB:
856   CASE_ENCODING_RM:
857     if (insn->eaBase >= insn->eaRegBase) {
858       insn->eaBase = (EABase)fixupRMValue(
859           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
860       if (!valid)
861         return -1;
862     }
863     break;
864   }
865 
866   return 0;
867 }
868 
869 // Read the opcode (except the ModR/M byte in the case of extended or escape
870 // opcodes).
871 static bool readOpcode(struct InternalInstruction *insn) {
872   uint8_t current;
873   LLVM_DEBUG(dbgs() << "readOpcode()");
874 
875   insn->opcodeType = ONEBYTE;
876   if (insn->vectorExtensionType == TYPE_EVEX) {
877     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
878     default:
879       LLVM_DEBUG(
880           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
881                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
882       return true;
883     case VEX_LOB_0F:
884       insn->opcodeType = TWOBYTE;
885       return consume(insn, insn->opcode);
886     case VEX_LOB_0F38:
887       insn->opcodeType = THREEBYTE_38;
888       return consume(insn, insn->opcode);
889     case VEX_LOB_0F3A:
890       insn->opcodeType = THREEBYTE_3A;
891       return consume(insn, insn->opcode);
892     case VEX_LOB_MAP5:
893       insn->opcodeType = MAP5;
894       return consume(insn, insn->opcode);
895     case VEX_LOB_MAP6:
896       insn->opcodeType = MAP6;
897       return consume(insn, insn->opcode);
898     }
899   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
900     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
901     default:
902       LLVM_DEBUG(
903           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
904                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
905       return true;
906     case VEX_LOB_0F:
907       insn->opcodeType = TWOBYTE;
908       return consume(insn, insn->opcode);
909     case VEX_LOB_0F38:
910       insn->opcodeType = THREEBYTE_38;
911       return consume(insn, insn->opcode);
912     case VEX_LOB_0F3A:
913       insn->opcodeType = THREEBYTE_3A;
914       return consume(insn, insn->opcode);
915     case VEX_LOB_MAP5:
916       insn->opcodeType = MAP5;
917       return consume(insn, insn->opcode);
918     case VEX_LOB_MAP6:
919       insn->opcodeType = MAP6;
920       return consume(insn, insn->opcode);
921     }
922   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
923     insn->opcodeType = TWOBYTE;
924     return consume(insn, insn->opcode);
925   } else if (insn->vectorExtensionType == TYPE_XOP) {
926     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
927     default:
928       LLVM_DEBUG(
929           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
930                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
931       return true;
932     case XOP_MAP_SELECT_8:
933       insn->opcodeType = XOP8_MAP;
934       return consume(insn, insn->opcode);
935     case XOP_MAP_SELECT_9:
936       insn->opcodeType = XOP9_MAP;
937       return consume(insn, insn->opcode);
938     case XOP_MAP_SELECT_A:
939       insn->opcodeType = XOPA_MAP;
940       return consume(insn, insn->opcode);
941     }
942   }
943 
944   if (consume(insn, current))
945     return true;
946 
947   if (current == 0x0f) {
948     LLVM_DEBUG(
949         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
950     if (consume(insn, current))
951       return true;
952 
953     if (current == 0x38) {
954       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
955                                   current));
956       if (consume(insn, current))
957         return true;
958 
959       insn->opcodeType = THREEBYTE_38;
960     } else if (current == 0x3a) {
961       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
962                                   current));
963       if (consume(insn, current))
964         return true;
965 
966       insn->opcodeType = THREEBYTE_3A;
967     } else if (current == 0x0f) {
968       LLVM_DEBUG(
969           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
970 
971       // Consume operands before the opcode to comply with the 3DNow encoding
972       if (readModRM(insn))
973         return true;
974 
975       if (consume(insn, current))
976         return true;
977 
978       insn->opcodeType = THREEDNOW_MAP;
979     } else {
980       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
981       insn->opcodeType = TWOBYTE;
982     }
983   } else if (insn->mandatoryPrefix)
984     // The opcode with mandatory prefix must start with opcode escape.
985     // If not it's legacy repeat prefix
986     insn->mandatoryPrefix = 0;
987 
988   // At this point we have consumed the full opcode.
989   // Anything we consume from here on must be unconsumed.
990   insn->opcode = current;
991 
992   return false;
993 }
994 
995 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
996 static bool is16BitEquivalent(const char *orig, const char *equiv) {
997   for (int i = 0;; i++) {
998     if (orig[i] == '\0' && equiv[i] == '\0')
999       return true;
1000     if (orig[i] == '\0' || equiv[i] == '\0')
1001       return false;
1002     if (orig[i] != equiv[i]) {
1003       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1004         continue;
1005       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1006         continue;
1007       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1008         continue;
1009       return false;
1010     }
1011   }
1012 }
1013 
1014 // Determine whether this instruction is a 64-bit instruction.
1015 static bool is64Bit(const char *name) {
1016   for (int i = 0;; ++i) {
1017     if (name[i] == '\0')
1018       return false;
1019     if (name[i] == '6' && name[i + 1] == '4')
1020       return true;
1021   }
1022 }
1023 
1024 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1025 // for extended and escape opcodes, and using a supplied attribute mask.
1026 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1027                                         struct InternalInstruction *insn,
1028                                         uint16_t attrMask) {
1029   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1030   const ContextDecision *decision;
1031   switch (insn->opcodeType) {
1032   case ONEBYTE:
1033     decision = &ONEBYTE_SYM;
1034     break;
1035   case TWOBYTE:
1036     decision = &TWOBYTE_SYM;
1037     break;
1038   case THREEBYTE_38:
1039     decision = &THREEBYTE38_SYM;
1040     break;
1041   case THREEBYTE_3A:
1042     decision = &THREEBYTE3A_SYM;
1043     break;
1044   case XOP8_MAP:
1045     decision = &XOP8_MAP_SYM;
1046     break;
1047   case XOP9_MAP:
1048     decision = &XOP9_MAP_SYM;
1049     break;
1050   case XOPA_MAP:
1051     decision = &XOPA_MAP_SYM;
1052     break;
1053   case THREEDNOW_MAP:
1054     decision = &THREEDNOW_MAP_SYM;
1055     break;
1056   case MAP5:
1057     decision = &MAP5_SYM;
1058     break;
1059   case MAP6:
1060     decision = &MAP6_SYM;
1061     break;
1062   }
1063 
1064   if (decision->opcodeDecisions[insnCtx]
1065           .modRMDecisions[insn->opcode]
1066           .modrm_type != MODRM_ONEENTRY) {
1067     if (readModRM(insn))
1068       return -1;
1069     *instructionID =
1070         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1071   } else {
1072     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1073   }
1074 
1075   return 0;
1076 }
1077 
1078 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1079 // for extended and escape opcodes. Determines the attributes and context for
1080 // the instruction before doing so.
1081 static int getInstructionID(struct InternalInstruction *insn,
1082                             const MCInstrInfo *mii) {
1083   uint16_t attrMask;
1084   uint16_t instructionID;
1085 
1086   LLVM_DEBUG(dbgs() << "getID()");
1087 
1088   attrMask = ATTR_NONE;
1089 
1090   if (insn->mode == MODE_64BIT)
1091     attrMask |= ATTR_64BIT;
1092 
1093   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1094     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1095 
1096     if (insn->vectorExtensionType == TYPE_EVEX) {
1097       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1098       case VEX_PREFIX_66:
1099         attrMask |= ATTR_OPSIZE;
1100         break;
1101       case VEX_PREFIX_F3:
1102         attrMask |= ATTR_XS;
1103         break;
1104       case VEX_PREFIX_F2:
1105         attrMask |= ATTR_XD;
1106         break;
1107       }
1108 
1109       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1110         attrMask |= ATTR_EVEXKZ;
1111       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1112         attrMask |= ATTR_EVEXB;
1113       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1114         attrMask |= ATTR_EVEXK;
1115       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1116         attrMask |= ATTR_VEXL;
1117       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1118         attrMask |= ATTR_EVEXL2;
1119     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1120       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1121       case VEX_PREFIX_66:
1122         attrMask |= ATTR_OPSIZE;
1123         break;
1124       case VEX_PREFIX_F3:
1125         attrMask |= ATTR_XS;
1126         break;
1127       case VEX_PREFIX_F2:
1128         attrMask |= ATTR_XD;
1129         break;
1130       }
1131 
1132       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1133         attrMask |= ATTR_VEXL;
1134     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1135       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1136       case VEX_PREFIX_66:
1137         attrMask |= ATTR_OPSIZE;
1138         if (insn->hasAdSize)
1139           attrMask |= ATTR_ADSIZE;
1140         break;
1141       case VEX_PREFIX_F3:
1142         attrMask |= ATTR_XS;
1143         break;
1144       case VEX_PREFIX_F2:
1145         attrMask |= ATTR_XD;
1146         break;
1147       }
1148 
1149       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1150         attrMask |= ATTR_VEXL;
1151     } else if (insn->vectorExtensionType == TYPE_XOP) {
1152       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1153       case VEX_PREFIX_66:
1154         attrMask |= ATTR_OPSIZE;
1155         break;
1156       case VEX_PREFIX_F3:
1157         attrMask |= ATTR_XS;
1158         break;
1159       case VEX_PREFIX_F2:
1160         attrMask |= ATTR_XD;
1161         break;
1162       }
1163 
1164       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1165         attrMask |= ATTR_VEXL;
1166     } else {
1167       return -1;
1168     }
1169   } else if (!insn->mandatoryPrefix) {
1170     // If we don't have mandatory prefix we should use legacy prefixes here
1171     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1172       attrMask |= ATTR_OPSIZE;
1173     if (insn->hasAdSize)
1174       attrMask |= ATTR_ADSIZE;
1175     if (insn->opcodeType == ONEBYTE) {
1176       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1177         // Special support for PAUSE
1178         attrMask |= ATTR_XS;
1179     } else {
1180       if (insn->repeatPrefix == 0xf2)
1181         attrMask |= ATTR_XD;
1182       else if (insn->repeatPrefix == 0xf3)
1183         attrMask |= ATTR_XS;
1184     }
1185   } else {
1186     switch (insn->mandatoryPrefix) {
1187     case 0xf2:
1188       attrMask |= ATTR_XD;
1189       break;
1190     case 0xf3:
1191       attrMask |= ATTR_XS;
1192       break;
1193     case 0x66:
1194       if (insn->mode != MODE_16BIT)
1195         attrMask |= ATTR_OPSIZE;
1196       if (insn->hasAdSize)
1197         attrMask |= ATTR_ADSIZE;
1198       break;
1199     case 0x67:
1200       attrMask |= ATTR_ADSIZE;
1201       break;
1202     }
1203   }
1204 
1205   if (insn->rexPrefix & 0x08) {
1206     attrMask |= ATTR_REXW;
1207     attrMask &= ~ATTR_ADSIZE;
1208   }
1209 
1210   if (insn->mode == MODE_16BIT) {
1211     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1212     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1213     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1214       attrMask ^= ATTR_ADSIZE;
1215     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1216     // prefix isn't present, we need to force the opsize attribute since the
1217     // prefix is inverted relative to 32-bit mode.
1218     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1219         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1220       attrMask |= ATTR_OPSIZE;
1221 
1222     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1223         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1224       attrMask |= ATTR_OPSIZE;
1225   }
1226 
1227 
1228   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1229     return -1;
1230 
1231   // The following clauses compensate for limitations of the tables.
1232 
1233   if (insn->mode != MODE_64BIT &&
1234       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1235     // The tables can't distinquish between cases where the W-bit is used to
1236     // select register size and cases where its a required part of the opcode.
1237     if ((insn->vectorExtensionType == TYPE_EVEX &&
1238          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1239         (insn->vectorExtensionType == TYPE_VEX_3B &&
1240          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1241         (insn->vectorExtensionType == TYPE_XOP &&
1242          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1243 
1244       uint16_t instructionIDWithREXW;
1245       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1246                                        attrMask | ATTR_REXW)) {
1247         insn->instructionID = instructionID;
1248         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1249         return 0;
1250       }
1251 
1252       auto SpecName = mii->getName(instructionIDWithREXW);
1253       // If not a 64-bit instruction. Switch the opcode.
1254       if (!is64Bit(SpecName.data())) {
1255         insn->instructionID = instructionIDWithREXW;
1256         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1257         return 0;
1258       }
1259     }
1260   }
1261 
1262   // Absolute moves, umonitor, and movdir64b need special handling.
1263   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1264   //  inverted w.r.t.
1265   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1266   //  any position.
1267   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1268       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1269       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1270     // Make sure we observed the prefixes in any position.
1271     if (insn->hasAdSize)
1272       attrMask |= ATTR_ADSIZE;
1273     if (insn->hasOpSize)
1274       attrMask |= ATTR_OPSIZE;
1275 
1276     // In 16-bit, invert the attributes.
1277     if (insn->mode == MODE_16BIT) {
1278       attrMask ^= ATTR_ADSIZE;
1279 
1280       // The OpSize attribute is only valid with the absolute moves.
1281       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1282         attrMask ^= ATTR_OPSIZE;
1283     }
1284 
1285     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1286       return -1;
1287 
1288     insn->instructionID = instructionID;
1289     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1290     return 0;
1291   }
1292 
1293   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1294       !(attrMask & ATTR_OPSIZE)) {
1295     // The instruction tables make no distinction between instructions that
1296     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1297     // particular spot (i.e., many MMX operations). In general we're
1298     // conservative, but in the specific case where OpSize is present but not in
1299     // the right place we check if there's a 16-bit operation.
1300     const struct InstructionSpecifier *spec;
1301     uint16_t instructionIDWithOpsize;
1302     llvm::StringRef specName, specWithOpSizeName;
1303 
1304     spec = &INSTRUCTIONS_SYM[instructionID];
1305 
1306     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1307                                      attrMask | ATTR_OPSIZE)) {
1308       // ModRM required with OpSize but not present. Give up and return the
1309       // version without OpSize set.
1310       insn->instructionID = instructionID;
1311       insn->spec = spec;
1312       return 0;
1313     }
1314 
1315     specName = mii->getName(instructionID);
1316     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1317 
1318     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1319         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1320       insn->instructionID = instructionIDWithOpsize;
1321       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1322     } else {
1323       insn->instructionID = instructionID;
1324       insn->spec = spec;
1325     }
1326     return 0;
1327   }
1328 
1329   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1330       insn->rexPrefix & 0x01) {
1331     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1332     // as XCHG %r8, %eax.
1333     const struct InstructionSpecifier *spec;
1334     uint16_t instructionIDWithNewOpcode;
1335     const struct InstructionSpecifier *specWithNewOpcode;
1336 
1337     spec = &INSTRUCTIONS_SYM[instructionID];
1338 
1339     // Borrow opcode from one of the other XCHGar opcodes
1340     insn->opcode = 0x91;
1341 
1342     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1343                                      attrMask)) {
1344       insn->opcode = 0x90;
1345 
1346       insn->instructionID = instructionID;
1347       insn->spec = spec;
1348       return 0;
1349     }
1350 
1351     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1352 
1353     // Change back
1354     insn->opcode = 0x90;
1355 
1356     insn->instructionID = instructionIDWithNewOpcode;
1357     insn->spec = specWithNewOpcode;
1358 
1359     return 0;
1360   }
1361 
1362   insn->instructionID = instructionID;
1363   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1364 
1365   return 0;
1366 }
1367 
1368 // Read an operand from the opcode field of an instruction and interprets it
1369 // appropriately given the operand width. Handles AddRegFrm instructions.
1370 //
1371 // @param insn  - the instruction whose opcode field is to be read.
1372 // @param size  - The width (in bytes) of the register being specified.
1373 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1374 //                RAX.
1375 // @return      - 0 on success; nonzero otherwise.
1376 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1377   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1378 
1379   if (size == 0)
1380     size = insn->registerSize;
1381 
1382   switch (size) {
1383   case 1:
1384     insn->opcodeRegister = (Reg)(
1385         MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1386     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1387         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1388       insn->opcodeRegister =
1389           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1390     }
1391 
1392     break;
1393   case 2:
1394     insn->opcodeRegister = (Reg)(
1395         MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1396     break;
1397   case 4:
1398     insn->opcodeRegister =
1399         (Reg)(MODRM_REG_EAX +
1400               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1401     break;
1402   case 8:
1403     insn->opcodeRegister =
1404         (Reg)(MODRM_REG_RAX +
1405               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1406     break;
1407   }
1408 
1409   return 0;
1410 }
1411 
1412 // Consume an immediate operand from an instruction, given the desired operand
1413 // size.
1414 //
1415 // @param insn  - The instruction whose operand is to be read.
1416 // @param size  - The width (in bytes) of the operand.
1417 // @return      - 0 if the immediate was successfully consumed; nonzero
1418 //                otherwise.
1419 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1420   uint8_t imm8;
1421   uint16_t imm16;
1422   uint32_t imm32;
1423   uint64_t imm64;
1424 
1425   LLVM_DEBUG(dbgs() << "readImmediate()");
1426 
1427   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1428 
1429   insn->immediateSize = size;
1430   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1431 
1432   switch (size) {
1433   case 1:
1434     if (consume(insn, imm8))
1435       return -1;
1436     insn->immediates[insn->numImmediatesConsumed] = imm8;
1437     break;
1438   case 2:
1439     if (consume(insn, imm16))
1440       return -1;
1441     insn->immediates[insn->numImmediatesConsumed] = imm16;
1442     break;
1443   case 4:
1444     if (consume(insn, imm32))
1445       return -1;
1446     insn->immediates[insn->numImmediatesConsumed] = imm32;
1447     break;
1448   case 8:
1449     if (consume(insn, imm64))
1450       return -1;
1451     insn->immediates[insn->numImmediatesConsumed] = imm64;
1452     break;
1453   default:
1454     llvm_unreachable("invalid size");
1455   }
1456 
1457   insn->numImmediatesConsumed++;
1458 
1459   return 0;
1460 }
1461 
1462 // Consume vvvv from an instruction if it has a VEX prefix.
1463 static int readVVVV(struct InternalInstruction *insn) {
1464   LLVM_DEBUG(dbgs() << "readVVVV()");
1465 
1466   int vvvv;
1467   if (insn->vectorExtensionType == TYPE_EVEX)
1468     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1469             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1470   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1471     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1472   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1473     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1474   else if (insn->vectorExtensionType == TYPE_XOP)
1475     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1476   else
1477     return -1;
1478 
1479   if (insn->mode != MODE_64BIT)
1480     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1481 
1482   insn->vvvv = static_cast<Reg>(vvvv);
1483   return 0;
1484 }
1485 
1486 // Read an mask register from the opcode field of an instruction.
1487 //
1488 // @param insn    - The instruction whose opcode field is to be read.
1489 // @return        - 0 on success; nonzero otherwise.
1490 static int readMaskRegister(struct InternalInstruction *insn) {
1491   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1492 
1493   if (insn->vectorExtensionType != TYPE_EVEX)
1494     return -1;
1495 
1496   insn->writemask =
1497       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1498   return 0;
1499 }
1500 
1501 // Consults the specifier for an instruction and consumes all
1502 // operands for that instruction, interpreting them as it goes.
1503 static int readOperands(struct InternalInstruction *insn) {
1504   int hasVVVV, needVVVV;
1505   int sawRegImm = 0;
1506 
1507   LLVM_DEBUG(dbgs() << "readOperands()");
1508 
1509   // If non-zero vvvv specified, make sure one of the operands uses it.
1510   hasVVVV = !readVVVV(insn);
1511   needVVVV = hasVVVV && (insn->vvvv != 0);
1512 
1513   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1514     switch (Op.encoding) {
1515     case ENCODING_NONE:
1516     case ENCODING_SI:
1517     case ENCODING_DI:
1518       break;
1519     CASE_ENCODING_VSIB:
1520       // VSIB can use the V2 bit so check only the other bits.
1521       if (needVVVV)
1522         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1523       if (readModRM(insn))
1524         return -1;
1525 
1526       // Reject if SIB wasn't used.
1527       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1528         return -1;
1529 
1530       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1531       if (insn->sibIndex == SIB_INDEX_NONE)
1532         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1533 
1534       // If EVEX.v2 is set this is one of the 16-31 registers.
1535       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1536           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1537         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1538 
1539       // Adjust the index register to the correct size.
1540       switch ((OperandType)Op.type) {
1541       default:
1542         debug("Unhandled VSIB index type");
1543         return -1;
1544       case TYPE_MVSIBX:
1545         insn->sibIndex =
1546             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1547         break;
1548       case TYPE_MVSIBY:
1549         insn->sibIndex =
1550             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1551         break;
1552       case TYPE_MVSIBZ:
1553         insn->sibIndex =
1554             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1555         break;
1556       }
1557 
1558       // Apply the AVX512 compressed displacement scaling factor.
1559       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1560         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1561       break;
1562     case ENCODING_SIB:
1563       // Reject if SIB wasn't used.
1564       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1565         return -1;
1566       if (readModRM(insn))
1567         return -1;
1568       if (fixupReg(insn, &Op))
1569         return -1;
1570       break;
1571     case ENCODING_REG:
1572     CASE_ENCODING_RM:
1573       if (readModRM(insn))
1574         return -1;
1575       if (fixupReg(insn, &Op))
1576         return -1;
1577       // Apply the AVX512 compressed displacement scaling factor.
1578       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1579         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1580       break;
1581     case ENCODING_IB:
1582       if (sawRegImm) {
1583         // Saw a register immediate so don't read again and instead split the
1584         // previous immediate. FIXME: This is a hack.
1585         insn->immediates[insn->numImmediatesConsumed] =
1586             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1587         ++insn->numImmediatesConsumed;
1588         break;
1589       }
1590       if (readImmediate(insn, 1))
1591         return -1;
1592       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1593         sawRegImm = 1;
1594       break;
1595     case ENCODING_IW:
1596       if (readImmediate(insn, 2))
1597         return -1;
1598       break;
1599     case ENCODING_ID:
1600       if (readImmediate(insn, 4))
1601         return -1;
1602       break;
1603     case ENCODING_IO:
1604       if (readImmediate(insn, 8))
1605         return -1;
1606       break;
1607     case ENCODING_Iv:
1608       if (readImmediate(insn, insn->immediateSize))
1609         return -1;
1610       break;
1611     case ENCODING_Ia:
1612       if (readImmediate(insn, insn->addressSize))
1613         return -1;
1614       break;
1615     case ENCODING_IRC:
1616       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1617                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1618       break;
1619     case ENCODING_RB:
1620       if (readOpcodeRegister(insn, 1))
1621         return -1;
1622       break;
1623     case ENCODING_RW:
1624       if (readOpcodeRegister(insn, 2))
1625         return -1;
1626       break;
1627     case ENCODING_RD:
1628       if (readOpcodeRegister(insn, 4))
1629         return -1;
1630       break;
1631     case ENCODING_RO:
1632       if (readOpcodeRegister(insn, 8))
1633         return -1;
1634       break;
1635     case ENCODING_Rv:
1636       if (readOpcodeRegister(insn, 0))
1637         return -1;
1638       break;
1639     case ENCODING_CC:
1640       insn->immediates[1] = insn->opcode & 0xf;
1641       break;
1642     case ENCODING_FP:
1643       break;
1644     case ENCODING_VVVV:
1645       needVVVV = 0; // Mark that we have found a VVVV operand.
1646       if (!hasVVVV)
1647         return -1;
1648       if (insn->mode != MODE_64BIT)
1649         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1650       if (fixupReg(insn, &Op))
1651         return -1;
1652       break;
1653     case ENCODING_WRITEMASK:
1654       if (readMaskRegister(insn))
1655         return -1;
1656       break;
1657     case ENCODING_DUP:
1658       break;
1659     default:
1660       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1661       return -1;
1662     }
1663   }
1664 
1665   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1666   if (needVVVV)
1667     return -1;
1668 
1669   return 0;
1670 }
1671 
1672 namespace llvm {
1673 
1674 // Fill-ins to make the compiler happy. These constants are never actually
1675 // assigned; they are just filler to make an automatically-generated switch
1676 // statement work.
1677 namespace X86 {
1678   enum {
1679     BX_SI = 500,
1680     BX_DI = 501,
1681     BP_SI = 502,
1682     BP_DI = 503,
1683     sib   = 504,
1684     sib64 = 505
1685   };
1686 } // namespace X86
1687 
1688 } // namespace llvm
1689 
1690 static bool translateInstruction(MCInst &target,
1691                                 InternalInstruction &source,
1692                                 const MCDisassembler *Dis);
1693 
1694 namespace {
1695 
1696 /// Generic disassembler for all X86 platforms. All each platform class should
1697 /// have to do is subclass the constructor, and provide a different
1698 /// disassemblerMode value.
1699 class X86GenericDisassembler : public MCDisassembler {
1700   std::unique_ptr<const MCInstrInfo> MII;
1701 public:
1702   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1703                          std::unique_ptr<const MCInstrInfo> MII);
1704 public:
1705   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1706                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1707                               raw_ostream &cStream) const override;
1708 
1709 private:
1710   DisassemblerMode              fMode;
1711 };
1712 
1713 } // namespace
1714 
1715 X86GenericDisassembler::X86GenericDisassembler(
1716                                          const MCSubtargetInfo &STI,
1717                                          MCContext &Ctx,
1718                                          std::unique_ptr<const MCInstrInfo> MII)
1719   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1720   const FeatureBitset &FB = STI.getFeatureBits();
1721   if (FB[X86::Is16Bit]) {
1722     fMode = MODE_16BIT;
1723     return;
1724   } else if (FB[X86::Is32Bit]) {
1725     fMode = MODE_32BIT;
1726     return;
1727   } else if (FB[X86::Is64Bit]) {
1728     fMode = MODE_64BIT;
1729     return;
1730   }
1731 
1732   llvm_unreachable("Invalid CPU mode");
1733 }
1734 
1735 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1736     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1737     raw_ostream &CStream) const {
1738   CommentStream = &CStream;
1739 
1740   InternalInstruction Insn;
1741   memset(&Insn, 0, sizeof(InternalInstruction));
1742   Insn.bytes = Bytes;
1743   Insn.startLocation = Address;
1744   Insn.readerCursor = Address;
1745   Insn.mode = fMode;
1746 
1747   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1748       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1749       readOperands(&Insn)) {
1750     Size = Insn.readerCursor - Address;
1751     return Fail;
1752   }
1753 
1754   Insn.operands = x86OperandSets[Insn.spec->operands];
1755   Insn.length = Insn.readerCursor - Insn.startLocation;
1756   Size = Insn.length;
1757   if (Size > 15)
1758     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1759 
1760   bool Ret = translateInstruction(Instr, Insn, this);
1761   if (!Ret) {
1762     unsigned Flags = X86::IP_NO_PREFIX;
1763     if (Insn.hasAdSize)
1764       Flags |= X86::IP_HAS_AD_SIZE;
1765     if (!Insn.mandatoryPrefix) {
1766       if (Insn.hasOpSize)
1767         Flags |= X86::IP_HAS_OP_SIZE;
1768       if (Insn.repeatPrefix == 0xf2)
1769         Flags |= X86::IP_HAS_REPEAT_NE;
1770       else if (Insn.repeatPrefix == 0xf3 &&
1771                // It should not be 'pause' f3 90
1772                Insn.opcode != 0x90)
1773         Flags |= X86::IP_HAS_REPEAT;
1774       if (Insn.hasLockPrefix)
1775         Flags |= X86::IP_HAS_LOCK;
1776     }
1777     Instr.setFlags(Flags);
1778   }
1779   return (!Ret) ? Success : Fail;
1780 }
1781 
1782 //
1783 // Private code that translates from struct InternalInstructions to MCInsts.
1784 //
1785 
1786 /// translateRegister - Translates an internal register to the appropriate LLVM
1787 ///   register, and appends it as an operand to an MCInst.
1788 ///
1789 /// @param mcInst     - The MCInst to append to.
1790 /// @param reg        - The Reg to append.
1791 static void translateRegister(MCInst &mcInst, Reg reg) {
1792 #define ENTRY(x) X86::x,
1793   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1794 #undef ENTRY
1795 
1796   MCPhysReg llvmRegnum = llvmRegnums[reg];
1797   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1798 }
1799 
1800 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1801   0,        // SEG_OVERRIDE_NONE
1802   X86::CS,
1803   X86::SS,
1804   X86::DS,
1805   X86::ES,
1806   X86::FS,
1807   X86::GS
1808 };
1809 
1810 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1811 ///
1812 /// @param mcInst       - The MCInst to append to.
1813 /// @param insn         - The internal instruction.
1814 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1815   unsigned baseRegNo;
1816 
1817   if (insn.mode == MODE_64BIT)
1818     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1819   else if (insn.mode == MODE_32BIT)
1820     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1821   else {
1822     assert(insn.mode == MODE_16BIT);
1823     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1824   }
1825   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1826   mcInst.addOperand(baseReg);
1827 
1828   MCOperand segmentReg;
1829   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1830   mcInst.addOperand(segmentReg);
1831   return false;
1832 }
1833 
1834 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1835 ///
1836 /// @param mcInst       - The MCInst to append to.
1837 /// @param insn         - The internal instruction.
1838 
1839 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1840   unsigned baseRegNo;
1841 
1842   if (insn.mode == MODE_64BIT)
1843     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1844   else if (insn.mode == MODE_32BIT)
1845     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1846   else {
1847     assert(insn.mode == MODE_16BIT);
1848     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1849   }
1850   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1851   mcInst.addOperand(baseReg);
1852   return false;
1853 }
1854 
1855 /// translateImmediate  - Appends an immediate operand to an MCInst.
1856 ///
1857 /// @param mcInst       - The MCInst to append to.
1858 /// @param immediate    - The immediate value to append.
1859 /// @param operand      - The operand, as stored in the descriptor table.
1860 /// @param insn         - The internal instruction.
1861 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1862                                const OperandSpecifier &operand,
1863                                InternalInstruction &insn,
1864                                const MCDisassembler *Dis) {
1865   // Sign-extend the immediate if necessary.
1866 
1867   OperandType type = (OperandType)operand.type;
1868 
1869   bool isBranch = false;
1870   uint64_t pcrel = 0;
1871   if (type == TYPE_REL) {
1872     isBranch = true;
1873     pcrel = insn.startLocation + insn.length;
1874     switch (operand.encoding) {
1875     default:
1876       break;
1877     case ENCODING_Iv:
1878       switch (insn.displacementSize) {
1879       default:
1880         break;
1881       case 1:
1882         if(immediate & 0x80)
1883           immediate |= ~(0xffull);
1884         break;
1885       case 2:
1886         if(immediate & 0x8000)
1887           immediate |= ~(0xffffull);
1888         break;
1889       case 4:
1890         if(immediate & 0x80000000)
1891           immediate |= ~(0xffffffffull);
1892         break;
1893       case 8:
1894         break;
1895       }
1896       break;
1897     case ENCODING_IB:
1898       if(immediate & 0x80)
1899         immediate |= ~(0xffull);
1900       break;
1901     case ENCODING_IW:
1902       if(immediate & 0x8000)
1903         immediate |= ~(0xffffull);
1904       break;
1905     case ENCODING_ID:
1906       if(immediate & 0x80000000)
1907         immediate |= ~(0xffffffffull);
1908       break;
1909     }
1910   }
1911   // By default sign-extend all X86 immediates based on their encoding.
1912   else if (type == TYPE_IMM) {
1913     switch (operand.encoding) {
1914     default:
1915       break;
1916     case ENCODING_IB:
1917       if(immediate & 0x80)
1918         immediate |= ~(0xffull);
1919       break;
1920     case ENCODING_IW:
1921       if(immediate & 0x8000)
1922         immediate |= ~(0xffffull);
1923       break;
1924     case ENCODING_ID:
1925       if(immediate & 0x80000000)
1926         immediate |= ~(0xffffffffull);
1927       break;
1928     case ENCODING_IO:
1929       break;
1930     }
1931   }
1932 
1933   switch (type) {
1934   case TYPE_XMM:
1935     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
1936     return;
1937   case TYPE_YMM:
1938     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
1939     return;
1940   case TYPE_ZMM:
1941     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
1942     return;
1943   default:
1944     // operand is 64 bits wide.  Do nothing.
1945     break;
1946   }
1947 
1948   if (!Dis->tryAddingSymbolicOperand(
1949           mcInst, immediate + pcrel, insn.startLocation, isBranch,
1950           insn.immediateOffset, insn.immediateSize, insn.length))
1951     mcInst.addOperand(MCOperand::createImm(immediate));
1952 
1953   if (type == TYPE_MOFFS) {
1954     MCOperand segmentReg;
1955     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1956     mcInst.addOperand(segmentReg);
1957   }
1958 }
1959 
1960 /// translateRMRegister - Translates a register stored in the R/M field of the
1961 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
1962 /// @param mcInst       - The MCInst to append to.
1963 /// @param insn         - The internal instruction to extract the R/M field
1964 ///                       from.
1965 /// @return             - 0 on success; -1 otherwise
1966 static bool translateRMRegister(MCInst &mcInst,
1967                                 InternalInstruction &insn) {
1968   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
1969     debug("A R/M register operand may not have a SIB byte");
1970     return true;
1971   }
1972 
1973   switch (insn.eaBase) {
1974   default:
1975     debug("Unexpected EA base register");
1976     return true;
1977   case EA_BASE_NONE:
1978     debug("EA_BASE_NONE for ModR/M base");
1979     return true;
1980 #define ENTRY(x) case EA_BASE_##x:
1981   ALL_EA_BASES
1982 #undef ENTRY
1983     debug("A R/M register operand may not have a base; "
1984           "the operand must be a register.");
1985     return true;
1986 #define ENTRY(x)                                                      \
1987   case EA_REG_##x:                                                    \
1988     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
1989   ALL_REGS
1990 #undef ENTRY
1991   }
1992 
1993   return false;
1994 }
1995 
1996 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
1997 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
1998 ///   operand in LLVM's format, and appends it to an MCInst.
1999 ///
2000 /// @param mcInst       - The MCInst to append to.
2001 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2002 ///                       from.
2003 /// @param ForceSIB     - The instruction must use SIB.
2004 /// @return             - 0 on success; nonzero otherwise
2005 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2006                               const MCDisassembler *Dis,
2007                               bool ForceSIB = false) {
2008   // Addresses in an MCInst are represented as five operands:
2009   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2010   //                                SIB base
2011   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2012   //                                scale amount
2013   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2014   //                                the index (which is multiplied by the
2015   //                                scale amount)
2016   //   4. displacement  (immediate) 0, or the displacement if there is one
2017   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2018   //                                if we have segment overrides
2019 
2020   MCOperand baseReg;
2021   MCOperand scaleAmount;
2022   MCOperand indexReg;
2023   MCOperand displacement;
2024   MCOperand segmentReg;
2025   uint64_t pcrel = 0;
2026 
2027   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2028     if (insn.sibBase != SIB_BASE_NONE) {
2029       switch (insn.sibBase) {
2030       default:
2031         debug("Unexpected sibBase");
2032         return true;
2033 #define ENTRY(x)                                          \
2034       case SIB_BASE_##x:                                  \
2035         baseReg = MCOperand::createReg(X86::x); break;
2036       ALL_SIB_BASES
2037 #undef ENTRY
2038       }
2039     } else {
2040       baseReg = MCOperand::createReg(X86::NoRegister);
2041     }
2042 
2043     if (insn.sibIndex != SIB_INDEX_NONE) {
2044       switch (insn.sibIndex) {
2045       default:
2046         debug("Unexpected sibIndex");
2047         return true;
2048 #define ENTRY(x)                                          \
2049       case SIB_INDEX_##x:                                 \
2050         indexReg = MCOperand::createReg(X86::x); break;
2051       EA_BASES_32BIT
2052       EA_BASES_64BIT
2053       REGS_XMM
2054       REGS_YMM
2055       REGS_ZMM
2056 #undef ENTRY
2057       }
2058     } else {
2059       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2060       // but no index is used and modrm alone should have been enough.
2061       // -No base register in 32-bit mode. In 64-bit mode this is used to
2062       //  avoid rip-relative addressing.
2063       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2064       //  base always requires a SIB byte.
2065       // -A scale other than 1 is used.
2066       if (!ForceSIB &&
2067           (insn.sibScale != 1 ||
2068            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2069            (insn.sibBase != SIB_BASE_NONE &&
2070             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2071             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2072         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2073                                                                 X86::RIZ);
2074       } else
2075         indexReg = MCOperand::createReg(X86::NoRegister);
2076     }
2077 
2078     scaleAmount = MCOperand::createImm(insn.sibScale);
2079   } else {
2080     switch (insn.eaBase) {
2081     case EA_BASE_NONE:
2082       if (insn.eaDisplacement == EA_DISP_NONE) {
2083         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2084         return true;
2085       }
2086       if (insn.mode == MODE_64BIT){
2087         pcrel = insn.startLocation + insn.length;
2088         Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2089                                              insn.startLocation +
2090                                                  insn.displacementOffset);
2091         // Section 2.2.1.6
2092         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2093                                                                X86::RIP);
2094       }
2095       else
2096         baseReg = MCOperand::createReg(X86::NoRegister);
2097 
2098       indexReg = MCOperand::createReg(X86::NoRegister);
2099       break;
2100     case EA_BASE_BX_SI:
2101       baseReg = MCOperand::createReg(X86::BX);
2102       indexReg = MCOperand::createReg(X86::SI);
2103       break;
2104     case EA_BASE_BX_DI:
2105       baseReg = MCOperand::createReg(X86::BX);
2106       indexReg = MCOperand::createReg(X86::DI);
2107       break;
2108     case EA_BASE_BP_SI:
2109       baseReg = MCOperand::createReg(X86::BP);
2110       indexReg = MCOperand::createReg(X86::SI);
2111       break;
2112     case EA_BASE_BP_DI:
2113       baseReg = MCOperand::createReg(X86::BP);
2114       indexReg = MCOperand::createReg(X86::DI);
2115       break;
2116     default:
2117       indexReg = MCOperand::createReg(X86::NoRegister);
2118       switch (insn.eaBase) {
2119       default:
2120         debug("Unexpected eaBase");
2121         return true;
2122         // Here, we will use the fill-ins defined above.  However,
2123         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2124         //   sib and sib64 were handled in the top-level if, so they're only
2125         //   placeholders to keep the compiler happy.
2126 #define ENTRY(x)                                        \
2127       case EA_BASE_##x:                                 \
2128         baseReg = MCOperand::createReg(X86::x); break;
2129       ALL_EA_BASES
2130 #undef ENTRY
2131 #define ENTRY(x) case EA_REG_##x:
2132       ALL_REGS
2133 #undef ENTRY
2134         debug("A R/M memory operand may not be a register; "
2135               "the base field must be a base.");
2136         return true;
2137       }
2138     }
2139 
2140     scaleAmount = MCOperand::createImm(1);
2141   }
2142 
2143   displacement = MCOperand::createImm(insn.displacement);
2144 
2145   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2146 
2147   mcInst.addOperand(baseReg);
2148   mcInst.addOperand(scaleAmount);
2149   mcInst.addOperand(indexReg);
2150 
2151   const uint8_t dispSize =
2152       (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2153 
2154   if (!Dis->tryAddingSymbolicOperand(
2155           mcInst, insn.displacement + pcrel, insn.startLocation, false,
2156           insn.displacementOffset, dispSize, insn.length))
2157     mcInst.addOperand(displacement);
2158   mcInst.addOperand(segmentReg);
2159   return false;
2160 }
2161 
2162 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2163 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2164 ///
2165 /// @param mcInst       - The MCInst to append to.
2166 /// @param operand      - The operand, as stored in the descriptor table.
2167 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2168 ///                       from.
2169 /// @return             - 0 on success; nonzero otherwise
2170 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2171                         InternalInstruction &insn, const MCDisassembler *Dis) {
2172   switch (operand.type) {
2173   default:
2174     debug("Unexpected type for a R/M operand");
2175     return true;
2176   case TYPE_R8:
2177   case TYPE_R16:
2178   case TYPE_R32:
2179   case TYPE_R64:
2180   case TYPE_Rv:
2181   case TYPE_MM64:
2182   case TYPE_XMM:
2183   case TYPE_YMM:
2184   case TYPE_ZMM:
2185   case TYPE_TMM:
2186   case TYPE_VK_PAIR:
2187   case TYPE_VK:
2188   case TYPE_DEBUGREG:
2189   case TYPE_CONTROLREG:
2190   case TYPE_BNDR:
2191     return translateRMRegister(mcInst, insn);
2192   case TYPE_M:
2193   case TYPE_MVSIBX:
2194   case TYPE_MVSIBY:
2195   case TYPE_MVSIBZ:
2196     return translateRMMemory(mcInst, insn, Dis);
2197   case TYPE_MSIB:
2198     return translateRMMemory(mcInst, insn, Dis, true);
2199   }
2200 }
2201 
2202 /// translateFPRegister - Translates a stack position on the FPU stack to its
2203 ///   LLVM form, and appends it to an MCInst.
2204 ///
2205 /// @param mcInst       - The MCInst to append to.
2206 /// @param stackPos     - The stack position to translate.
2207 static void translateFPRegister(MCInst &mcInst,
2208                                 uint8_t stackPos) {
2209   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2210 }
2211 
2212 /// translateMaskRegister - Translates a 3-bit mask register number to
2213 ///   LLVM form, and appends it to an MCInst.
2214 ///
2215 /// @param mcInst       - The MCInst to append to.
2216 /// @param maskRegNum   - Number of mask register from 0 to 7.
2217 /// @return             - false on success; true otherwise.
2218 static bool translateMaskRegister(MCInst &mcInst,
2219                                 uint8_t maskRegNum) {
2220   if (maskRegNum >= 8) {
2221     debug("Invalid mask register number");
2222     return true;
2223   }
2224 
2225   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2226   return false;
2227 }
2228 
2229 /// translateOperand - Translates an operand stored in an internal instruction
2230 ///   to LLVM's format and appends it to an MCInst.
2231 ///
2232 /// @param mcInst       - The MCInst to append to.
2233 /// @param operand      - The operand, as stored in the descriptor table.
2234 /// @param insn         - The internal instruction.
2235 /// @return             - false on success; true otherwise.
2236 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2237                              InternalInstruction &insn,
2238                              const MCDisassembler *Dis) {
2239   switch (operand.encoding) {
2240   default:
2241     debug("Unhandled operand encoding during translation");
2242     return true;
2243   case ENCODING_REG:
2244     translateRegister(mcInst, insn.reg);
2245     return false;
2246   case ENCODING_WRITEMASK:
2247     return translateMaskRegister(mcInst, insn.writemask);
2248   case ENCODING_SIB:
2249   CASE_ENCODING_RM:
2250   CASE_ENCODING_VSIB:
2251     return translateRM(mcInst, operand, insn, Dis);
2252   case ENCODING_IB:
2253   case ENCODING_IW:
2254   case ENCODING_ID:
2255   case ENCODING_IO:
2256   case ENCODING_Iv:
2257   case ENCODING_Ia:
2258     translateImmediate(mcInst,
2259                        insn.immediates[insn.numImmediatesTranslated++],
2260                        operand,
2261                        insn,
2262                        Dis);
2263     return false;
2264   case ENCODING_IRC:
2265     mcInst.addOperand(MCOperand::createImm(insn.RC));
2266     return false;
2267   case ENCODING_SI:
2268     return translateSrcIndex(mcInst, insn);
2269   case ENCODING_DI:
2270     return translateDstIndex(mcInst, insn);
2271   case ENCODING_RB:
2272   case ENCODING_RW:
2273   case ENCODING_RD:
2274   case ENCODING_RO:
2275   case ENCODING_Rv:
2276     translateRegister(mcInst, insn.opcodeRegister);
2277     return false;
2278   case ENCODING_CC:
2279     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2280     return false;
2281   case ENCODING_FP:
2282     translateFPRegister(mcInst, insn.modRM & 7);
2283     return false;
2284   case ENCODING_VVVV:
2285     translateRegister(mcInst, insn.vvvv);
2286     return false;
2287   case ENCODING_DUP:
2288     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2289                             insn, Dis);
2290   }
2291 }
2292 
2293 /// translateInstruction - Translates an internal instruction and all its
2294 ///   operands to an MCInst.
2295 ///
2296 /// @param mcInst       - The MCInst to populate with the instruction's data.
2297 /// @param insn         - The internal instruction.
2298 /// @return             - false on success; true otherwise.
2299 static bool translateInstruction(MCInst &mcInst,
2300                                 InternalInstruction &insn,
2301                                 const MCDisassembler *Dis) {
2302   if (!insn.spec) {
2303     debug("Instruction has no specification");
2304     return true;
2305   }
2306 
2307   mcInst.clear();
2308   mcInst.setOpcode(insn.instructionID);
2309   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2310   // prefix bytes should be disassembled as xrelease and xacquire then set the
2311   // opcode to those instead of the rep and repne opcodes.
2312   if (insn.xAcquireRelease) {
2313     if(mcInst.getOpcode() == X86::REP_PREFIX)
2314       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2315     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2316       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2317   }
2318 
2319   insn.numImmediatesTranslated = 0;
2320 
2321   for (const auto &Op : insn.operands) {
2322     if (Op.encoding != ENCODING_NONE) {
2323       if (translateOperand(mcInst, Op, insn, Dis)) {
2324         return true;
2325       }
2326     }
2327   }
2328 
2329   return false;
2330 }
2331 
2332 static MCDisassembler *createX86Disassembler(const Target &T,
2333                                              const MCSubtargetInfo &STI,
2334                                              MCContext &Ctx) {
2335   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2336   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2337 }
2338 
2339 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2340   // Register the disassembler.
2341   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2342                                          createX86Disassembler);
2343   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2344                                          createX86Disassembler);
2345 }
2346