xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision 1c4ee7dfb8affed302171232b0f612e6bcba3c10)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP4:
154     dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP5:
157     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   case MAP6:
160     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161     break;
162   case MAP7:
163     dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
164     break;
165   }
166 
167   switch (dec->modrm_type) {
168   default:
169     llvm_unreachable("Corrupt table!  Unknown modrm_type");
170     return 0;
171   case MODRM_ONEENTRY:
172     return modRMTable[dec->instructionIDs];
173   case MODRM_SPLITRM:
174     if (modFromModRM(modRM) == 0x3)
175       return modRMTable[dec->instructionIDs + 1];
176     return modRMTable[dec->instructionIDs];
177   case MODRM_SPLITREG:
178     if (modFromModRM(modRM) == 0x3)
179       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
180     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
181   case MODRM_SPLITMISC:
182     if (modFromModRM(modRM) == 0x3)
183       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
184     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
185   case MODRM_FULL:
186     return modRMTable[dec->instructionIDs + modRM];
187   }
188 }
189 
190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
191   uint64_t offset = insn->readerCursor - insn->startLocation;
192   if (offset >= insn->bytes.size())
193     return true;
194   byte = insn->bytes[offset];
195   return false;
196 }
197 
198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
199   auto r = insn->bytes;
200   uint64_t offset = insn->readerCursor - insn->startLocation;
201   if (offset + sizeof(T) > r.size())
202     return true;
203   ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
204   insn->readerCursor += sizeof(T);
205   return false;
206 }
207 
208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
209   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
210 }
211 
212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
213   return insn->mode == MODE_64BIT && prefix == 0xd5;
214 }
215 
216 // Consumes all of an instruction's prefix bytes, and marks the
217 // instruction as having them.  Also sets the instruction's default operand,
218 // address, and other relevant data sizes to report operands correctly.
219 //
220 // insn must not be empty.
221 static int readPrefixes(struct InternalInstruction *insn) {
222   bool isPrefix = true;
223   uint8_t byte = 0;
224   uint8_t nextByte;
225 
226   LLVM_DEBUG(dbgs() << "readPrefixes()");
227 
228   while (isPrefix) {
229     // If we fail reading prefixes, just stop here and let the opcode reader
230     // deal with it.
231     if (consume(insn, byte))
232       break;
233 
234     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
235     // break and let it be disassembled as a normal "instruction".
236     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
237       break;
238 
239     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
240       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
241       // met:
242       // - it is followed by a LOCK (0xf0) prefix
243       // - it is followed by an xchg instruction
244       // then it should be disassembled as a xacquire/xrelease not repne/rep.
245       if (((nextByte == 0xf0) ||
246            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
247         insn->xAcquireRelease = true;
248         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
249           break;
250       }
251       // Also if the byte is 0xf3, and the following condition is met:
252       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
253       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
254       // then it should be disassembled as an xrelease not rep.
255       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
256                            nextByte == 0xc6 || nextByte == 0xc7)) {
257         insn->xAcquireRelease = true;
258         break;
259       }
260       if (isREX(insn, nextByte)) {
261         uint8_t nnextByte;
262         // Go to REX prefix after the current one
263         if (consume(insn, nnextByte))
264           return -1;
265         // We should be able to read next byte after REX prefix
266         if (peek(insn, nnextByte))
267           return -1;
268         --insn->readerCursor;
269       }
270     }
271 
272     switch (byte) {
273     case 0xf0: // LOCK
274       insn->hasLockPrefix = true;
275       break;
276     case 0xf2: // REPNE/REPNZ
277     case 0xf3: { // REP or REPE/REPZ
278       uint8_t nextByte;
279       if (peek(insn, nextByte))
280         break;
281       // TODO:
282       //  1. There could be several 0x66
283       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
284       //      it's not mandatory prefix
285       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
286       //     0x0f exactly after it to be mandatory prefix
287       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
288         // The last of 0xf2 /0xf3 is mandatory prefix
289         insn->mandatoryPrefix = byte;
290       insn->repeatPrefix = byte;
291       break;
292     }
293     case 0x2e: // CS segment override -OR- Branch not taken
294       insn->segmentOverride = SEG_OVERRIDE_CS;
295       break;
296     case 0x36: // SS segment override -OR- Branch taken
297       insn->segmentOverride = SEG_OVERRIDE_SS;
298       break;
299     case 0x3e: // DS segment override
300       insn->segmentOverride = SEG_OVERRIDE_DS;
301       break;
302     case 0x26: // ES segment override
303       insn->segmentOverride = SEG_OVERRIDE_ES;
304       break;
305     case 0x64: // FS segment override
306       insn->segmentOverride = SEG_OVERRIDE_FS;
307       break;
308     case 0x65: // GS segment override
309       insn->segmentOverride = SEG_OVERRIDE_GS;
310       break;
311     case 0x66: { // Operand-size override {
312       uint8_t nextByte;
313       insn->hasOpSize = true;
314       if (peek(insn, nextByte))
315         break;
316       // 0x66 can't overwrite existing mandatory prefix and should be ignored
317       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
318         insn->mandatoryPrefix = byte;
319       break;
320     }
321     case 0x67: // Address-size override
322       insn->hasAdSize = true;
323       break;
324     default: // Not a prefix byte
325       isPrefix = false;
326       break;
327     }
328 
329     if (isPrefix)
330       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
331   }
332 
333   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
334 
335   if (byte == 0x62) {
336     uint8_t byte1, byte2;
337     if (consume(insn, byte1)) {
338       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
339       return -1;
340     }
341 
342     if (peek(insn, byte2)) {
343       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
344       return -1;
345     }
346 
347     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
348       insn->vectorExtensionType = TYPE_EVEX;
349     } else {
350       --insn->readerCursor; // unconsume byte1
351       --insn->readerCursor; // unconsume byte
352     }
353 
354     if (insn->vectorExtensionType == TYPE_EVEX) {
355       insn->vectorExtensionPrefix[0] = byte;
356       insn->vectorExtensionPrefix[1] = byte1;
357       if (consume(insn, insn->vectorExtensionPrefix[2])) {
358         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
359         return -1;
360       }
361       if (consume(insn, insn->vectorExtensionPrefix[3])) {
362         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
363         return -1;
364       }
365 
366       if (insn->mode == MODE_64BIT) {
367         // We simulate the REX prefix for simplicity's sake
368         insn->rexPrefix = 0x40 |
369                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
370                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
371                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
372                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
373 
374         // We simulate the REX2 prefix for simplicity's sake
375         insn->rex2ExtensionPrefix[1] =
376             (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
377             (x2FromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
378             (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
379       }
380 
381       LLVM_DEBUG(
382           dbgs() << format(
383               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
384               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
385               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
386     }
387   } else if (byte == 0xc4) {
388     uint8_t byte1;
389     if (peek(insn, byte1)) {
390       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
391       return -1;
392     }
393 
394     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
395       insn->vectorExtensionType = TYPE_VEX_3B;
396     else
397       --insn->readerCursor;
398 
399     if (insn->vectorExtensionType == TYPE_VEX_3B) {
400       insn->vectorExtensionPrefix[0] = byte;
401       consume(insn, insn->vectorExtensionPrefix[1]);
402       consume(insn, insn->vectorExtensionPrefix[2]);
403 
404       // We simulate the REX prefix for simplicity's sake
405 
406       if (insn->mode == MODE_64BIT)
407         insn->rexPrefix = 0x40 |
408                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
409                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
410                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
411                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
412 
413       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
414                                   insn->vectorExtensionPrefix[0],
415                                   insn->vectorExtensionPrefix[1],
416                                   insn->vectorExtensionPrefix[2]));
417     }
418   } else if (byte == 0xc5) {
419     uint8_t byte1;
420     if (peek(insn, byte1)) {
421       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
422       return -1;
423     }
424 
425     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
426       insn->vectorExtensionType = TYPE_VEX_2B;
427     else
428       --insn->readerCursor;
429 
430     if (insn->vectorExtensionType == TYPE_VEX_2B) {
431       insn->vectorExtensionPrefix[0] = byte;
432       consume(insn, insn->vectorExtensionPrefix[1]);
433 
434       if (insn->mode == MODE_64BIT)
435         insn->rexPrefix =
436             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
437 
438       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
439       default:
440         break;
441       case VEX_PREFIX_66:
442         insn->hasOpSize = true;
443         break;
444       }
445 
446       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
447                                   insn->vectorExtensionPrefix[0],
448                                   insn->vectorExtensionPrefix[1]));
449     }
450   } else if (byte == 0x8f) {
451     uint8_t byte1;
452     if (peek(insn, byte1)) {
453       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
454       return -1;
455     }
456 
457     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
458       insn->vectorExtensionType = TYPE_XOP;
459     else
460       --insn->readerCursor;
461 
462     if (insn->vectorExtensionType == TYPE_XOP) {
463       insn->vectorExtensionPrefix[0] = byte;
464       consume(insn, insn->vectorExtensionPrefix[1]);
465       consume(insn, insn->vectorExtensionPrefix[2]);
466 
467       // We simulate the REX prefix for simplicity's sake
468 
469       if (insn->mode == MODE_64BIT)
470         insn->rexPrefix = 0x40 |
471                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
472                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
473                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
474                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
475 
476       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
477       default:
478         break;
479       case VEX_PREFIX_66:
480         insn->hasOpSize = true;
481         break;
482       }
483 
484       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
485                                   insn->vectorExtensionPrefix[0],
486                                   insn->vectorExtensionPrefix[1],
487                                   insn->vectorExtensionPrefix[2]));
488     }
489   } else if (isREX2(insn, byte)) {
490     uint8_t byte1;
491     if (peek(insn, byte1)) {
492       LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
493       return -1;
494     }
495     insn->rex2ExtensionPrefix[0] = byte;
496     consume(insn, insn->rex2ExtensionPrefix[1]);
497 
498     // We simulate the REX prefix for simplicity's sake
499     insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
500                       (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
501                       (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
502                       (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
503     LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
504                                 insn->rex2ExtensionPrefix[0],
505                                 insn->rex2ExtensionPrefix[1]));
506   } else if (isREX(insn, byte)) {
507     if (peek(insn, nextByte))
508       return -1;
509     insn->rexPrefix = byte;
510     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
511   } else
512     --insn->readerCursor;
513 
514   if (insn->mode == MODE_16BIT) {
515     insn->registerSize = (insn->hasOpSize ? 4 : 2);
516     insn->addressSize = (insn->hasAdSize ? 4 : 2);
517     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
518     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
519   } else if (insn->mode == MODE_32BIT) {
520     insn->registerSize = (insn->hasOpSize ? 2 : 4);
521     insn->addressSize = (insn->hasAdSize ? 2 : 4);
522     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
523     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
524   } else if (insn->mode == MODE_64BIT) {
525     insn->displacementSize = 4;
526     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
527       insn->registerSize = 8;
528       insn->addressSize = (insn->hasAdSize ? 4 : 8);
529       insn->immediateSize = 4;
530       insn->hasOpSize = false;
531     } else {
532       insn->registerSize = (insn->hasOpSize ? 2 : 4);
533       insn->addressSize = (insn->hasAdSize ? 4 : 8);
534       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
535     }
536   }
537 
538   return 0;
539 }
540 
541 // Consumes the SIB byte to determine addressing information.
542 static int readSIB(struct InternalInstruction *insn) {
543   SIBBase sibBaseBase = SIB_BASE_NONE;
544   uint8_t index, base;
545 
546   LLVM_DEBUG(dbgs() << "readSIB()");
547   switch (insn->addressSize) {
548   case 2:
549   default:
550     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
551   case 4:
552     insn->sibIndexBase = SIB_INDEX_EAX;
553     sibBaseBase = SIB_BASE_EAX;
554     break;
555   case 8:
556     insn->sibIndexBase = SIB_INDEX_RAX;
557     sibBaseBase = SIB_BASE_RAX;
558     break;
559   }
560 
561   if (consume(insn, insn->sib))
562     return -1;
563 
564   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
565           (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
566 
567   if (index == 0x4) {
568     insn->sibIndex = SIB_INDEX_NONE;
569   } else {
570     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
571   }
572 
573   insn->sibScale = 1 << scaleFromSIB(insn->sib);
574 
575   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
576          (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
577 
578   switch (base) {
579   case 0x5:
580   case 0xd:
581     switch (modFromModRM(insn->modRM)) {
582     case 0x0:
583       insn->eaDisplacement = EA_DISP_32;
584       insn->sibBase = SIB_BASE_NONE;
585       break;
586     case 0x1:
587       insn->eaDisplacement = EA_DISP_8;
588       insn->sibBase = (SIBBase)(sibBaseBase + base);
589       break;
590     case 0x2:
591       insn->eaDisplacement = EA_DISP_32;
592       insn->sibBase = (SIBBase)(sibBaseBase + base);
593       break;
594     default:
595       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
596     }
597     break;
598   default:
599     insn->sibBase = (SIBBase)(sibBaseBase + base);
600     break;
601   }
602 
603   return 0;
604 }
605 
606 static int readDisplacement(struct InternalInstruction *insn) {
607   int8_t d8;
608   int16_t d16;
609   int32_t d32;
610   LLVM_DEBUG(dbgs() << "readDisplacement()");
611 
612   insn->displacementOffset = insn->readerCursor - insn->startLocation;
613   switch (insn->eaDisplacement) {
614   case EA_DISP_NONE:
615     break;
616   case EA_DISP_8:
617     if (consume(insn, d8))
618       return -1;
619     insn->displacement = d8;
620     break;
621   case EA_DISP_16:
622     if (consume(insn, d16))
623       return -1;
624     insn->displacement = d16;
625     break;
626   case EA_DISP_32:
627     if (consume(insn, d32))
628       return -1;
629     insn->displacement = d32;
630     break;
631   }
632 
633   return 0;
634 }
635 
636 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
637 static int readModRM(struct InternalInstruction *insn) {
638   uint8_t mod, rm, reg;
639   LLVM_DEBUG(dbgs() << "readModRM()");
640 
641   if (insn->consumedModRM)
642     return 0;
643 
644   if (consume(insn, insn->modRM))
645     return -1;
646   insn->consumedModRM = true;
647 
648   mod = modFromModRM(insn->modRM);
649   rm = rmFromModRM(insn->modRM);
650   reg = regFromModRM(insn->modRM);
651 
652   // This goes by insn->registerSize to pick the correct register, which messes
653   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
654   // fixupReg().
655   switch (insn->registerSize) {
656   case 2:
657     insn->regBase = MODRM_REG_AX;
658     insn->eaRegBase = EA_REG_AX;
659     break;
660   case 4:
661     insn->regBase = MODRM_REG_EAX;
662     insn->eaRegBase = EA_REG_EAX;
663     break;
664   case 8:
665     insn->regBase = MODRM_REG_RAX;
666     insn->eaRegBase = EA_REG_RAX;
667     break;
668   }
669 
670   reg |= (rFromREX(insn->rexPrefix) << 3) |
671          (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
672   rm |= (bFromREX(insn->rexPrefix) << 3) |
673         (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
674 
675   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
676     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
677 
678   insn->reg = (Reg)(insn->regBase + reg);
679 
680   switch (insn->addressSize) {
681   case 2: {
682     EABase eaBaseBase = EA_BASE_BX_SI;
683 
684     switch (mod) {
685     case 0x0:
686       if (rm == 0x6) {
687         insn->eaBase = EA_BASE_NONE;
688         insn->eaDisplacement = EA_DISP_16;
689         if (readDisplacement(insn))
690           return -1;
691       } else {
692         insn->eaBase = (EABase)(eaBaseBase + rm);
693         insn->eaDisplacement = EA_DISP_NONE;
694       }
695       break;
696     case 0x1:
697       insn->eaBase = (EABase)(eaBaseBase + rm);
698       insn->eaDisplacement = EA_DISP_8;
699       insn->displacementSize = 1;
700       if (readDisplacement(insn))
701         return -1;
702       break;
703     case 0x2:
704       insn->eaBase = (EABase)(eaBaseBase + rm);
705       insn->eaDisplacement = EA_DISP_16;
706       if (readDisplacement(insn))
707         return -1;
708       break;
709     case 0x3:
710       insn->eaBase = (EABase)(insn->eaRegBase + rm);
711       if (readDisplacement(insn))
712         return -1;
713       break;
714     }
715     break;
716   }
717   case 4:
718   case 8: {
719     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
720 
721     switch (mod) {
722     case 0x0:
723       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
724       // In determining whether RIP-relative mode is used (rm=5),
725       // or whether a SIB byte is present (rm=4),
726       // the extension bits (REX.b and EVEX.x) are ignored.
727       switch (rm & 7) {
728       case 0x4: // SIB byte is present
729         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
730         if (readSIB(insn) || readDisplacement(insn))
731           return -1;
732         break;
733       case 0x5: // RIP-relative
734         insn->eaBase = EA_BASE_NONE;
735         insn->eaDisplacement = EA_DISP_32;
736         if (readDisplacement(insn))
737           return -1;
738         break;
739       default:
740         insn->eaBase = (EABase)(eaBaseBase + rm);
741         break;
742       }
743       break;
744     case 0x1:
745       insn->displacementSize = 1;
746       [[fallthrough]];
747     case 0x2:
748       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
749       switch (rm & 7) {
750       case 0x4: // SIB byte is present
751         insn->eaBase = EA_BASE_sib;
752         if (readSIB(insn) || readDisplacement(insn))
753           return -1;
754         break;
755       default:
756         insn->eaBase = (EABase)(eaBaseBase + rm);
757         if (readDisplacement(insn))
758           return -1;
759         break;
760       }
761       break;
762     case 0x3:
763       insn->eaDisplacement = EA_DISP_NONE;
764       insn->eaBase = (EABase)(insn->eaRegBase + rm);
765       break;
766     }
767     break;
768   }
769   } // switch (insn->addressSize)
770 
771   return 0;
772 }
773 
774 #define GENERIC_FIXUP_FUNC(name, base, prefix)                                 \
775   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
776                        uint8_t index, uint8_t *valid) {                        \
777     *valid = 1;                                                                \
778     switch (type) {                                                            \
779     default:                                                                   \
780       debug("Unhandled register type");                                        \
781       *valid = 0;                                                              \
782       return 0;                                                                \
783     case TYPE_Rv:                                                              \
784       return base + index;                                                     \
785     case TYPE_R8:                                                              \
786       if (insn->rexPrefix && index >= 4 && index <= 7)                         \
787         return prefix##_SPL + (index - 4);                                     \
788       else                                                                     \
789         return prefix##_AL + index;                                            \
790     case TYPE_R16:                                                             \
791       return prefix##_AX + index;                                              \
792     case TYPE_R32:                                                             \
793       return prefix##_EAX + index;                                             \
794     case TYPE_R64:                                                             \
795       return prefix##_RAX + index;                                             \
796     case TYPE_ZMM:                                                             \
797       return prefix##_ZMM0 + index;                                            \
798     case TYPE_YMM:                                                             \
799       return prefix##_YMM0 + index;                                            \
800     case TYPE_XMM:                                                             \
801       return prefix##_XMM0 + index;                                            \
802     case TYPE_TMM:                                                             \
803       if (index > 7)                                                           \
804         *valid = 0;                                                            \
805       return prefix##_TMM0 + index;                                            \
806     case TYPE_VK:                                                              \
807       index &= 0xf;                                                            \
808       if (index > 7)                                                           \
809         *valid = 0;                                                            \
810       return prefix##_K0 + index;                                              \
811     case TYPE_VK_PAIR:                                                         \
812       if (index > 7)                                                           \
813         *valid = 0;                                                            \
814       return prefix##_K0_K1 + (index / 2);                                     \
815     case TYPE_MM64:                                                            \
816       return prefix##_MM0 + (index & 0x7);                                     \
817     case TYPE_SEGMENTREG:                                                      \
818       if ((index & 7) > 5)                                                     \
819         *valid = 0;                                                            \
820       return prefix##_ES + (index & 7);                                        \
821     case TYPE_DEBUGREG:                                                        \
822       return prefix##_DR0 + index;                                             \
823     case TYPE_CONTROLREG:                                                      \
824       return prefix##_CR0 + index;                                             \
825     case TYPE_MVSIBX:                                                          \
826       return prefix##_XMM0 + index;                                            \
827     case TYPE_MVSIBY:                                                          \
828       return prefix##_YMM0 + index;                                            \
829     case TYPE_MVSIBZ:                                                          \
830       return prefix##_ZMM0 + index;                                            \
831     }                                                                          \
832   }
833 
834 // Consult an operand type to determine the meaning of the reg or R/M field. If
835 // the operand is an XMM operand, for example, an operand would be XMM0 instead
836 // of AX, which readModRM() would otherwise misinterpret it as.
837 //
838 // @param insn  - The instruction containing the operand.
839 // @param type  - The operand type.
840 // @param index - The existing value of the field as reported by readModRM().
841 // @param valid - The address of a uint8_t.  The target is set to 1 if the
842 //                field is valid for the register class; 0 if not.
843 // @return      - The proper value.
844 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
845 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
846 
847 // Consult an operand specifier to determine which of the fixup*Value functions
848 // to use in correcting readModRM()'ss interpretation.
849 //
850 // @param insn  - See fixup*Value().
851 // @param op    - The operand specifier.
852 // @return      - 0 if fixup was successful; -1 if the register returned was
853 //                invalid for its class.
854 static int fixupReg(struct InternalInstruction *insn,
855                     const struct OperandSpecifier *op) {
856   uint8_t valid;
857   LLVM_DEBUG(dbgs() << "fixupReg()");
858 
859   switch ((OperandEncoding)op->encoding) {
860   default:
861     debug("Expected a REG or R/M encoding in fixupReg");
862     return -1;
863   case ENCODING_VVVV:
864     insn->vvvv =
865         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
866     if (!valid)
867       return -1;
868     break;
869   case ENCODING_REG:
870     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
871                                    insn->reg - insn->regBase, &valid);
872     if (!valid)
873       return -1;
874     break;
875   CASE_ENCODING_RM:
876     if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
877         modFromModRM(insn->modRM) == 3) {
878       // EVEX_X can extend the register id to 32 for a non-GPR register that is
879       // encoded in RM.
880       // mode : MODE_64_BIT
881       //  Only 8 vector registers are available in 32 bit mode
882       // mod : 3
883       //  RM encodes a register
884       switch (op->type) {
885       case TYPE_Rv:
886       case TYPE_R8:
887       case TYPE_R16:
888       case TYPE_R32:
889       case TYPE_R64:
890         break;
891       default:
892         insn->eaBase =
893             (EABase)(insn->eaBase +
894                      (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
895         break;
896       }
897     }
898     [[fallthrough]];
899   case ENCODING_SIB:
900     if (insn->eaBase >= insn->eaRegBase) {
901       insn->eaBase = (EABase)fixupRMValue(
902           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
903       if (!valid)
904         return -1;
905     }
906     break;
907   }
908 
909   return 0;
910 }
911 
912 // Read the opcode (except the ModR/M byte in the case of extended or escape
913 // opcodes).
914 static bool readOpcode(struct InternalInstruction *insn) {
915   uint8_t current;
916   LLVM_DEBUG(dbgs() << "readOpcode()");
917 
918   insn->opcodeType = ONEBYTE;
919   if (insn->vectorExtensionType == TYPE_EVEX) {
920     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
921     default:
922       LLVM_DEBUG(
923           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
924                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
925       return true;
926     case VEX_LOB_0F:
927       insn->opcodeType = TWOBYTE;
928       return consume(insn, insn->opcode);
929     case VEX_LOB_0F38:
930       insn->opcodeType = THREEBYTE_38;
931       return consume(insn, insn->opcode);
932     case VEX_LOB_0F3A:
933       insn->opcodeType = THREEBYTE_3A;
934       return consume(insn, insn->opcode);
935     case VEX_LOB_MAP4:
936       insn->opcodeType = MAP4;
937       return consume(insn, insn->opcode);
938     case VEX_LOB_MAP5:
939       insn->opcodeType = MAP5;
940       return consume(insn, insn->opcode);
941     case VEX_LOB_MAP6:
942       insn->opcodeType = MAP6;
943       return consume(insn, insn->opcode);
944     }
945   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
946     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
947     default:
948       LLVM_DEBUG(
949           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
950                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
951       return true;
952     case VEX_LOB_0F:
953       insn->opcodeType = TWOBYTE;
954       return consume(insn, insn->opcode);
955     case VEX_LOB_0F38:
956       insn->opcodeType = THREEBYTE_38;
957       return consume(insn, insn->opcode);
958     case VEX_LOB_0F3A:
959       insn->opcodeType = THREEBYTE_3A;
960       return consume(insn, insn->opcode);
961     case VEX_LOB_MAP5:
962       insn->opcodeType = MAP5;
963       return consume(insn, insn->opcode);
964     case VEX_LOB_MAP6:
965       insn->opcodeType = MAP6;
966       return consume(insn, insn->opcode);
967     case VEX_LOB_MAP7:
968       insn->opcodeType = MAP7;
969       return consume(insn, insn->opcode);
970     }
971   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
972     insn->opcodeType = TWOBYTE;
973     return consume(insn, insn->opcode);
974   } else if (insn->vectorExtensionType == TYPE_XOP) {
975     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
976     default:
977       LLVM_DEBUG(
978           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
979                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
980       return true;
981     case XOP_MAP_SELECT_8:
982       insn->opcodeType = XOP8_MAP;
983       return consume(insn, insn->opcode);
984     case XOP_MAP_SELECT_9:
985       insn->opcodeType = XOP9_MAP;
986       return consume(insn, insn->opcode);
987     case XOP_MAP_SELECT_A:
988       insn->opcodeType = XOPA_MAP;
989       return consume(insn, insn->opcode);
990     }
991   } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
992     // m bit indicates opcode map 1
993     insn->opcodeType = TWOBYTE;
994     return consume(insn, insn->opcode);
995   }
996 
997   if (consume(insn, current))
998     return true;
999 
1000   if (current == 0x0f) {
1001     LLVM_DEBUG(
1002         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
1003     if (consume(insn, current))
1004       return true;
1005 
1006     if (current == 0x38) {
1007       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1008                                   current));
1009       if (consume(insn, current))
1010         return true;
1011 
1012       insn->opcodeType = THREEBYTE_38;
1013     } else if (current == 0x3a) {
1014       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1015                                   current));
1016       if (consume(insn, current))
1017         return true;
1018 
1019       insn->opcodeType = THREEBYTE_3A;
1020     } else if (current == 0x0f) {
1021       LLVM_DEBUG(
1022           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
1023 
1024       // Consume operands before the opcode to comply with the 3DNow encoding
1025       if (readModRM(insn))
1026         return true;
1027 
1028       if (consume(insn, current))
1029         return true;
1030 
1031       insn->opcodeType = THREEDNOW_MAP;
1032     } else {
1033       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
1034       insn->opcodeType = TWOBYTE;
1035     }
1036   } else if (insn->mandatoryPrefix)
1037     // The opcode with mandatory prefix must start with opcode escape.
1038     // If not it's legacy repeat prefix
1039     insn->mandatoryPrefix = 0;
1040 
1041   // At this point we have consumed the full opcode.
1042   // Anything we consume from here on must be unconsumed.
1043   insn->opcode = current;
1044 
1045   return false;
1046 }
1047 
1048 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1049 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1050   for (int i = 0;; i++) {
1051     if (orig[i] == '\0' && equiv[i] == '\0')
1052       return true;
1053     if (orig[i] == '\0' || equiv[i] == '\0')
1054       return false;
1055     if (orig[i] != equiv[i]) {
1056       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1057         continue;
1058       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1059         continue;
1060       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1061         continue;
1062       return false;
1063     }
1064   }
1065 }
1066 
1067 // Determine whether this instruction is a 64-bit instruction.
1068 static bool is64Bit(const char *name) {
1069   for (int i = 0;; ++i) {
1070     if (name[i] == '\0')
1071       return false;
1072     if (name[i] == '6' && name[i + 1] == '4')
1073       return true;
1074   }
1075 }
1076 
1077 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1078 // for extended and escape opcodes, and using a supplied attribute mask.
1079 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1080                                         struct InternalInstruction *insn,
1081                                         uint16_t attrMask) {
1082   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1083   const ContextDecision *decision;
1084   switch (insn->opcodeType) {
1085   case ONEBYTE:
1086     decision = &ONEBYTE_SYM;
1087     break;
1088   case TWOBYTE:
1089     decision = &TWOBYTE_SYM;
1090     break;
1091   case THREEBYTE_38:
1092     decision = &THREEBYTE38_SYM;
1093     break;
1094   case THREEBYTE_3A:
1095     decision = &THREEBYTE3A_SYM;
1096     break;
1097   case XOP8_MAP:
1098     decision = &XOP8_MAP_SYM;
1099     break;
1100   case XOP9_MAP:
1101     decision = &XOP9_MAP_SYM;
1102     break;
1103   case XOPA_MAP:
1104     decision = &XOPA_MAP_SYM;
1105     break;
1106   case THREEDNOW_MAP:
1107     decision = &THREEDNOW_MAP_SYM;
1108     break;
1109   case MAP4:
1110     decision = &MAP4_SYM;
1111     break;
1112   case MAP5:
1113     decision = &MAP5_SYM;
1114     break;
1115   case MAP6:
1116     decision = &MAP6_SYM;
1117     break;
1118   case MAP7:
1119     decision = &MAP7_SYM;
1120     break;
1121   }
1122 
1123   if (decision->opcodeDecisions[insnCtx]
1124           .modRMDecisions[insn->opcode]
1125           .modrm_type != MODRM_ONEENTRY) {
1126     if (readModRM(insn))
1127       return -1;
1128     *instructionID =
1129         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1130   } else {
1131     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1132   }
1133 
1134   return 0;
1135 }
1136 
1137 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1138 // for extended and escape opcodes. Determines the attributes and context for
1139 // the instruction before doing so.
1140 static int getInstructionID(struct InternalInstruction *insn,
1141                             const MCInstrInfo *mii) {
1142   uint16_t attrMask;
1143   uint16_t instructionID;
1144 
1145   LLVM_DEBUG(dbgs() << "getID()");
1146 
1147   attrMask = ATTR_NONE;
1148 
1149   if (insn->mode == MODE_64BIT)
1150     attrMask |= ATTR_64BIT;
1151 
1152   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1153     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1154 
1155     if (insn->vectorExtensionType == TYPE_EVEX) {
1156       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1157       case VEX_PREFIX_66:
1158         attrMask |= ATTR_OPSIZE;
1159         break;
1160       case VEX_PREFIX_F3:
1161         attrMask |= ATTR_XS;
1162         break;
1163       case VEX_PREFIX_F2:
1164         attrMask |= ATTR_XD;
1165         break;
1166       }
1167 
1168       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1169         attrMask |= ATTR_EVEXKZ;
1170       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1171         attrMask |= ATTR_EVEXB;
1172       // nf bit is the MSB of aaa
1173       if (nfFromEVEX4of4(insn->vectorExtensionPrefix[3]) &&
1174           insn->opcodeType == MAP4)
1175         attrMask |= ATTR_EVEXNF;
1176       else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1177         attrMask |= ATTR_EVEXK;
1178       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1179         attrMask |= ATTR_VEXL;
1180       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1181         attrMask |= ATTR_EVEXL2;
1182     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1183       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1184       case VEX_PREFIX_66:
1185         attrMask |= ATTR_OPSIZE;
1186         break;
1187       case VEX_PREFIX_F3:
1188         attrMask |= ATTR_XS;
1189         break;
1190       case VEX_PREFIX_F2:
1191         attrMask |= ATTR_XD;
1192         break;
1193       }
1194 
1195       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1196         attrMask |= ATTR_VEXL;
1197     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1198       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1199       case VEX_PREFIX_66:
1200         attrMask |= ATTR_OPSIZE;
1201         if (insn->hasAdSize)
1202           attrMask |= ATTR_ADSIZE;
1203         break;
1204       case VEX_PREFIX_F3:
1205         attrMask |= ATTR_XS;
1206         break;
1207       case VEX_PREFIX_F2:
1208         attrMask |= ATTR_XD;
1209         break;
1210       }
1211 
1212       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1213         attrMask |= ATTR_VEXL;
1214     } else if (insn->vectorExtensionType == TYPE_XOP) {
1215       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1216       case VEX_PREFIX_66:
1217         attrMask |= ATTR_OPSIZE;
1218         break;
1219       case VEX_PREFIX_F3:
1220         attrMask |= ATTR_XS;
1221         break;
1222       case VEX_PREFIX_F2:
1223         attrMask |= ATTR_XD;
1224         break;
1225       }
1226 
1227       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1228         attrMask |= ATTR_VEXL;
1229     } else {
1230       return -1;
1231     }
1232   } else if (!insn->mandatoryPrefix) {
1233     // If we don't have mandatory prefix we should use legacy prefixes here
1234     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1235       attrMask |= ATTR_OPSIZE;
1236     if (insn->hasAdSize)
1237       attrMask |= ATTR_ADSIZE;
1238     if (insn->opcodeType == ONEBYTE) {
1239       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1240         // Special support for PAUSE
1241         attrMask |= ATTR_XS;
1242     } else {
1243       if (insn->repeatPrefix == 0xf2)
1244         attrMask |= ATTR_XD;
1245       else if (insn->repeatPrefix == 0xf3)
1246         attrMask |= ATTR_XS;
1247     }
1248   } else {
1249     switch (insn->mandatoryPrefix) {
1250     case 0xf2:
1251       attrMask |= ATTR_XD;
1252       break;
1253     case 0xf3:
1254       attrMask |= ATTR_XS;
1255       break;
1256     case 0x66:
1257       if (insn->mode != MODE_16BIT)
1258         attrMask |= ATTR_OPSIZE;
1259       if (insn->hasAdSize)
1260         attrMask |= ATTR_ADSIZE;
1261       break;
1262     case 0x67:
1263       attrMask |= ATTR_ADSIZE;
1264       break;
1265     }
1266   }
1267 
1268   if (insn->rexPrefix & 0x08) {
1269     attrMask |= ATTR_REXW;
1270     attrMask &= ~ATTR_ADSIZE;
1271   }
1272 
1273   // Absolute jump and pushp/popp need special handling
1274   if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
1275       (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
1276     attrMask |= ATTR_REX2;
1277 
1278   if (insn->mode == MODE_16BIT) {
1279     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1280     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1281     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1282       attrMask ^= ATTR_ADSIZE;
1283     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1284     // prefix isn't present, we need to force the opsize attribute since the
1285     // prefix is inverted relative to 32-bit mode.
1286     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1287         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1288       attrMask |= ATTR_OPSIZE;
1289 
1290     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1291         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1292       attrMask |= ATTR_OPSIZE;
1293   }
1294 
1295 
1296   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1297     return -1;
1298 
1299   // The following clauses compensate for limitations of the tables.
1300 
1301   if (insn->mode != MODE_64BIT &&
1302       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1303     // The tables can't distinquish between cases where the W-bit is used to
1304     // select register size and cases where its a required part of the opcode.
1305     if ((insn->vectorExtensionType == TYPE_EVEX &&
1306          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1307         (insn->vectorExtensionType == TYPE_VEX_3B &&
1308          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1309         (insn->vectorExtensionType == TYPE_XOP &&
1310          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1311 
1312       uint16_t instructionIDWithREXW;
1313       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1314                                        attrMask | ATTR_REXW)) {
1315         insn->instructionID = instructionID;
1316         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1317         return 0;
1318       }
1319 
1320       auto SpecName = mii->getName(instructionIDWithREXW);
1321       // If not a 64-bit instruction. Switch the opcode.
1322       if (!is64Bit(SpecName.data())) {
1323         insn->instructionID = instructionIDWithREXW;
1324         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1325         return 0;
1326       }
1327     }
1328   }
1329 
1330   // Absolute moves, umonitor, and movdir64b need special handling.
1331   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1332   //  inverted w.r.t.
1333   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1334   //  any position.
1335   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1336       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1337       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
1338       (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
1339     // Make sure we observed the prefixes in any position.
1340     if (insn->hasAdSize)
1341       attrMask |= ATTR_ADSIZE;
1342     if (insn->hasOpSize)
1343       attrMask |= ATTR_OPSIZE;
1344 
1345     // In 16-bit, invert the attributes.
1346     if (insn->mode == MODE_16BIT) {
1347       attrMask ^= ATTR_ADSIZE;
1348 
1349       // The OpSize attribute is only valid with the absolute moves.
1350       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1351         attrMask ^= ATTR_OPSIZE;
1352     }
1353 
1354     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1355       return -1;
1356 
1357     insn->instructionID = instructionID;
1358     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1359     return 0;
1360   }
1361 
1362   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1363       !(attrMask & ATTR_OPSIZE)) {
1364     // The instruction tables make no distinction between instructions that
1365     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1366     // particular spot (i.e., many MMX operations). In general we're
1367     // conservative, but in the specific case where OpSize is present but not in
1368     // the right place we check if there's a 16-bit operation.
1369     const struct InstructionSpecifier *spec;
1370     uint16_t instructionIDWithOpsize;
1371     llvm::StringRef specName, specWithOpSizeName;
1372 
1373     spec = &INSTRUCTIONS_SYM[instructionID];
1374 
1375     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1376                                      attrMask | ATTR_OPSIZE)) {
1377       // ModRM required with OpSize but not present. Give up and return the
1378       // version without OpSize set.
1379       insn->instructionID = instructionID;
1380       insn->spec = spec;
1381       return 0;
1382     }
1383 
1384     specName = mii->getName(instructionID);
1385     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1386 
1387     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1388         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1389       insn->instructionID = instructionIDWithOpsize;
1390       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1391     } else {
1392       insn->instructionID = instructionID;
1393       insn->spec = spec;
1394     }
1395     return 0;
1396   }
1397 
1398   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1399       insn->rexPrefix & 0x01) {
1400     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1401     // as XCHG %r8, %eax.
1402     const struct InstructionSpecifier *spec;
1403     uint16_t instructionIDWithNewOpcode;
1404     const struct InstructionSpecifier *specWithNewOpcode;
1405 
1406     spec = &INSTRUCTIONS_SYM[instructionID];
1407 
1408     // Borrow opcode from one of the other XCHGar opcodes
1409     insn->opcode = 0x91;
1410 
1411     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1412                                      attrMask)) {
1413       insn->opcode = 0x90;
1414 
1415       insn->instructionID = instructionID;
1416       insn->spec = spec;
1417       return 0;
1418     }
1419 
1420     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1421 
1422     // Change back
1423     insn->opcode = 0x90;
1424 
1425     insn->instructionID = instructionIDWithNewOpcode;
1426     insn->spec = specWithNewOpcode;
1427 
1428     return 0;
1429   }
1430 
1431   insn->instructionID = instructionID;
1432   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1433 
1434   return 0;
1435 }
1436 
1437 // Read an operand from the opcode field of an instruction and interprets it
1438 // appropriately given the operand width. Handles AddRegFrm instructions.
1439 //
1440 // @param insn  - the instruction whose opcode field is to be read.
1441 // @param size  - The width (in bytes) of the register being specified.
1442 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1443 //                RAX.
1444 // @return      - 0 on success; nonzero otherwise.
1445 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1446   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1447 
1448   if (size == 0)
1449     size = insn->registerSize;
1450 
1451   auto setOpcodeRegister = [&](unsigned base) {
1452     insn->opcodeRegister =
1453         (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
1454                       (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
1455                       (insn->opcode & 7)));
1456   };
1457 
1458   switch (size) {
1459   case 1:
1460     setOpcodeRegister(MODRM_REG_AL);
1461     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1462         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1463       insn->opcodeRegister =
1464           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1465     }
1466 
1467     break;
1468   case 2:
1469     setOpcodeRegister(MODRM_REG_AX);
1470     break;
1471   case 4:
1472     setOpcodeRegister(MODRM_REG_EAX);
1473     break;
1474   case 8:
1475     setOpcodeRegister(MODRM_REG_RAX);
1476     break;
1477   }
1478 
1479   return 0;
1480 }
1481 
1482 // Consume an immediate operand from an instruction, given the desired operand
1483 // size.
1484 //
1485 // @param insn  - The instruction whose operand is to be read.
1486 // @param size  - The width (in bytes) of the operand.
1487 // @return      - 0 if the immediate was successfully consumed; nonzero
1488 //                otherwise.
1489 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1490   uint8_t imm8;
1491   uint16_t imm16;
1492   uint32_t imm32;
1493   uint64_t imm64;
1494 
1495   LLVM_DEBUG(dbgs() << "readImmediate()");
1496 
1497   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1498 
1499   insn->immediateSize = size;
1500   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1501 
1502   switch (size) {
1503   case 1:
1504     if (consume(insn, imm8))
1505       return -1;
1506     insn->immediates[insn->numImmediatesConsumed] = imm8;
1507     break;
1508   case 2:
1509     if (consume(insn, imm16))
1510       return -1;
1511     insn->immediates[insn->numImmediatesConsumed] = imm16;
1512     break;
1513   case 4:
1514     if (consume(insn, imm32))
1515       return -1;
1516     insn->immediates[insn->numImmediatesConsumed] = imm32;
1517     break;
1518   case 8:
1519     if (consume(insn, imm64))
1520       return -1;
1521     insn->immediates[insn->numImmediatesConsumed] = imm64;
1522     break;
1523   default:
1524     llvm_unreachable("invalid size");
1525   }
1526 
1527   insn->numImmediatesConsumed++;
1528 
1529   return 0;
1530 }
1531 
1532 // Consume vvvv from an instruction if it has a VEX prefix.
1533 static int readVVVV(struct InternalInstruction *insn) {
1534   LLVM_DEBUG(dbgs() << "readVVVV()");
1535 
1536   int vvvv;
1537   if (insn->vectorExtensionType == TYPE_EVEX)
1538     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1539             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1540   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1541     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1542   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1543     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1544   else if (insn->vectorExtensionType == TYPE_XOP)
1545     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1546   else
1547     return -1;
1548 
1549   if (insn->mode != MODE_64BIT)
1550     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1551 
1552   insn->vvvv = static_cast<Reg>(vvvv);
1553   return 0;
1554 }
1555 
1556 // Read an mask register from the opcode field of an instruction.
1557 //
1558 // @param insn    - The instruction whose opcode field is to be read.
1559 // @return        - 0 on success; nonzero otherwise.
1560 static int readMaskRegister(struct InternalInstruction *insn) {
1561   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1562 
1563   if (insn->vectorExtensionType != TYPE_EVEX)
1564     return -1;
1565 
1566   insn->writemask =
1567       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1568   return 0;
1569 }
1570 
1571 // Consults the specifier for an instruction and consumes all
1572 // operands for that instruction, interpreting them as it goes.
1573 static int readOperands(struct InternalInstruction *insn) {
1574   int hasVVVV, needVVVV;
1575   int sawRegImm = 0;
1576 
1577   LLVM_DEBUG(dbgs() << "readOperands()");
1578 
1579   // If non-zero vvvv specified, make sure one of the operands uses it.
1580   hasVVVV = !readVVVV(insn);
1581   needVVVV = hasVVVV && (insn->vvvv != 0);
1582 
1583   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1584     switch (Op.encoding) {
1585     case ENCODING_NONE:
1586     case ENCODING_SI:
1587     case ENCODING_DI:
1588       break;
1589     CASE_ENCODING_VSIB:
1590       // VSIB can use the V2 bit so check only the other bits.
1591       if (needVVVV)
1592         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1593       if (readModRM(insn))
1594         return -1;
1595 
1596       // Reject if SIB wasn't used.
1597       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1598         return -1;
1599 
1600       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1601       if (insn->sibIndex == SIB_INDEX_NONE)
1602         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1603 
1604       // If EVEX.v2 is set this is one of the 16-31 registers.
1605       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1606           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1607         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1608 
1609       // Adjust the index register to the correct size.
1610       switch ((OperandType)Op.type) {
1611       default:
1612         debug("Unhandled VSIB index type");
1613         return -1;
1614       case TYPE_MVSIBX:
1615         insn->sibIndex =
1616             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1617         break;
1618       case TYPE_MVSIBY:
1619         insn->sibIndex =
1620             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1621         break;
1622       case TYPE_MVSIBZ:
1623         insn->sibIndex =
1624             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1625         break;
1626       }
1627 
1628       // Apply the AVX512 compressed displacement scaling factor.
1629       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1630         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1631       break;
1632     case ENCODING_SIB:
1633       // Reject if SIB wasn't used.
1634       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1635         return -1;
1636       if (readModRM(insn))
1637         return -1;
1638       if (fixupReg(insn, &Op))
1639         return -1;
1640       break;
1641     case ENCODING_REG:
1642     CASE_ENCODING_RM:
1643       if (readModRM(insn))
1644         return -1;
1645       if (fixupReg(insn, &Op))
1646         return -1;
1647       // Apply the AVX512 compressed displacement scaling factor.
1648       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1649         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1650       break;
1651     case ENCODING_IB:
1652       if (sawRegImm) {
1653         // Saw a register immediate so don't read again and instead split the
1654         // previous immediate. FIXME: This is a hack.
1655         insn->immediates[insn->numImmediatesConsumed] =
1656             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1657         ++insn->numImmediatesConsumed;
1658         break;
1659       }
1660       if (readImmediate(insn, 1))
1661         return -1;
1662       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1663         sawRegImm = 1;
1664       break;
1665     case ENCODING_IW:
1666       if (readImmediate(insn, 2))
1667         return -1;
1668       break;
1669     case ENCODING_ID:
1670       if (readImmediate(insn, 4))
1671         return -1;
1672       break;
1673     case ENCODING_IO:
1674       if (readImmediate(insn, 8))
1675         return -1;
1676       break;
1677     case ENCODING_Iv:
1678       if (readImmediate(insn, insn->immediateSize))
1679         return -1;
1680       break;
1681     case ENCODING_Ia:
1682       if (readImmediate(insn, insn->addressSize))
1683         return -1;
1684       break;
1685     case ENCODING_IRC:
1686       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1687                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1688       break;
1689     case ENCODING_RB:
1690       if (readOpcodeRegister(insn, 1))
1691         return -1;
1692       break;
1693     case ENCODING_RW:
1694       if (readOpcodeRegister(insn, 2))
1695         return -1;
1696       break;
1697     case ENCODING_RD:
1698       if (readOpcodeRegister(insn, 4))
1699         return -1;
1700       break;
1701     case ENCODING_RO:
1702       if (readOpcodeRegister(insn, 8))
1703         return -1;
1704       break;
1705     case ENCODING_Rv:
1706       if (readOpcodeRegister(insn, 0))
1707         return -1;
1708       break;
1709     case ENCODING_CC:
1710       insn->immediates[1] = insn->opcode & 0xf;
1711       break;
1712     case ENCODING_FP:
1713       break;
1714     case ENCODING_VVVV:
1715       needVVVV = 0; // Mark that we have found a VVVV operand.
1716       if (!hasVVVV)
1717         return -1;
1718       if (insn->mode != MODE_64BIT)
1719         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1720       if (fixupReg(insn, &Op))
1721         return -1;
1722       break;
1723     case ENCODING_WRITEMASK:
1724       if (readMaskRegister(insn))
1725         return -1;
1726       break;
1727     case ENCODING_DUP:
1728       break;
1729     default:
1730       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1731       return -1;
1732     }
1733   }
1734 
1735   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1736   if (needVVVV)
1737     return -1;
1738 
1739   return 0;
1740 }
1741 
1742 namespace llvm {
1743 
1744 // Fill-ins to make the compiler happy. These constants are never actually
1745 // assigned; they are just filler to make an automatically-generated switch
1746 // statement work.
1747 namespace X86 {
1748   enum {
1749     BX_SI = 500,
1750     BX_DI = 501,
1751     BP_SI = 502,
1752     BP_DI = 503,
1753     sib   = 504,
1754     sib64 = 505
1755   };
1756 } // namespace X86
1757 
1758 } // namespace llvm
1759 
1760 static bool translateInstruction(MCInst &target,
1761                                 InternalInstruction &source,
1762                                 const MCDisassembler *Dis);
1763 
1764 namespace {
1765 
1766 /// Generic disassembler for all X86 platforms. All each platform class should
1767 /// have to do is subclass the constructor, and provide a different
1768 /// disassemblerMode value.
1769 class X86GenericDisassembler : public MCDisassembler {
1770   std::unique_ptr<const MCInstrInfo> MII;
1771 public:
1772   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1773                          std::unique_ptr<const MCInstrInfo> MII);
1774 public:
1775   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1776                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1777                               raw_ostream &cStream) const override;
1778 
1779 private:
1780   DisassemblerMode              fMode;
1781 };
1782 
1783 } // namespace
1784 
1785 X86GenericDisassembler::X86GenericDisassembler(
1786                                          const MCSubtargetInfo &STI,
1787                                          MCContext &Ctx,
1788                                          std::unique_ptr<const MCInstrInfo> MII)
1789   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1790   const FeatureBitset &FB = STI.getFeatureBits();
1791   if (FB[X86::Is16Bit]) {
1792     fMode = MODE_16BIT;
1793     return;
1794   } else if (FB[X86::Is32Bit]) {
1795     fMode = MODE_32BIT;
1796     return;
1797   } else if (FB[X86::Is64Bit]) {
1798     fMode = MODE_64BIT;
1799     return;
1800   }
1801 
1802   llvm_unreachable("Invalid CPU mode");
1803 }
1804 
1805 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1806     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1807     raw_ostream &CStream) const {
1808   CommentStream = &CStream;
1809 
1810   InternalInstruction Insn;
1811   memset(&Insn, 0, sizeof(InternalInstruction));
1812   Insn.bytes = Bytes;
1813   Insn.startLocation = Address;
1814   Insn.readerCursor = Address;
1815   Insn.mode = fMode;
1816 
1817   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1818       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1819       readOperands(&Insn)) {
1820     Size = Insn.readerCursor - Address;
1821     return Fail;
1822   }
1823 
1824   Insn.operands = x86OperandSets[Insn.spec->operands];
1825   Insn.length = Insn.readerCursor - Insn.startLocation;
1826   Size = Insn.length;
1827   if (Size > 15)
1828     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1829 
1830   bool Ret = translateInstruction(Instr, Insn, this);
1831   if (!Ret) {
1832     unsigned Flags = X86::IP_NO_PREFIX;
1833     if (Insn.hasAdSize)
1834       Flags |= X86::IP_HAS_AD_SIZE;
1835     if (!Insn.mandatoryPrefix) {
1836       if (Insn.hasOpSize)
1837         Flags |= X86::IP_HAS_OP_SIZE;
1838       if (Insn.repeatPrefix == 0xf2)
1839         Flags |= X86::IP_HAS_REPEAT_NE;
1840       else if (Insn.repeatPrefix == 0xf3 &&
1841                // It should not be 'pause' f3 90
1842                Insn.opcode != 0x90)
1843         Flags |= X86::IP_HAS_REPEAT;
1844       if (Insn.hasLockPrefix)
1845         Flags |= X86::IP_HAS_LOCK;
1846     }
1847     Instr.setFlags(Flags);
1848   }
1849   return (!Ret) ? Success : Fail;
1850 }
1851 
1852 //
1853 // Private code that translates from struct InternalInstructions to MCInsts.
1854 //
1855 
1856 /// translateRegister - Translates an internal register to the appropriate LLVM
1857 ///   register, and appends it as an operand to an MCInst.
1858 ///
1859 /// @param mcInst     - The MCInst to append to.
1860 /// @param reg        - The Reg to append.
1861 static void translateRegister(MCInst &mcInst, Reg reg) {
1862 #define ENTRY(x) X86::x,
1863   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1864 #undef ENTRY
1865 
1866   MCPhysReg llvmRegnum = llvmRegnums[reg];
1867   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1868 }
1869 
1870 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1871   0,        // SEG_OVERRIDE_NONE
1872   X86::CS,
1873   X86::SS,
1874   X86::DS,
1875   X86::ES,
1876   X86::FS,
1877   X86::GS
1878 };
1879 
1880 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1881 ///
1882 /// @param mcInst       - The MCInst to append to.
1883 /// @param insn         - The internal instruction.
1884 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1885   unsigned baseRegNo;
1886 
1887   if (insn.mode == MODE_64BIT)
1888     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1889   else if (insn.mode == MODE_32BIT)
1890     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1891   else {
1892     assert(insn.mode == MODE_16BIT);
1893     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1894   }
1895   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1896   mcInst.addOperand(baseReg);
1897 
1898   MCOperand segmentReg;
1899   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1900   mcInst.addOperand(segmentReg);
1901   return false;
1902 }
1903 
1904 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1905 ///
1906 /// @param mcInst       - The MCInst to append to.
1907 /// @param insn         - The internal instruction.
1908 
1909 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1910   unsigned baseRegNo;
1911 
1912   if (insn.mode == MODE_64BIT)
1913     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1914   else if (insn.mode == MODE_32BIT)
1915     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1916   else {
1917     assert(insn.mode == MODE_16BIT);
1918     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1919   }
1920   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1921   mcInst.addOperand(baseReg);
1922   return false;
1923 }
1924 
1925 /// translateImmediate  - Appends an immediate operand to an MCInst.
1926 ///
1927 /// @param mcInst       - The MCInst to append to.
1928 /// @param immediate    - The immediate value to append.
1929 /// @param operand      - The operand, as stored in the descriptor table.
1930 /// @param insn         - The internal instruction.
1931 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1932                                const OperandSpecifier &operand,
1933                                InternalInstruction &insn,
1934                                const MCDisassembler *Dis) {
1935   // Sign-extend the immediate if necessary.
1936 
1937   OperandType type = (OperandType)operand.type;
1938 
1939   bool isBranch = false;
1940   uint64_t pcrel = 0;
1941   if (type == TYPE_REL) {
1942     isBranch = true;
1943     pcrel = insn.startLocation + insn.length;
1944     switch (operand.encoding) {
1945     default:
1946       break;
1947     case ENCODING_Iv:
1948       switch (insn.displacementSize) {
1949       default:
1950         break;
1951       case 1:
1952         if(immediate & 0x80)
1953           immediate |= ~(0xffull);
1954         break;
1955       case 2:
1956         if(immediate & 0x8000)
1957           immediate |= ~(0xffffull);
1958         break;
1959       case 4:
1960         if(immediate & 0x80000000)
1961           immediate |= ~(0xffffffffull);
1962         break;
1963       case 8:
1964         break;
1965       }
1966       break;
1967     case ENCODING_IB:
1968       if(immediate & 0x80)
1969         immediate |= ~(0xffull);
1970       break;
1971     case ENCODING_IW:
1972       if(immediate & 0x8000)
1973         immediate |= ~(0xffffull);
1974       break;
1975     case ENCODING_ID:
1976       if(immediate & 0x80000000)
1977         immediate |= ~(0xffffffffull);
1978       break;
1979     }
1980   }
1981   // By default sign-extend all X86 immediates based on their encoding.
1982   else if (type == TYPE_IMM) {
1983     switch (operand.encoding) {
1984     default:
1985       break;
1986     case ENCODING_IB:
1987       if(immediate & 0x80)
1988         immediate |= ~(0xffull);
1989       break;
1990     case ENCODING_IW:
1991       if(immediate & 0x8000)
1992         immediate |= ~(0xffffull);
1993       break;
1994     case ENCODING_ID:
1995       if(immediate & 0x80000000)
1996         immediate |= ~(0xffffffffull);
1997       break;
1998     case ENCODING_IO:
1999       break;
2000     }
2001   }
2002 
2003   switch (type) {
2004   case TYPE_XMM:
2005     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
2006     return;
2007   case TYPE_YMM:
2008     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
2009     return;
2010   case TYPE_ZMM:
2011     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
2012     return;
2013   default:
2014     // operand is 64 bits wide.  Do nothing.
2015     break;
2016   }
2017 
2018   if (!Dis->tryAddingSymbolicOperand(
2019           mcInst, immediate + pcrel, insn.startLocation, isBranch,
2020           insn.immediateOffset, insn.immediateSize, insn.length))
2021     mcInst.addOperand(MCOperand::createImm(immediate));
2022 
2023   if (type == TYPE_MOFFS) {
2024     MCOperand segmentReg;
2025     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2026     mcInst.addOperand(segmentReg);
2027   }
2028 }
2029 
2030 /// translateRMRegister - Translates a register stored in the R/M field of the
2031 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2032 /// @param mcInst       - The MCInst to append to.
2033 /// @param insn         - The internal instruction to extract the R/M field
2034 ///                       from.
2035 /// @return             - 0 on success; -1 otherwise
2036 static bool translateRMRegister(MCInst &mcInst,
2037                                 InternalInstruction &insn) {
2038   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2039     debug("A R/M register operand may not have a SIB byte");
2040     return true;
2041   }
2042 
2043   switch (insn.eaBase) {
2044   default:
2045     debug("Unexpected EA base register");
2046     return true;
2047   case EA_BASE_NONE:
2048     debug("EA_BASE_NONE for ModR/M base");
2049     return true;
2050 #define ENTRY(x) case EA_BASE_##x:
2051   ALL_EA_BASES
2052 #undef ENTRY
2053     debug("A R/M register operand may not have a base; "
2054           "the operand must be a register.");
2055     return true;
2056 #define ENTRY(x)                                                      \
2057   case EA_REG_##x:                                                    \
2058     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2059   ALL_REGS
2060 #undef ENTRY
2061   }
2062 
2063   return false;
2064 }
2065 
2066 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2067 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2068 ///   operand in LLVM's format, and appends it to an MCInst.
2069 ///
2070 /// @param mcInst       - The MCInst to append to.
2071 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2072 ///                       from.
2073 /// @param ForceSIB     - The instruction must use SIB.
2074 /// @return             - 0 on success; nonzero otherwise
2075 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2076                               const MCDisassembler *Dis,
2077                               bool ForceSIB = false) {
2078   // Addresses in an MCInst are represented as five operands:
2079   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2080   //                                SIB base
2081   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2082   //                                scale amount
2083   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2084   //                                the index (which is multiplied by the
2085   //                                scale amount)
2086   //   4. displacement  (immediate) 0, or the displacement if there is one
2087   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2088   //                                if we have segment overrides
2089 
2090   MCOperand baseReg;
2091   MCOperand scaleAmount;
2092   MCOperand indexReg;
2093   MCOperand displacement;
2094   MCOperand segmentReg;
2095   uint64_t pcrel = 0;
2096 
2097   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2098     if (insn.sibBase != SIB_BASE_NONE) {
2099       switch (insn.sibBase) {
2100       default:
2101         debug("Unexpected sibBase");
2102         return true;
2103 #define ENTRY(x)                                          \
2104       case SIB_BASE_##x:                                  \
2105         baseReg = MCOperand::createReg(X86::x); break;
2106       ALL_SIB_BASES
2107 #undef ENTRY
2108       }
2109     } else {
2110       baseReg = MCOperand::createReg(X86::NoRegister);
2111     }
2112 
2113     if (insn.sibIndex != SIB_INDEX_NONE) {
2114       switch (insn.sibIndex) {
2115       default:
2116         debug("Unexpected sibIndex");
2117         return true;
2118 #define ENTRY(x)                                          \
2119       case SIB_INDEX_##x:                                 \
2120         indexReg = MCOperand::createReg(X86::x); break;
2121       EA_BASES_32BIT
2122       EA_BASES_64BIT
2123       REGS_XMM
2124       REGS_YMM
2125       REGS_ZMM
2126 #undef ENTRY
2127       }
2128     } else {
2129       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2130       // but no index is used and modrm alone should have been enough.
2131       // -No base register in 32-bit mode. In 64-bit mode this is used to
2132       //  avoid rip-relative addressing.
2133       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2134       //  base always requires a SIB byte.
2135       // -A scale other than 1 is used.
2136       if (!ForceSIB &&
2137           (insn.sibScale != 1 ||
2138            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2139            (insn.sibBase != SIB_BASE_NONE &&
2140             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2141             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2142         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2143                                                                 X86::RIZ);
2144       } else
2145         indexReg = MCOperand::createReg(X86::NoRegister);
2146     }
2147 
2148     scaleAmount = MCOperand::createImm(insn.sibScale);
2149   } else {
2150     switch (insn.eaBase) {
2151     case EA_BASE_NONE:
2152       if (insn.eaDisplacement == EA_DISP_NONE) {
2153         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2154         return true;
2155       }
2156       if (insn.mode == MODE_64BIT){
2157         pcrel = insn.startLocation + insn.length;
2158         Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2159                                              insn.startLocation +
2160                                                  insn.displacementOffset);
2161         // Section 2.2.1.6
2162         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2163                                                                X86::RIP);
2164       }
2165       else
2166         baseReg = MCOperand::createReg(X86::NoRegister);
2167 
2168       indexReg = MCOperand::createReg(X86::NoRegister);
2169       break;
2170     case EA_BASE_BX_SI:
2171       baseReg = MCOperand::createReg(X86::BX);
2172       indexReg = MCOperand::createReg(X86::SI);
2173       break;
2174     case EA_BASE_BX_DI:
2175       baseReg = MCOperand::createReg(X86::BX);
2176       indexReg = MCOperand::createReg(X86::DI);
2177       break;
2178     case EA_BASE_BP_SI:
2179       baseReg = MCOperand::createReg(X86::BP);
2180       indexReg = MCOperand::createReg(X86::SI);
2181       break;
2182     case EA_BASE_BP_DI:
2183       baseReg = MCOperand::createReg(X86::BP);
2184       indexReg = MCOperand::createReg(X86::DI);
2185       break;
2186     default:
2187       indexReg = MCOperand::createReg(X86::NoRegister);
2188       switch (insn.eaBase) {
2189       default:
2190         debug("Unexpected eaBase");
2191         return true;
2192         // Here, we will use the fill-ins defined above.  However,
2193         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2194         //   sib and sib64 were handled in the top-level if, so they're only
2195         //   placeholders to keep the compiler happy.
2196 #define ENTRY(x)                                        \
2197       case EA_BASE_##x:                                 \
2198         baseReg = MCOperand::createReg(X86::x); break;
2199       ALL_EA_BASES
2200 #undef ENTRY
2201 #define ENTRY(x) case EA_REG_##x:
2202       ALL_REGS
2203 #undef ENTRY
2204         debug("A R/M memory operand may not be a register; "
2205               "the base field must be a base.");
2206         return true;
2207       }
2208     }
2209 
2210     scaleAmount = MCOperand::createImm(1);
2211   }
2212 
2213   displacement = MCOperand::createImm(insn.displacement);
2214 
2215   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2216 
2217   mcInst.addOperand(baseReg);
2218   mcInst.addOperand(scaleAmount);
2219   mcInst.addOperand(indexReg);
2220 
2221   const uint8_t dispSize =
2222       (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2223 
2224   if (!Dis->tryAddingSymbolicOperand(
2225           mcInst, insn.displacement + pcrel, insn.startLocation, false,
2226           insn.displacementOffset, dispSize, insn.length))
2227     mcInst.addOperand(displacement);
2228   mcInst.addOperand(segmentReg);
2229   return false;
2230 }
2231 
2232 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2233 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2234 ///
2235 /// @param mcInst       - The MCInst to append to.
2236 /// @param operand      - The operand, as stored in the descriptor table.
2237 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2238 ///                       from.
2239 /// @return             - 0 on success; nonzero otherwise
2240 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2241                         InternalInstruction &insn, const MCDisassembler *Dis) {
2242   switch (operand.type) {
2243   default:
2244     debug("Unexpected type for a R/M operand");
2245     return true;
2246   case TYPE_R8:
2247   case TYPE_R16:
2248   case TYPE_R32:
2249   case TYPE_R64:
2250   case TYPE_Rv:
2251   case TYPE_MM64:
2252   case TYPE_XMM:
2253   case TYPE_YMM:
2254   case TYPE_ZMM:
2255   case TYPE_TMM:
2256   case TYPE_VK_PAIR:
2257   case TYPE_VK:
2258   case TYPE_DEBUGREG:
2259   case TYPE_CONTROLREG:
2260   case TYPE_BNDR:
2261     return translateRMRegister(mcInst, insn);
2262   case TYPE_M:
2263   case TYPE_MVSIBX:
2264   case TYPE_MVSIBY:
2265   case TYPE_MVSIBZ:
2266     return translateRMMemory(mcInst, insn, Dis);
2267   case TYPE_MSIB:
2268     return translateRMMemory(mcInst, insn, Dis, true);
2269   }
2270 }
2271 
2272 /// translateFPRegister - Translates a stack position on the FPU stack to its
2273 ///   LLVM form, and appends it to an MCInst.
2274 ///
2275 /// @param mcInst       - The MCInst to append to.
2276 /// @param stackPos     - The stack position to translate.
2277 static void translateFPRegister(MCInst &mcInst,
2278                                 uint8_t stackPos) {
2279   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2280 }
2281 
2282 /// translateMaskRegister - Translates a 3-bit mask register number to
2283 ///   LLVM form, and appends it to an MCInst.
2284 ///
2285 /// @param mcInst       - The MCInst to append to.
2286 /// @param maskRegNum   - Number of mask register from 0 to 7.
2287 /// @return             - false on success; true otherwise.
2288 static bool translateMaskRegister(MCInst &mcInst,
2289                                 uint8_t maskRegNum) {
2290   if (maskRegNum >= 8) {
2291     debug("Invalid mask register number");
2292     return true;
2293   }
2294 
2295   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2296   return false;
2297 }
2298 
2299 /// translateOperand - Translates an operand stored in an internal instruction
2300 ///   to LLVM's format and appends it to an MCInst.
2301 ///
2302 /// @param mcInst       - The MCInst to append to.
2303 /// @param operand      - The operand, as stored in the descriptor table.
2304 /// @param insn         - The internal instruction.
2305 /// @return             - false on success; true otherwise.
2306 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2307                              InternalInstruction &insn,
2308                              const MCDisassembler *Dis) {
2309   switch (operand.encoding) {
2310   default:
2311     debug("Unhandled operand encoding during translation");
2312     return true;
2313   case ENCODING_REG:
2314     translateRegister(mcInst, insn.reg);
2315     return false;
2316   case ENCODING_WRITEMASK:
2317     return translateMaskRegister(mcInst, insn.writemask);
2318   case ENCODING_SIB:
2319   CASE_ENCODING_RM:
2320   CASE_ENCODING_VSIB:
2321     return translateRM(mcInst, operand, insn, Dis);
2322   case ENCODING_IB:
2323   case ENCODING_IW:
2324   case ENCODING_ID:
2325   case ENCODING_IO:
2326   case ENCODING_Iv:
2327   case ENCODING_Ia:
2328     translateImmediate(mcInst,
2329                        insn.immediates[insn.numImmediatesTranslated++],
2330                        operand,
2331                        insn,
2332                        Dis);
2333     return false;
2334   case ENCODING_IRC:
2335     mcInst.addOperand(MCOperand::createImm(insn.RC));
2336     return false;
2337   case ENCODING_SI:
2338     return translateSrcIndex(mcInst, insn);
2339   case ENCODING_DI:
2340     return translateDstIndex(mcInst, insn);
2341   case ENCODING_RB:
2342   case ENCODING_RW:
2343   case ENCODING_RD:
2344   case ENCODING_RO:
2345   case ENCODING_Rv:
2346     translateRegister(mcInst, insn.opcodeRegister);
2347     return false;
2348   case ENCODING_CC:
2349     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2350     return false;
2351   case ENCODING_FP:
2352     translateFPRegister(mcInst, insn.modRM & 7);
2353     return false;
2354   case ENCODING_VVVV:
2355     translateRegister(mcInst, insn.vvvv);
2356     return false;
2357   case ENCODING_DUP:
2358     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2359                             insn, Dis);
2360   }
2361 }
2362 
2363 /// translateInstruction - Translates an internal instruction and all its
2364 ///   operands to an MCInst.
2365 ///
2366 /// @param mcInst       - The MCInst to populate with the instruction's data.
2367 /// @param insn         - The internal instruction.
2368 /// @return             - false on success; true otherwise.
2369 static bool translateInstruction(MCInst &mcInst,
2370                                 InternalInstruction &insn,
2371                                 const MCDisassembler *Dis) {
2372   if (!insn.spec) {
2373     debug("Instruction has no specification");
2374     return true;
2375   }
2376 
2377   mcInst.clear();
2378   mcInst.setOpcode(insn.instructionID);
2379   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2380   // prefix bytes should be disassembled as xrelease and xacquire then set the
2381   // opcode to those instead of the rep and repne opcodes.
2382   if (insn.xAcquireRelease) {
2383     if(mcInst.getOpcode() == X86::REP_PREFIX)
2384       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2385     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2386       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2387   }
2388 
2389   insn.numImmediatesTranslated = 0;
2390 
2391   for (const auto &Op : insn.operands) {
2392     if (Op.encoding != ENCODING_NONE) {
2393       if (translateOperand(mcInst, Op, insn, Dis)) {
2394         return true;
2395       }
2396     }
2397   }
2398 
2399   return false;
2400 }
2401 
2402 static MCDisassembler *createX86Disassembler(const Target &T,
2403                                              const MCSubtargetInfo &STI,
2404                                              MCContext &Ctx) {
2405   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2406   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2407 }
2408 
2409 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2410   // Register the disassembler.
2411   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2412                                          createX86Disassembler);
2413   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2414                                          createX86Disassembler);
2415 }
2416