1 //===- X86Operand.h - Parsed X86 machine instruction ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H 10 #define LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H 11 12 #include "MCTargetDesc/X86IntelInstPrinter.h" 13 #include "MCTargetDesc/X86MCTargetDesc.h" 14 #include "X86AsmParserCommon.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/MC/MCExpr.h" 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 20 #include "llvm/MC/MCRegisterInfo.h" 21 #include "llvm/MC/MCSymbol.h" 22 #include "llvm/Support/Casting.h" 23 #include "llvm/Support/SMLoc.h" 24 #include <cassert> 25 #include <memory> 26 27 namespace llvm { 28 29 /// X86Operand - Instances of this class represent a parsed X86 machine 30 /// instruction. 31 struct X86Operand final : public MCParsedAsmOperand { 32 enum KindTy { Token, Register, Immediate, Memory, Prefix, DXRegister } Kind; 33 34 SMLoc StartLoc, EndLoc; 35 SMLoc OffsetOfLoc; 36 StringRef SymName; 37 void *OpDecl; 38 bool AddressOf; 39 40 /// This used for inline asm which may specify base reg and index reg for 41 /// MemOp. e.g. ARR[eax + ecx*4], so no extra reg can be used for MemOp. 42 bool UseUpRegs = false; 43 44 struct TokOp { 45 const char *Data; 46 unsigned Length; 47 }; 48 49 struct RegOp { 50 unsigned RegNo; 51 }; 52 53 struct PrefOp { 54 unsigned Prefixes; 55 }; 56 57 struct ImmOp { 58 const MCExpr *Val; 59 bool LocalRef; 60 }; 61 62 struct MemOp { 63 unsigned SegReg; 64 const MCExpr *Disp; 65 unsigned BaseReg; 66 unsigned DefaultBaseReg; 67 unsigned IndexReg; 68 unsigned Scale; 69 unsigned Size; 70 unsigned ModeSize; 71 72 /// If the memory operand is unsized and there are multiple instruction 73 /// matches, prefer the one with this size. 74 unsigned FrontendSize; 75 76 /// If false, then this operand must be a memory operand for an indirect 77 /// branch instruction. Otherwise, this operand may belong to either a 78 /// direct or indirect branch instruction. 79 bool MaybeDirectBranchDest; 80 }; 81 82 union { 83 struct TokOp Tok; 84 struct RegOp Reg; 85 struct ImmOp Imm; 86 struct MemOp Mem; 87 struct PrefOp Pref; 88 }; 89 90 X86Operand(KindTy K, SMLoc Start, SMLoc End) 91 : Kind(K), StartLoc(Start), EndLoc(End), OpDecl(nullptr), 92 AddressOf(false) {} 93 94 StringRef getSymName() override { return SymName; } 95 void *getOpDecl() override { return OpDecl; } 96 97 /// getStartLoc - Get the location of the first token of this operand. 98 SMLoc getStartLoc() const override { return StartLoc; } 99 100 /// getEndLoc - Get the location of the last token of this operand. 101 SMLoc getEndLoc() const override { return EndLoc; } 102 103 /// getLocRange - Get the range between the first and last token of this 104 /// operand. 105 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 106 107 /// getOffsetOfLoc - Get the location of the offset operator. 108 SMLoc getOffsetOfLoc() const override { return OffsetOfLoc; } 109 110 void print(raw_ostream &OS) const override { 111 112 auto PrintImmValue = [&](const MCExpr *Val, const char *VName) { 113 if (Val->getKind() == MCExpr::Constant) { 114 if (auto Imm = cast<MCConstantExpr>(Val)->getValue()) 115 OS << VName << Imm; 116 } else if (Val->getKind() == MCExpr::SymbolRef) { 117 if (auto *SRE = dyn_cast<MCSymbolRefExpr>(Val)) { 118 const MCSymbol &Sym = SRE->getSymbol(); 119 if (const char *SymNameStr = Sym.getName().data()) 120 OS << VName << SymNameStr; 121 } 122 } 123 }; 124 125 switch (Kind) { 126 case Token: 127 OS << Tok.Data; 128 break; 129 case Register: 130 OS << "Reg:" << X86IntelInstPrinter::getRegisterName(Reg.RegNo); 131 break; 132 case DXRegister: 133 OS << "DXReg"; 134 break; 135 case Immediate: 136 PrintImmValue(Imm.Val, "Imm:"); 137 break; 138 case Prefix: 139 OS << "Prefix:" << Pref.Prefixes; 140 break; 141 case Memory: 142 OS << "Memory: ModeSize=" << Mem.ModeSize; 143 if (Mem.Size) 144 OS << ",Size=" << Mem.Size; 145 if (Mem.BaseReg) 146 OS << ",BaseReg=" << X86IntelInstPrinter::getRegisterName(Mem.BaseReg); 147 if (Mem.IndexReg) 148 OS << ",IndexReg=" 149 << X86IntelInstPrinter::getRegisterName(Mem.IndexReg); 150 if (Mem.Scale) 151 OS << ",Scale=" << Mem.Scale; 152 if (Mem.Disp) 153 PrintImmValue(Mem.Disp, ",Disp="); 154 if (Mem.SegReg) 155 OS << ",SegReg=" << X86IntelInstPrinter::getRegisterName(Mem.SegReg); 156 break; 157 } 158 } 159 160 StringRef getToken() const { 161 assert(Kind == Token && "Invalid access!"); 162 return StringRef(Tok.Data, Tok.Length); 163 } 164 void setTokenValue(StringRef Value) { 165 assert(Kind == Token && "Invalid access!"); 166 Tok.Data = Value.data(); 167 Tok.Length = Value.size(); 168 } 169 170 unsigned getReg() const override { 171 assert(Kind == Register && "Invalid access!"); 172 return Reg.RegNo; 173 } 174 175 unsigned getPrefix() const { 176 assert(Kind == Prefix && "Invalid access!"); 177 return Pref.Prefixes; 178 } 179 180 const MCExpr *getImm() const { 181 assert(Kind == Immediate && "Invalid access!"); 182 return Imm.Val; 183 } 184 185 const MCExpr *getMemDisp() const { 186 assert(Kind == Memory && "Invalid access!"); 187 return Mem.Disp; 188 } 189 unsigned getMemSegReg() const { 190 assert(Kind == Memory && "Invalid access!"); 191 return Mem.SegReg; 192 } 193 unsigned getMemBaseReg() const { 194 assert(Kind == Memory && "Invalid access!"); 195 return Mem.BaseReg; 196 } 197 unsigned getMemDefaultBaseReg() const { 198 assert(Kind == Memory && "Invalid access!"); 199 return Mem.DefaultBaseReg; 200 } 201 unsigned getMemIndexReg() const { 202 assert(Kind == Memory && "Invalid access!"); 203 return Mem.IndexReg; 204 } 205 unsigned getMemScale() const { 206 assert(Kind == Memory && "Invalid access!"); 207 return Mem.Scale; 208 } 209 unsigned getMemModeSize() const { 210 assert(Kind == Memory && "Invalid access!"); 211 return Mem.ModeSize; 212 } 213 unsigned getMemFrontendSize() const { 214 assert(Kind == Memory && "Invalid access!"); 215 return Mem.FrontendSize; 216 } 217 bool isMaybeDirectBranchDest() const { 218 assert(Kind == Memory && "Invalid access!"); 219 return Mem.MaybeDirectBranchDest; 220 } 221 222 bool isToken() const override {return Kind == Token; } 223 224 bool isImm() const override { return Kind == Immediate; } 225 226 bool isImmSExti16i8() const { 227 if (!isImm()) 228 return false; 229 230 // If this isn't a constant expr, just assume it fits and let relaxation 231 // handle it. 232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 233 if (!CE) 234 return true; 235 236 // Otherwise, check the value is in a range that makes sense for this 237 // extension. 238 return isImmSExti16i8Value(CE->getValue()); 239 } 240 bool isImmSExti32i8() const { 241 if (!isImm()) 242 return false; 243 244 // If this isn't a constant expr, just assume it fits and let relaxation 245 // handle it. 246 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 247 if (!CE) 248 return true; 249 250 // Otherwise, check the value is in a range that makes sense for this 251 // extension. 252 return isImmSExti32i8Value(CE->getValue()); 253 } 254 bool isImmSExti64i8() const { 255 if (!isImm()) 256 return false; 257 258 // If this isn't a constant expr, just assume it fits and let relaxation 259 // handle it. 260 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 261 if (!CE) 262 return true; 263 264 // Otherwise, check the value is in a range that makes sense for this 265 // extension. 266 return isImmSExti64i8Value(CE->getValue()); 267 } 268 bool isImmSExti64i32() const { 269 if (!isImm()) 270 return false; 271 272 // If this isn't a constant expr, just assume it fits and let relaxation 273 // handle it. 274 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 275 if (!CE) 276 return true; 277 278 // Otherwise, check the value is in a range that makes sense for this 279 // extension. 280 return isImmSExti64i32Value(CE->getValue()); 281 } 282 283 bool isImmUnsignedi4() const { 284 if (!isImm()) return false; 285 // If this isn't a constant expr, reject it. The immediate byte is shared 286 // with a register encoding. We can't have it affected by a relocation. 287 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 288 if (!CE) return false; 289 return isImmUnsignedi4Value(CE->getValue()); 290 } 291 292 bool isImmUnsignedi8() const { 293 if (!isImm()) return false; 294 // If this isn't a constant expr, just assume it fits and let relaxation 295 // handle it. 296 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 297 if (!CE) return true; 298 return isImmUnsignedi8Value(CE->getValue()); 299 } 300 301 bool isOffsetOfLocal() const override { return isImm() && Imm.LocalRef; } 302 303 bool needAddressOf() const override { return AddressOf; } 304 305 bool isMem() const override { return Kind == Memory; } 306 bool isMemUnsized() const { 307 return Kind == Memory && Mem.Size == 0; 308 } 309 bool isMem8() const { 310 return Kind == Memory && (!Mem.Size || Mem.Size == 8); 311 } 312 bool isMem16() const { 313 return Kind == Memory && (!Mem.Size || Mem.Size == 16); 314 } 315 bool isMem32() const { 316 return Kind == Memory && (!Mem.Size || Mem.Size == 32); 317 } 318 bool isMem64() const { 319 return Kind == Memory && (!Mem.Size || Mem.Size == 64); 320 } 321 bool isMem80() const { 322 return Kind == Memory && (!Mem.Size || Mem.Size == 80); 323 } 324 bool isMem128() const { 325 return Kind == Memory && (!Mem.Size || Mem.Size == 128); 326 } 327 bool isMem256() const { 328 return Kind == Memory && (!Mem.Size || Mem.Size == 256); 329 } 330 bool isMem512() const { 331 return Kind == Memory && (!Mem.Size || Mem.Size == 512); 332 } 333 334 bool isSibMem() const { 335 return isMem() && Mem.BaseReg != X86::RIP && Mem.BaseReg != X86::EIP; 336 } 337 338 bool isMemIndexReg(unsigned LowR, unsigned HighR) const { 339 assert(Kind == Memory && "Invalid access!"); 340 return Mem.IndexReg >= LowR && Mem.IndexReg <= HighR; 341 } 342 343 bool isMem64_RC128() const { 344 return isMem64() && isMemIndexReg(X86::XMM0, X86::XMM15); 345 } 346 bool isMem128_RC128() const { 347 return isMem128() && isMemIndexReg(X86::XMM0, X86::XMM15); 348 } 349 bool isMem128_RC256() const { 350 return isMem128() && isMemIndexReg(X86::YMM0, X86::YMM15); 351 } 352 bool isMem256_RC128() const { 353 return isMem256() && isMemIndexReg(X86::XMM0, X86::XMM15); 354 } 355 bool isMem256_RC256() const { 356 return isMem256() && isMemIndexReg(X86::YMM0, X86::YMM15); 357 } 358 359 bool isMem64_RC128X() const { 360 return isMem64() && isMemIndexReg(X86::XMM0, X86::XMM31); 361 } 362 bool isMem128_RC128X() const { 363 return isMem128() && isMemIndexReg(X86::XMM0, X86::XMM31); 364 } 365 bool isMem128_RC256X() const { 366 return isMem128() && isMemIndexReg(X86::YMM0, X86::YMM31); 367 } 368 bool isMem256_RC128X() const { 369 return isMem256() && isMemIndexReg(X86::XMM0, X86::XMM31); 370 } 371 bool isMem256_RC256X() const { 372 return isMem256() && isMemIndexReg(X86::YMM0, X86::YMM31); 373 } 374 bool isMem256_RC512() const { 375 return isMem256() && isMemIndexReg(X86::ZMM0, X86::ZMM31); 376 } 377 bool isMem512_RC256X() const { 378 return isMem512() && isMemIndexReg(X86::YMM0, X86::YMM31); 379 } 380 bool isMem512_RC512() const { 381 return isMem512() && isMemIndexReg(X86::ZMM0, X86::ZMM31); 382 } 383 384 bool isAbsMem() const { 385 return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && 386 !getMemIndexReg() && getMemScale() == 1 && isMaybeDirectBranchDest(); 387 } 388 389 bool isAVX512RC() const{ 390 return isImm(); 391 } 392 393 bool isAbsMem16() const { 394 return isAbsMem() && Mem.ModeSize == 16; 395 } 396 397 bool isMemUseUpRegs() const override { return UseUpRegs; } 398 399 bool isSrcIdx() const { 400 return !getMemIndexReg() && getMemScale() == 1 && 401 (getMemBaseReg() == X86::RSI || getMemBaseReg() == X86::ESI || 402 getMemBaseReg() == X86::SI) && isa<MCConstantExpr>(getMemDisp()) && 403 cast<MCConstantExpr>(getMemDisp())->getValue() == 0; 404 } 405 bool isSrcIdx8() const { 406 return isMem8() && isSrcIdx(); 407 } 408 bool isSrcIdx16() const { 409 return isMem16() && isSrcIdx(); 410 } 411 bool isSrcIdx32() const { 412 return isMem32() && isSrcIdx(); 413 } 414 bool isSrcIdx64() const { 415 return isMem64() && isSrcIdx(); 416 } 417 418 bool isDstIdx() const { 419 return !getMemIndexReg() && getMemScale() == 1 && 420 (getMemSegReg() == 0 || getMemSegReg() == X86::ES) && 421 (getMemBaseReg() == X86::RDI || getMemBaseReg() == X86::EDI || 422 getMemBaseReg() == X86::DI) && isa<MCConstantExpr>(getMemDisp()) && 423 cast<MCConstantExpr>(getMemDisp())->getValue() == 0; 424 } 425 bool isDstIdx8() const { 426 return isMem8() && isDstIdx(); 427 } 428 bool isDstIdx16() const { 429 return isMem16() && isDstIdx(); 430 } 431 bool isDstIdx32() const { 432 return isMem32() && isDstIdx(); 433 } 434 bool isDstIdx64() const { 435 return isMem64() && isDstIdx(); 436 } 437 438 bool isMemOffs() const { 439 return Kind == Memory && !getMemBaseReg() && !getMemIndexReg() && 440 getMemScale() == 1; 441 } 442 443 bool isMemOffs16_8() const { 444 return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 8); 445 } 446 bool isMemOffs16_16() const { 447 return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 16); 448 } 449 bool isMemOffs16_32() const { 450 return isMemOffs() && Mem.ModeSize == 16 && (!Mem.Size || Mem.Size == 32); 451 } 452 bool isMemOffs32_8() const { 453 return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 8); 454 } 455 bool isMemOffs32_16() const { 456 return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 16); 457 } 458 bool isMemOffs32_32() const { 459 return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 32); 460 } 461 bool isMemOffs32_64() const { 462 return isMemOffs() && Mem.ModeSize == 32 && (!Mem.Size || Mem.Size == 64); 463 } 464 bool isMemOffs64_8() const { 465 return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 8); 466 } 467 bool isMemOffs64_16() const { 468 return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 16); 469 } 470 bool isMemOffs64_32() const { 471 return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 32); 472 } 473 bool isMemOffs64_64() const { 474 return isMemOffs() && Mem.ModeSize == 64 && (!Mem.Size || Mem.Size == 64); 475 } 476 477 bool isPrefix() const { return Kind == Prefix; } 478 bool isReg() const override { return Kind == Register; } 479 bool isDXReg() const { return Kind == DXRegister; } 480 481 bool isGR32orGR64() const { 482 return Kind == Register && 483 (X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) || 484 X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg())); 485 } 486 487 bool isGR16orGR32orGR64() const { 488 return Kind == Register && 489 (X86MCRegisterClasses[X86::GR16RegClassID].contains(getReg()) || 490 X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) || 491 X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg())); 492 } 493 494 bool isVectorReg() const { 495 return Kind == Register && 496 (X86MCRegisterClasses[X86::VR64RegClassID].contains(getReg()) || 497 X86MCRegisterClasses[X86::VR128XRegClassID].contains(getReg()) || 498 X86MCRegisterClasses[X86::VR256XRegClassID].contains(getReg()) || 499 X86MCRegisterClasses[X86::VR512RegClassID].contains(getReg())); 500 } 501 502 bool isVK1Pair() const { 503 return Kind == Register && 504 X86MCRegisterClasses[X86::VK1RegClassID].contains(getReg()); 505 } 506 507 bool isVK2Pair() const { 508 return Kind == Register && 509 X86MCRegisterClasses[X86::VK2RegClassID].contains(getReg()); 510 } 511 512 bool isVK4Pair() const { 513 return Kind == Register && 514 X86MCRegisterClasses[X86::VK4RegClassID].contains(getReg()); 515 } 516 517 bool isVK8Pair() const { 518 return Kind == Register && 519 X86MCRegisterClasses[X86::VK8RegClassID].contains(getReg()); 520 } 521 522 bool isVK16Pair() const { 523 return Kind == Register && 524 X86MCRegisterClasses[X86::VK16RegClassID].contains(getReg()); 525 } 526 527 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 528 // Add as immediates when possible. 529 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 530 Inst.addOperand(MCOperand::createImm(CE->getValue())); 531 else 532 Inst.addOperand(MCOperand::createExpr(Expr)); 533 } 534 535 void addRegOperands(MCInst &Inst, unsigned N) const { 536 assert(N == 1 && "Invalid number of operands!"); 537 Inst.addOperand(MCOperand::createReg(getReg())); 538 } 539 540 void addGR32orGR64Operands(MCInst &Inst, unsigned N) const { 541 assert(N == 1 && "Invalid number of operands!"); 542 MCRegister RegNo = getReg(); 543 if (X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo)) 544 RegNo = getX86SubSuperRegister(RegNo, 32); 545 Inst.addOperand(MCOperand::createReg(RegNo)); 546 } 547 548 void addGR16orGR32orGR64Operands(MCInst &Inst, unsigned N) const { 549 assert(N == 1 && "Invalid number of operands!"); 550 MCRegister RegNo = getReg(); 551 if (X86MCRegisterClasses[X86::GR32RegClassID].contains(RegNo) || 552 X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo)) 553 RegNo = getX86SubSuperRegister(RegNo, 16); 554 Inst.addOperand(MCOperand::createReg(RegNo)); 555 } 556 557 void addAVX512RCOperands(MCInst &Inst, unsigned N) const { 558 assert(N == 1 && "Invalid number of operands!"); 559 addExpr(Inst, getImm()); 560 } 561 562 void addImmOperands(MCInst &Inst, unsigned N) const { 563 assert(N == 1 && "Invalid number of operands!"); 564 addExpr(Inst, getImm()); 565 } 566 567 void addMaskPairOperands(MCInst &Inst, unsigned N) const { 568 assert(N == 1 && "Invalid number of operands!"); 569 unsigned Reg = getReg(); 570 switch (Reg) { 571 case X86::K0: 572 case X86::K1: 573 Reg = X86::K0_K1; 574 break; 575 case X86::K2: 576 case X86::K3: 577 Reg = X86::K2_K3; 578 break; 579 case X86::K4: 580 case X86::K5: 581 Reg = X86::K4_K5; 582 break; 583 case X86::K6: 584 case X86::K7: 585 Reg = X86::K6_K7; 586 break; 587 } 588 Inst.addOperand(MCOperand::createReg(Reg)); 589 } 590 591 void addMemOperands(MCInst &Inst, unsigned N) const { 592 assert((N == 5) && "Invalid number of operands!"); 593 if (getMemBaseReg()) 594 Inst.addOperand(MCOperand::createReg(getMemBaseReg())); 595 else 596 Inst.addOperand(MCOperand::createReg(getMemDefaultBaseReg())); 597 Inst.addOperand(MCOperand::createImm(getMemScale())); 598 Inst.addOperand(MCOperand::createReg(getMemIndexReg())); 599 addExpr(Inst, getMemDisp()); 600 Inst.addOperand(MCOperand::createReg(getMemSegReg())); 601 } 602 603 void addAbsMemOperands(MCInst &Inst, unsigned N) const { 604 assert((N == 1) && "Invalid number of operands!"); 605 // Add as immediates when possible. 606 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp())) 607 Inst.addOperand(MCOperand::createImm(CE->getValue())); 608 else 609 Inst.addOperand(MCOperand::createExpr(getMemDisp())); 610 } 611 612 void addSrcIdxOperands(MCInst &Inst, unsigned N) const { 613 assert((N == 2) && "Invalid number of operands!"); 614 Inst.addOperand(MCOperand::createReg(getMemBaseReg())); 615 Inst.addOperand(MCOperand::createReg(getMemSegReg())); 616 } 617 618 void addDstIdxOperands(MCInst &Inst, unsigned N) const { 619 assert((N == 1) && "Invalid number of operands!"); 620 Inst.addOperand(MCOperand::createReg(getMemBaseReg())); 621 } 622 623 void addMemOffsOperands(MCInst &Inst, unsigned N) const { 624 assert((N == 2) && "Invalid number of operands!"); 625 // Add as immediates when possible. 626 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp())) 627 Inst.addOperand(MCOperand::createImm(CE->getValue())); 628 else 629 Inst.addOperand(MCOperand::createExpr(getMemDisp())); 630 Inst.addOperand(MCOperand::createReg(getMemSegReg())); 631 } 632 633 static std::unique_ptr<X86Operand> CreateToken(StringRef Str, SMLoc Loc) { 634 SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size()); 635 auto Res = std::make_unique<X86Operand>(Token, Loc, EndLoc); 636 Res->Tok.Data = Str.data(); 637 Res->Tok.Length = Str.size(); 638 return Res; 639 } 640 641 static std::unique_ptr<X86Operand> 642 CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc, 643 bool AddressOf = false, SMLoc OffsetOfLoc = SMLoc(), 644 StringRef SymName = StringRef(), void *OpDecl = nullptr) { 645 auto Res = std::make_unique<X86Operand>(Register, StartLoc, EndLoc); 646 Res->Reg.RegNo = RegNo; 647 Res->AddressOf = AddressOf; 648 Res->OffsetOfLoc = OffsetOfLoc; 649 Res->SymName = SymName; 650 Res->OpDecl = OpDecl; 651 return Res; 652 } 653 654 static std::unique_ptr<X86Operand> 655 CreateDXReg(SMLoc StartLoc, SMLoc EndLoc) { 656 return std::make_unique<X86Operand>(DXRegister, StartLoc, EndLoc); 657 } 658 659 static std::unique_ptr<X86Operand> 660 CreatePrefix(unsigned Prefixes, SMLoc StartLoc, SMLoc EndLoc) { 661 auto Res = std::make_unique<X86Operand>(Prefix, StartLoc, EndLoc); 662 Res->Pref.Prefixes = Prefixes; 663 return Res; 664 } 665 666 static std::unique_ptr<X86Operand> CreateImm(const MCExpr *Val, 667 SMLoc StartLoc, SMLoc EndLoc, 668 StringRef SymName = StringRef(), 669 void *OpDecl = nullptr, 670 bool GlobalRef = true) { 671 auto Res = std::make_unique<X86Operand>(Immediate, StartLoc, EndLoc); 672 Res->Imm.Val = Val; 673 Res->Imm.LocalRef = !GlobalRef; 674 Res->SymName = SymName; 675 Res->OpDecl = OpDecl; 676 Res->AddressOf = true; 677 return Res; 678 } 679 680 /// Create an absolute memory operand. 681 static std::unique_ptr<X86Operand> 682 CreateMem(unsigned ModeSize, const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, 683 unsigned Size = 0, StringRef SymName = StringRef(), 684 void *OpDecl = nullptr, unsigned FrontendSize = 0, 685 bool UseUpRegs = false, bool MaybeDirectBranchDest = true) { 686 auto Res = std::make_unique<X86Operand>(Memory, StartLoc, EndLoc); 687 Res->Mem.SegReg = 0; 688 Res->Mem.Disp = Disp; 689 Res->Mem.BaseReg = 0; 690 Res->Mem.DefaultBaseReg = 0; 691 Res->Mem.IndexReg = 0; 692 Res->Mem.Scale = 1; 693 Res->Mem.Size = Size; 694 Res->Mem.ModeSize = ModeSize; 695 Res->Mem.FrontendSize = FrontendSize; 696 Res->Mem.MaybeDirectBranchDest = MaybeDirectBranchDest; 697 Res->UseUpRegs = UseUpRegs; 698 Res->SymName = SymName; 699 Res->OpDecl = OpDecl; 700 Res->AddressOf = false; 701 return Res; 702 } 703 704 /// Create a generalized memory operand. 705 static std::unique_ptr<X86Operand> 706 CreateMem(unsigned ModeSize, unsigned SegReg, const MCExpr *Disp, 707 unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc StartLoc, 708 SMLoc EndLoc, unsigned Size = 0, 709 unsigned DefaultBaseReg = X86::NoRegister, 710 StringRef SymName = StringRef(), void *OpDecl = nullptr, 711 unsigned FrontendSize = 0, bool UseUpRegs = false, 712 bool MaybeDirectBranchDest = true) { 713 // We should never just have a displacement, that should be parsed as an 714 // absolute memory operand. 715 assert((SegReg || BaseReg || IndexReg || DefaultBaseReg) && 716 "Invalid memory operand!"); 717 718 // The scale should always be one of {1,2,4,8}. 719 assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && 720 "Invalid scale!"); 721 auto Res = std::make_unique<X86Operand>(Memory, StartLoc, EndLoc); 722 Res->Mem.SegReg = SegReg; 723 Res->Mem.Disp = Disp; 724 Res->Mem.BaseReg = BaseReg; 725 Res->Mem.DefaultBaseReg = DefaultBaseReg; 726 Res->Mem.IndexReg = IndexReg; 727 Res->Mem.Scale = Scale; 728 Res->Mem.Size = Size; 729 Res->Mem.ModeSize = ModeSize; 730 Res->Mem.FrontendSize = FrontendSize; 731 Res->Mem.MaybeDirectBranchDest = MaybeDirectBranchDest; 732 Res->UseUpRegs = UseUpRegs; 733 Res->SymName = SymName; 734 Res->OpDecl = OpDecl; 735 Res->AddressOf = false; 736 return Res; 737 } 738 }; 739 740 } // end namespace llvm 741 742 #endif // LLVM_LIB_TARGET_X86_ASMPARSER_X86OPERAND_H 743