xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetMachine.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the WebAssembly-specific subclass of TargetMachine.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyTargetMachine.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "TargetInfo/WebAssemblyTargetInfo.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssembly.h"
19 #include "WebAssemblyMachineFunctionInfo.h"
20 #include "WebAssemblyTargetObjectFile.h"
21 #include "WebAssemblyTargetTransformInfo.h"
22 #include "llvm/CodeGen/MIRParser/MIParser.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegAllocRegistry.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Scalar/LowerAtomic.h"
33 #include "llvm/Transforms/Utils.h"
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "wasm"
37 
38 // A command-line option to keep implicit locals
39 // for the purpose of testing with lit/llc ONLY.
40 // This produces output which is not valid WebAssembly, and is not supported
41 // by assemblers/disassemblers and other MC based tools.
42 static cl::opt<bool> WasmDisableExplicitLocals(
43     "wasm-disable-explicit-locals", cl::Hidden,
44     cl::desc("WebAssembly: output implicit locals in"
45              " instruction output for test purposes only."),
46     cl::init(false));
47 
48 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeWebAssemblyTarget() {
49   // Register the target.
50   RegisterTargetMachine<WebAssemblyTargetMachine> X(
51       getTheWebAssemblyTarget32());
52   RegisterTargetMachine<WebAssemblyTargetMachine> Y(
53       getTheWebAssemblyTarget64());
54 
55   // Register backend passes
56   auto &PR = *PassRegistry::getPassRegistry();
57   initializeWebAssemblyAddMissingPrototypesPass(PR);
58   initializeWebAssemblyLowerEmscriptenEHSjLjPass(PR);
59   initializeLowerGlobalDtorsPass(PR);
60   initializeFixFunctionBitcastsPass(PR);
61   initializeOptimizeReturnedPass(PR);
62   initializeWebAssemblyArgumentMovePass(PR);
63   initializeWebAssemblySetP2AlignOperandsPass(PR);
64   initializeWebAssemblyReplacePhysRegsPass(PR);
65   initializeWebAssemblyPrepareForLiveIntervalsPass(PR);
66   initializeWebAssemblyOptimizeLiveIntervalsPass(PR);
67   initializeWebAssemblyMemIntrinsicResultsPass(PR);
68   initializeWebAssemblyRegStackifyPass(PR);
69   initializeWebAssemblyRegColoringPass(PR);
70   initializeWebAssemblyNullifyDebugValueListsPass(PR);
71   initializeWebAssemblyFixIrreducibleControlFlowPass(PR);
72   initializeWebAssemblyLateEHPreparePass(PR);
73   initializeWebAssemblyExceptionInfoPass(PR);
74   initializeWebAssemblyCFGSortPass(PR);
75   initializeWebAssemblyCFGStackifyPass(PR);
76   initializeWebAssemblyExplicitLocalsPass(PR);
77   initializeWebAssemblyLowerBrUnlessPass(PR);
78   initializeWebAssemblyRegNumberingPass(PR);
79   initializeWebAssemblyDebugFixupPass(PR);
80   initializeWebAssemblyPeepholePass(PR);
81   initializeWebAssemblyMCLowerPrePassPass(PR);
82 }
83 
84 //===----------------------------------------------------------------------===//
85 // WebAssembly Lowering public interface.
86 //===----------------------------------------------------------------------===//
87 
88 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM,
89                                            const Triple &TT) {
90   if (!RM.hasValue()) {
91     // Default to static relocation model.  This should always be more optimial
92     // than PIC since the static linker can determine all global addresses and
93     // assume direct function calls.
94     return Reloc::Static;
95   }
96 
97   if (!TT.isOSEmscripten()) {
98     // Relocation modes other than static are currently implemented in a way
99     // that only works for Emscripten, so disable them if we aren't targeting
100     // Emscripten.
101     return Reloc::Static;
102   }
103 
104   return *RM;
105 }
106 
107 /// Create an WebAssembly architecture model.
108 ///
109 WebAssemblyTargetMachine::WebAssemblyTargetMachine(
110     const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
111     const TargetOptions &Options, Optional<Reloc::Model> RM,
112     Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
113     : LLVMTargetMachine(
114           T,
115           TT.isArch64Bit()
116               ? (TT.isOSEmscripten() ? "e-m:e-p:64:64-p10:8:8-p20:8:8-i64:64-"
117                                        "f128:64-n32:64-S128-ni:1:10:20"
118                                      : "e-m:e-p:64:64-p10:8:8-p20:8:8-i64:64-"
119                                        "n32:64-S128-ni:1:10:20")
120               : (TT.isOSEmscripten() ? "e-m:e-p:32:32-p10:8:8-p20:8:8-i64:64-"
121                                        "f128:64-n32:64-S128-ni:1:10:20"
122                                      : "e-m:e-p:32:32-p10:8:8-p20:8:8-i64:64-"
123                                        "n32:64-S128-ni:1:10:20"),
124           TT, CPU, FS, Options, getEffectiveRelocModel(RM, TT),
125           getEffectiveCodeModel(CM, CodeModel::Large), OL),
126       TLOF(new WebAssemblyTargetObjectFile()) {
127   // WebAssembly type-checks instructions, but a noreturn function with a return
128   // type that doesn't match the context will cause a check failure. So we lower
129   // LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's
130   // 'unreachable' instructions which is meant for that case.
131   this->Options.TrapUnreachable = true;
132 
133   // WebAssembly treats each function as an independent unit. Force
134   // -ffunction-sections, effectively, so that we can emit them independently.
135   this->Options.FunctionSections = true;
136   this->Options.DataSections = true;
137   this->Options.UniqueSectionNames = true;
138 
139   initAsmInfo();
140 
141   // Note that we don't use setRequiresStructuredCFG(true). It disables
142   // optimizations than we're ok with, and want, such as critical edge
143   // splitting and tail merging.
144 }
145 
146 WebAssemblyTargetMachine::~WebAssemblyTargetMachine() = default; // anchor.
147 
148 const WebAssemblySubtarget *WebAssemblyTargetMachine::getSubtargetImpl() const {
149   return getSubtargetImpl(std::string(getTargetCPU()),
150                           std::string(getTargetFeatureString()));
151 }
152 
153 const WebAssemblySubtarget *
154 WebAssemblyTargetMachine::getSubtargetImpl(std::string CPU,
155                                            std::string FS) const {
156   auto &I = SubtargetMap[CPU + FS];
157   if (!I) {
158     I = std::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this);
159   }
160   return I.get();
161 }
162 
163 const WebAssemblySubtarget *
164 WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const {
165   Attribute CPUAttr = F.getFnAttribute("target-cpu");
166   Attribute FSAttr = F.getFnAttribute("target-features");
167 
168   std::string CPU =
169       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
170   std::string FS =
171       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
172 
173   // This needs to be done before we create a new subtarget since any
174   // creation will depend on the TM and the code generation flags on the
175   // function that reside in TargetOptions.
176   resetTargetOptions(F);
177 
178   return getSubtargetImpl(CPU, FS);
179 }
180 
181 namespace {
182 
183 class CoalesceFeaturesAndStripAtomics final : public ModulePass {
184   // Take the union of all features used in the module and use it for each
185   // function individually, since having multiple feature sets in one module
186   // currently does not make sense for WebAssembly. If atomics are not enabled,
187   // also strip atomic operations and thread local storage.
188   static char ID;
189   WebAssemblyTargetMachine *WasmTM;
190 
191 public:
192   CoalesceFeaturesAndStripAtomics(WebAssemblyTargetMachine *WasmTM)
193       : ModulePass(ID), WasmTM(WasmTM) {}
194 
195   bool runOnModule(Module &M) override {
196     FeatureBitset Features = coalesceFeatures(M);
197 
198     std::string FeatureStr = getFeatureString(Features);
199     WasmTM->setTargetFeatureString(FeatureStr);
200     for (auto &F : M)
201       replaceFeatures(F, FeatureStr);
202 
203     bool StrippedAtomics = false;
204     bool StrippedTLS = false;
205 
206     if (!Features[WebAssembly::FeatureAtomics])
207       StrippedAtomics = stripAtomics(M);
208 
209     if (!Features[WebAssembly::FeatureBulkMemory])
210       StrippedTLS = stripThreadLocals(M);
211 
212     if (StrippedAtomics && !StrippedTLS)
213       stripThreadLocals(M);
214     else if (StrippedTLS && !StrippedAtomics)
215       stripAtomics(M);
216 
217     recordFeatures(M, Features, StrippedAtomics || StrippedTLS);
218 
219     // Conservatively assume we have made some change
220     return true;
221   }
222 
223 private:
224   FeatureBitset coalesceFeatures(const Module &M) {
225     FeatureBitset Features =
226         WasmTM
227             ->getSubtargetImpl(std::string(WasmTM->getTargetCPU()),
228                                std::string(WasmTM->getTargetFeatureString()))
229             ->getFeatureBits();
230     for (auto &F : M)
231       Features |= WasmTM->getSubtargetImpl(F)->getFeatureBits();
232     return Features;
233   }
234 
235   std::string getFeatureString(const FeatureBitset &Features) {
236     std::string Ret;
237     for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) {
238       if (Features[KV.Value])
239         Ret += (StringRef("+") + KV.Key + ",").str();
240     }
241     return Ret;
242   }
243 
244   void replaceFeatures(Function &F, const std::string &Features) {
245     F.removeFnAttr("target-features");
246     F.removeFnAttr("target-cpu");
247     F.addFnAttr("target-features", Features);
248   }
249 
250   bool stripAtomics(Module &M) {
251     // Detect whether any atomics will be lowered, since there is no way to tell
252     // whether the LowerAtomic pass lowers e.g. stores.
253     bool Stripped = false;
254     for (auto &F : M) {
255       for (auto &B : F) {
256         for (auto &I : B) {
257           if (I.isAtomic()) {
258             Stripped = true;
259             goto done;
260           }
261         }
262       }
263     }
264 
265   done:
266     if (!Stripped)
267       return false;
268 
269     LowerAtomicPass Lowerer;
270     FunctionAnalysisManager FAM;
271     for (auto &F : M)
272       Lowerer.run(F, FAM);
273 
274     return true;
275   }
276 
277   bool stripThreadLocals(Module &M) {
278     bool Stripped = false;
279     for (auto &GV : M.globals()) {
280       if (GV.isThreadLocal()) {
281         Stripped = true;
282         GV.setThreadLocal(false);
283       }
284     }
285     return Stripped;
286   }
287 
288   void recordFeatures(Module &M, const FeatureBitset &Features, bool Stripped) {
289     for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) {
290       if (Features[KV.Value]) {
291         // Mark features as used
292         std::string MDKey = (StringRef("wasm-feature-") + KV.Key).str();
293         M.addModuleFlag(Module::ModFlagBehavior::Error, MDKey,
294                         wasm::WASM_FEATURE_PREFIX_USED);
295       }
296     }
297     // Code compiled without atomics or bulk-memory may have had its atomics or
298     // thread-local data lowered to nonatomic operations or non-thread-local
299     // data. In that case, we mark the pseudo-feature "shared-mem" as disallowed
300     // to tell the linker that it would be unsafe to allow this code ot be used
301     // in a module with shared memory.
302     if (Stripped) {
303       M.addModuleFlag(Module::ModFlagBehavior::Error, "wasm-feature-shared-mem",
304                       wasm::WASM_FEATURE_PREFIX_DISALLOWED);
305     }
306   }
307 };
308 char CoalesceFeaturesAndStripAtomics::ID = 0;
309 
310 /// WebAssembly Code Generator Pass Configuration Options.
311 class WebAssemblyPassConfig final : public TargetPassConfig {
312 public:
313   WebAssemblyPassConfig(WebAssemblyTargetMachine &TM, PassManagerBase &PM)
314       : TargetPassConfig(TM, PM) {}
315 
316   WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const {
317     return getTM<WebAssemblyTargetMachine>();
318   }
319 
320   FunctionPass *createTargetRegisterAllocator(bool) override;
321 
322   void addIRPasses() override;
323   bool addInstSelector() override;
324   void addPostRegAlloc() override;
325   bool addGCPasses() override { return false; }
326   void addPreEmitPass() override;
327   bool addPreISel() override;
328 
329   // No reg alloc
330   bool addRegAssignAndRewriteFast() override { return false; }
331 
332   // No reg alloc
333   bool addRegAssignAndRewriteOptimized() override { return false; }
334 };
335 } // end anonymous namespace
336 
337 TargetTransformInfo
338 WebAssemblyTargetMachine::getTargetTransformInfo(const Function &F) {
339   return TargetTransformInfo(WebAssemblyTTIImpl(this, F));
340 }
341 
342 TargetPassConfig *
343 WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) {
344   return new WebAssemblyPassConfig(*this, PM);
345 }
346 
347 FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) {
348   return nullptr; // No reg alloc
349 }
350 
351 using WebAssembly::WasmEnableEH;
352 using WebAssembly::WasmEnableEmEH;
353 using WebAssembly::WasmEnableEmSjLj;
354 using WebAssembly::WasmEnableSjLj;
355 
356 static void basicCheckForEHAndSjLj(TargetMachine *TM) {
357   // Before checking, we make sure TargetOptions.ExceptionModel is the same as
358   // MCAsmInfo.ExceptionsType. Normally these have to be the same, because clang
359   // stores the exception model info in LangOptions, which is later transferred
360   // to TargetOptions and MCAsmInfo. But when clang compiles bitcode directly,
361   // clang's LangOptions is not used and thus the exception model info is not
362   // correctly transferred to TargetOptions and MCAsmInfo, so we make sure we
363   // have the correct exception model in in WebAssemblyMCAsmInfo constructor.
364   // But in this case TargetOptions is still not updated, so we make sure they
365   // are the same.
366   TM->Options.ExceptionModel = TM->getMCAsmInfo()->getExceptionHandlingType();
367 
368   // Basic Correctness checking related to -exception-model
369   if (TM->Options.ExceptionModel != ExceptionHandling::None &&
370       TM->Options.ExceptionModel != ExceptionHandling::Wasm)
371     report_fatal_error("-exception-model should be either 'none' or 'wasm'");
372   if (WasmEnableEmEH && TM->Options.ExceptionModel == ExceptionHandling::Wasm)
373     report_fatal_error("-exception-model=wasm not allowed with "
374                        "-enable-emscripten-cxx-exceptions");
375   if (WasmEnableEH && TM->Options.ExceptionModel != ExceptionHandling::Wasm)
376     report_fatal_error(
377         "-wasm-enable-eh only allowed with -exception-model=wasm");
378   if (WasmEnableSjLj && TM->Options.ExceptionModel != ExceptionHandling::Wasm)
379     report_fatal_error(
380         "-wasm-enable-sjlj only allowed with -exception-model=wasm");
381   if ((!WasmEnableEH && !WasmEnableSjLj) &&
382       TM->Options.ExceptionModel == ExceptionHandling::Wasm)
383     report_fatal_error(
384         "-exception-model=wasm only allowed with at least one of "
385         "-wasm-enable-eh or -wasm-enable-sjj");
386 
387   // You can't enable two modes of EH at the same time
388   if (WasmEnableEmEH && WasmEnableEH)
389     report_fatal_error(
390         "-enable-emscripten-cxx-exceptions not allowed with -wasm-enable-eh");
391   // You can't enable two modes of SjLj at the same time
392   if (WasmEnableEmSjLj && WasmEnableSjLj)
393     report_fatal_error(
394         "-enable-emscripten-sjlj not allowed with -wasm-enable-sjlj");
395   // You can't mix Emscripten EH with Wasm SjLj.
396   if (WasmEnableEmEH && WasmEnableSjLj)
397     report_fatal_error(
398         "-enable-emscripten-cxx-exceptions not allowed with -wasm-enable-sjlj");
399   // Currently it is allowed to mix Wasm EH with Emscripten SjLj as an interim
400   // measure, but some code will error out at compile time in this combination.
401   // See WebAssemblyLowerEmscriptenEHSjLj pass for details.
402 }
403 
404 //===----------------------------------------------------------------------===//
405 // The following functions are called from lib/CodeGen/Passes.cpp to modify
406 // the CodeGen pass sequence.
407 //===----------------------------------------------------------------------===//
408 
409 void WebAssemblyPassConfig::addIRPasses() {
410   // Lower atomics and TLS if necessary
411   addPass(new CoalesceFeaturesAndStripAtomics(&getWebAssemblyTargetMachine()));
412 
413   // This is a no-op if atomics are not used in the module
414   addPass(createAtomicExpandPass());
415 
416   // Add signatures to prototype-less function declarations
417   addPass(createWebAssemblyAddMissingPrototypes());
418 
419   // Lower .llvm.global_dtors into .llvm_global_ctors with __cxa_atexit calls.
420   addPass(createWebAssemblyLowerGlobalDtors());
421 
422   // Fix function bitcasts, as WebAssembly requires caller and callee signatures
423   // to match.
424   addPass(createWebAssemblyFixFunctionBitcasts());
425 
426   // Optimize "returned" function attributes.
427   if (getOptLevel() != CodeGenOpt::None)
428     addPass(createWebAssemblyOptimizeReturned());
429 
430   basicCheckForEHAndSjLj(TM);
431 
432   // If exception handling is not enabled and setjmp/longjmp handling is
433   // enabled, we lower invokes into calls and delete unreachable landingpad
434   // blocks. Lowering invokes when there is no EH support is done in
435   // TargetPassConfig::addPassesToHandleExceptions, but that runs after these IR
436   // passes and Emscripten SjLj handling expects all invokes to be lowered
437   // before.
438   if (!WasmEnableEmEH && !WasmEnableEH) {
439     addPass(createLowerInvokePass());
440     // The lower invoke pass may create unreachable code. Remove it in order not
441     // to process dead blocks in setjmp/longjmp handling.
442     addPass(createUnreachableBlockEliminationPass());
443   }
444 
445   // Handle exceptions and setjmp/longjmp if enabled. Unlike Wasm EH preparation
446   // done in WasmEHPrepare pass, Wasm SjLj preparation shares libraries and
447   // transformation algorithms with Emscripten SjLj, so we run
448   // LowerEmscriptenEHSjLj pass also when Wasm SjLj is enabled.
449   if (WasmEnableEmEH || WasmEnableEmSjLj || WasmEnableSjLj)
450     addPass(createWebAssemblyLowerEmscriptenEHSjLj());
451 
452   // Expand indirectbr instructions to switches.
453   addPass(createIndirectBrExpandPass());
454 
455   TargetPassConfig::addIRPasses();
456 }
457 
458 bool WebAssemblyPassConfig::addInstSelector() {
459   (void)TargetPassConfig::addInstSelector();
460   addPass(
461       createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel()));
462   // Run the argument-move pass immediately after the ScheduleDAG scheduler
463   // so that we can fix up the ARGUMENT instructions before anything else
464   // sees them in the wrong place.
465   addPass(createWebAssemblyArgumentMove());
466   // Set the p2align operands. This information is present during ISel, however
467   // it's inconvenient to collect. Collect it now, and update the immediate
468   // operands.
469   addPass(createWebAssemblySetP2AlignOperands());
470 
471   // Eliminate range checks and add default targets to br_table instructions.
472   addPass(createWebAssemblyFixBrTableDefaults());
473 
474   return false;
475 }
476 
477 void WebAssemblyPassConfig::addPostRegAlloc() {
478   // TODO: The following CodeGen passes don't currently support code containing
479   // virtual registers. Consider removing their restrictions and re-enabling
480   // them.
481 
482   // These functions all require the NoVRegs property.
483   disablePass(&MachineCopyPropagationID);
484   disablePass(&PostRAMachineSinkingID);
485   disablePass(&PostRASchedulerID);
486   disablePass(&FuncletLayoutID);
487   disablePass(&StackMapLivenessID);
488   disablePass(&LiveDebugValuesID);
489   disablePass(&PatchableFunctionID);
490   disablePass(&ShrinkWrapID);
491 
492   // This pass hurts code size for wasm because it can generate irreducible
493   // control flow.
494   disablePass(&MachineBlockPlacementID);
495 
496   TargetPassConfig::addPostRegAlloc();
497 }
498 
499 void WebAssemblyPassConfig::addPreEmitPass() {
500   TargetPassConfig::addPreEmitPass();
501 
502   // Nullify DBG_VALUE_LISTs that we cannot handle.
503   addPass(createWebAssemblyNullifyDebugValueLists());
504 
505   // Eliminate multiple-entry loops.
506   addPass(createWebAssemblyFixIrreducibleControlFlow());
507 
508   // Do various transformations for exception handling.
509   // Every CFG-changing optimizations should come before this.
510   if (TM->Options.ExceptionModel == ExceptionHandling::Wasm)
511     addPass(createWebAssemblyLateEHPrepare());
512 
513   // Now that we have a prologue and epilogue and all frame indices are
514   // rewritten, eliminate SP and FP. This allows them to be stackified,
515   // colored, and numbered with the rest of the registers.
516   addPass(createWebAssemblyReplacePhysRegs());
517 
518   // Preparations and optimizations related to register stackification.
519   if (getOptLevel() != CodeGenOpt::None) {
520     // LiveIntervals isn't commonly run this late. Re-establish preconditions.
521     addPass(createWebAssemblyPrepareForLiveIntervals());
522 
523     // Depend on LiveIntervals and perform some optimizations on it.
524     addPass(createWebAssemblyOptimizeLiveIntervals());
525 
526     // Prepare memory intrinsic calls for register stackifying.
527     addPass(createWebAssemblyMemIntrinsicResults());
528 
529     // Mark registers as representing wasm's value stack. This is a key
530     // code-compression technique in WebAssembly. We run this pass (and
531     // MemIntrinsicResults above) very late, so that it sees as much code as
532     // possible, including code emitted by PEI and expanded by late tail
533     // duplication.
534     addPass(createWebAssemblyRegStackify());
535 
536     // Run the register coloring pass to reduce the total number of registers.
537     // This runs after stackification so that it doesn't consider registers
538     // that become stackified.
539     addPass(createWebAssemblyRegColoring());
540   }
541 
542   // Sort the blocks of the CFG into topological order, a prerequisite for
543   // BLOCK and LOOP markers.
544   addPass(createWebAssemblyCFGSort());
545 
546   // Insert BLOCK and LOOP markers.
547   addPass(createWebAssemblyCFGStackify());
548 
549   // Insert explicit local.get and local.set operators.
550   if (!WasmDisableExplicitLocals)
551     addPass(createWebAssemblyExplicitLocals());
552 
553   // Lower br_unless into br_if.
554   addPass(createWebAssemblyLowerBrUnless());
555 
556   // Perform the very last peephole optimizations on the code.
557   if (getOptLevel() != CodeGenOpt::None)
558     addPass(createWebAssemblyPeephole());
559 
560   // Create a mapping from LLVM CodeGen virtual registers to wasm registers.
561   addPass(createWebAssemblyRegNumbering());
562 
563   // Fix debug_values whose defs have been stackified.
564   if (!WasmDisableExplicitLocals)
565     addPass(createWebAssemblyDebugFixup());
566 
567   // Collect information to prepare for MC lowering / asm printing.
568   addPass(createWebAssemblyMCLowerPrePass());
569 }
570 
571 bool WebAssemblyPassConfig::addPreISel() {
572   TargetPassConfig::addPreISel();
573   addPass(createWebAssemblyLowerRefTypesIntPtrConv());
574   return false;
575 }
576 
577 yaml::MachineFunctionInfo *
578 WebAssemblyTargetMachine::createDefaultFuncInfoYAML() const {
579   return new yaml::WebAssemblyFunctionInfo();
580 }
581 
582 yaml::MachineFunctionInfo *WebAssemblyTargetMachine::convertFuncInfoToYAML(
583     const MachineFunction &MF) const {
584   const auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
585   return new yaml::WebAssemblyFunctionInfo(*MFI);
586 }
587 
588 bool WebAssemblyTargetMachine::parseMachineFunctionInfo(
589     const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
590     SMDiagnostic &Error, SMRange &SourceRange) const {
591   const auto &YamlMFI =
592       reinterpret_cast<const yaml::WebAssemblyFunctionInfo &>(MFI);
593   MachineFunction &MF = PFS.MF;
594   MF.getInfo<WebAssemblyFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
595   return false;
596 }
597