xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetMachine.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the WebAssembly-specific subclass of TargetMachine.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyTargetMachine.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "TargetInfo/WebAssemblyTargetInfo.h"
17 #include "WebAssembly.h"
18 #include "WebAssemblyISelLowering.h"
19 #include "WebAssemblyMachineFunctionInfo.h"
20 #include "WebAssemblyTargetObjectFile.h"
21 #include "WebAssemblyTargetTransformInfo.h"
22 #include "WebAssemblyUtilities.h"
23 #include "llvm/CodeGen/MIRParser/MIParser.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/TargetPassConfig.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/TargetRegistry.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Scalar/LowerAtomicPass.h"
35 #include "llvm/Transforms/Utils.h"
36 #include <optional>
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "wasm"
40 
41 // A command-line option to keep implicit locals
42 // for the purpose of testing with lit/llc ONLY.
43 // This produces output which is not valid WebAssembly, and is not supported
44 // by assemblers/disassemblers and other MC based tools.
45 static cl::opt<bool> WasmDisableExplicitLocals(
46     "wasm-disable-explicit-locals", cl::Hidden,
47     cl::desc("WebAssembly: output implicit locals in"
48              " instruction output for test purposes only."),
49     cl::init(false));
50 
51 static cl::opt<bool> WasmDisableFixIrreducibleControlFlowPass(
52     "wasm-disable-fix-irreducible-control-flow-pass", cl::Hidden,
53     cl::desc("webassembly: disables the fix "
54              " irreducible control flow optimization pass"),
55     cl::init(false));
56 
57 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeWebAssemblyTarget() {
58   // Register the target.
59   RegisterTargetMachine<WebAssemblyTargetMachine> X(
60       getTheWebAssemblyTarget32());
61   RegisterTargetMachine<WebAssemblyTargetMachine> Y(
62       getTheWebAssemblyTarget64());
63 
64   // Register backend passes
65   auto &PR = *PassRegistry::getPassRegistry();
66   initializeWebAssemblyAddMissingPrototypesPass(PR);
67   initializeWebAssemblyLowerEmscriptenEHSjLjPass(PR);
68   initializeLowerGlobalDtorsLegacyPassPass(PR);
69   initializeFixFunctionBitcastsPass(PR);
70   initializeOptimizeReturnedPass(PR);
71   initializeWebAssemblyArgumentMovePass(PR);
72   initializeWebAssemblySetP2AlignOperandsPass(PR);
73   initializeWebAssemblyReplacePhysRegsPass(PR);
74   initializeWebAssemblyOptimizeLiveIntervalsPass(PR);
75   initializeWebAssemblyMemIntrinsicResultsPass(PR);
76   initializeWebAssemblyRegStackifyPass(PR);
77   initializeWebAssemblyRegColoringPass(PR);
78   initializeWebAssemblyNullifyDebugValueListsPass(PR);
79   initializeWebAssemblyFixIrreducibleControlFlowPass(PR);
80   initializeWebAssemblyLateEHPreparePass(PR);
81   initializeWebAssemblyExceptionInfoPass(PR);
82   initializeWebAssemblyCFGSortPass(PR);
83   initializeWebAssemblyCFGStackifyPass(PR);
84   initializeWebAssemblyExplicitLocalsPass(PR);
85   initializeWebAssemblyLowerBrUnlessPass(PR);
86   initializeWebAssemblyRegNumberingPass(PR);
87   initializeWebAssemblyDebugFixupPass(PR);
88   initializeWebAssemblyPeepholePass(PR);
89   initializeWebAssemblyMCLowerPrePassPass(PR);
90   initializeWebAssemblyLowerRefTypesIntPtrConvPass(PR);
91   initializeWebAssemblyFixBrTableDefaultsPass(PR);
92   initializeWebAssemblyDAGToDAGISelPass(PR);
93 }
94 
95 //===----------------------------------------------------------------------===//
96 // WebAssembly Lowering public interface.
97 //===----------------------------------------------------------------------===//
98 
99 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM,
100                                            const Triple &TT) {
101   if (!RM) {
102     // Default to static relocation model.  This should always be more optimial
103     // than PIC since the static linker can determine all global addresses and
104     // assume direct function calls.
105     return Reloc::Static;
106   }
107 
108   return *RM;
109 }
110 
111 /// Create an WebAssembly architecture model.
112 ///
113 WebAssemblyTargetMachine::WebAssemblyTargetMachine(
114     const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
115     const TargetOptions &Options, std::optional<Reloc::Model> RM,
116     std::optional<CodeModel::Model> CM, CodeGenOptLevel OL, bool JIT)
117     : LLVMTargetMachine(
118           T,
119           TT.isArch64Bit()
120               ? (TT.isOSEmscripten() ? "e-m:e-p:64:64-p10:8:8-p20:8:8-i64:64-"
121                                        "f128:64-n32:64-S128-ni:1:10:20"
122                                      : "e-m:e-p:64:64-p10:8:8-p20:8:8-i64:64-"
123                                        "n32:64-S128-ni:1:10:20")
124               : (TT.isOSEmscripten() ? "e-m:e-p:32:32-p10:8:8-p20:8:8-i64:64-"
125                                        "f128:64-n32:64-S128-ni:1:10:20"
126                                      : "e-m:e-p:32:32-p10:8:8-p20:8:8-i64:64-"
127                                        "n32:64-S128-ni:1:10:20"),
128           TT, CPU, FS, Options, getEffectiveRelocModel(RM, TT),
129           getEffectiveCodeModel(CM, CodeModel::Large), OL),
130       TLOF(new WebAssemblyTargetObjectFile()) {
131   // WebAssembly type-checks instructions, but a noreturn function with a return
132   // type that doesn't match the context will cause a check failure. So we lower
133   // LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's
134   // 'unreachable' instructions which is meant for that case.
135   this->Options.TrapUnreachable = true;
136   this->Options.NoTrapAfterNoreturn = false;
137 
138   // WebAssembly treats each function as an independent unit. Force
139   // -ffunction-sections, effectively, so that we can emit them independently.
140   this->Options.FunctionSections = true;
141   this->Options.DataSections = true;
142   this->Options.UniqueSectionNames = true;
143 
144   initAsmInfo();
145 
146   // Note that we don't use setRequiresStructuredCFG(true). It disables
147   // optimizations than we're ok with, and want, such as critical edge
148   // splitting and tail merging.
149 }
150 
151 WebAssemblyTargetMachine::~WebAssemblyTargetMachine() = default; // anchor.
152 
153 const WebAssemblySubtarget *WebAssemblyTargetMachine::getSubtargetImpl() const {
154   return getSubtargetImpl(std::string(getTargetCPU()),
155                           std::string(getTargetFeatureString()));
156 }
157 
158 const WebAssemblySubtarget *
159 WebAssemblyTargetMachine::getSubtargetImpl(std::string CPU,
160                                            std::string FS) const {
161   auto &I = SubtargetMap[CPU + FS];
162   if (!I) {
163     I = std::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this);
164   }
165   return I.get();
166 }
167 
168 const WebAssemblySubtarget *
169 WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const {
170   Attribute CPUAttr = F.getFnAttribute("target-cpu");
171   Attribute FSAttr = F.getFnAttribute("target-features");
172 
173   std::string CPU =
174       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
175   std::string FS =
176       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
177 
178   // This needs to be done before we create a new subtarget since any
179   // creation will depend on the TM and the code generation flags on the
180   // function that reside in TargetOptions.
181   resetTargetOptions(F);
182 
183   return getSubtargetImpl(CPU, FS);
184 }
185 
186 namespace {
187 
188 class CoalesceFeaturesAndStripAtomics final : public ModulePass {
189   // Take the union of all features used in the module and use it for each
190   // function individually, since having multiple feature sets in one module
191   // currently does not make sense for WebAssembly. If atomics are not enabled,
192   // also strip atomic operations and thread local storage.
193   static char ID;
194   WebAssemblyTargetMachine *WasmTM;
195 
196 public:
197   CoalesceFeaturesAndStripAtomics(WebAssemblyTargetMachine *WasmTM)
198       : ModulePass(ID), WasmTM(WasmTM) {}
199 
200   bool runOnModule(Module &M) override {
201     FeatureBitset Features = coalesceFeatures(M);
202 
203     std::string FeatureStr = getFeatureString(Features);
204     WasmTM->setTargetFeatureString(FeatureStr);
205     for (auto &F : M)
206       replaceFeatures(F, FeatureStr);
207 
208     bool StrippedAtomics = false;
209     bool StrippedTLS = false;
210 
211     if (!Features[WebAssembly::FeatureAtomics]) {
212       StrippedAtomics = stripAtomics(M);
213       StrippedTLS = stripThreadLocals(M);
214     } else if (!Features[WebAssembly::FeatureBulkMemory]) {
215       StrippedTLS |= stripThreadLocals(M);
216     }
217 
218     if (StrippedAtomics && !StrippedTLS)
219       stripThreadLocals(M);
220     else if (StrippedTLS && !StrippedAtomics)
221       stripAtomics(M);
222 
223     recordFeatures(M, Features, StrippedAtomics || StrippedTLS);
224 
225     // Conservatively assume we have made some change
226     return true;
227   }
228 
229 private:
230   FeatureBitset coalesceFeatures(const Module &M) {
231     FeatureBitset Features =
232         WasmTM
233             ->getSubtargetImpl(std::string(WasmTM->getTargetCPU()),
234                                std::string(WasmTM->getTargetFeatureString()))
235             ->getFeatureBits();
236     for (auto &F : M)
237       Features |= WasmTM->getSubtargetImpl(F)->getFeatureBits();
238     return Features;
239   }
240 
241   std::string getFeatureString(const FeatureBitset &Features) {
242     std::string Ret;
243     for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) {
244       if (Features[KV.Value])
245         Ret += (StringRef("+") + KV.Key + ",").str();
246     }
247     return Ret;
248   }
249 
250   void replaceFeatures(Function &F, const std::string &Features) {
251     F.removeFnAttr("target-features");
252     F.removeFnAttr("target-cpu");
253     F.addFnAttr("target-features", Features);
254   }
255 
256   bool stripAtomics(Module &M) {
257     // Detect whether any atomics will be lowered, since there is no way to tell
258     // whether the LowerAtomic pass lowers e.g. stores.
259     bool Stripped = false;
260     for (auto &F : M) {
261       for (auto &B : F) {
262         for (auto &I : B) {
263           if (I.isAtomic()) {
264             Stripped = true;
265             goto done;
266           }
267         }
268       }
269     }
270 
271   done:
272     if (!Stripped)
273       return false;
274 
275     LowerAtomicPass Lowerer;
276     FunctionAnalysisManager FAM;
277     for (auto &F : M)
278       Lowerer.run(F, FAM);
279 
280     return true;
281   }
282 
283   bool stripThreadLocals(Module &M) {
284     bool Stripped = false;
285     for (auto &GV : M.globals()) {
286       if (GV.isThreadLocal()) {
287         Stripped = true;
288         GV.setThreadLocal(false);
289       }
290     }
291     return Stripped;
292   }
293 
294   void recordFeatures(Module &M, const FeatureBitset &Features, bool Stripped) {
295     for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) {
296       if (Features[KV.Value]) {
297         // Mark features as used
298         std::string MDKey = (StringRef("wasm-feature-") + KV.Key).str();
299         M.addModuleFlag(Module::ModFlagBehavior::Error, MDKey,
300                         wasm::WASM_FEATURE_PREFIX_USED);
301       }
302     }
303     // Code compiled without atomics or bulk-memory may have had its atomics or
304     // thread-local data lowered to nonatomic operations or non-thread-local
305     // data. In that case, we mark the pseudo-feature "shared-mem" as disallowed
306     // to tell the linker that it would be unsafe to allow this code ot be used
307     // in a module with shared memory.
308     if (Stripped) {
309       M.addModuleFlag(Module::ModFlagBehavior::Error, "wasm-feature-shared-mem",
310                       wasm::WASM_FEATURE_PREFIX_DISALLOWED);
311     }
312   }
313 };
314 char CoalesceFeaturesAndStripAtomics::ID = 0;
315 
316 /// WebAssembly Code Generator Pass Configuration Options.
317 class WebAssemblyPassConfig final : public TargetPassConfig {
318 public:
319   WebAssemblyPassConfig(WebAssemblyTargetMachine &TM, PassManagerBase &PM)
320       : TargetPassConfig(TM, PM) {}
321 
322   WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const {
323     return getTM<WebAssemblyTargetMachine>();
324   }
325 
326   FunctionPass *createTargetRegisterAllocator(bool) override;
327 
328   void addIRPasses() override;
329   void addISelPrepare() override;
330   bool addInstSelector() override;
331   void addOptimizedRegAlloc() override;
332   void addPostRegAlloc() override;
333   bool addGCPasses() override { return false; }
334   void addPreEmitPass() override;
335   bool addPreISel() override;
336 
337   // No reg alloc
338   bool addRegAssignAndRewriteFast() override { return false; }
339 
340   // No reg alloc
341   bool addRegAssignAndRewriteOptimized() override { return false; }
342 };
343 } // end anonymous namespace
344 
345 MachineFunctionInfo *WebAssemblyTargetMachine::createMachineFunctionInfo(
346     BumpPtrAllocator &Allocator, const Function &F,
347     const TargetSubtargetInfo *STI) const {
348   return WebAssemblyFunctionInfo::create<WebAssemblyFunctionInfo>(Allocator, F,
349                                                                   STI);
350 }
351 
352 TargetTransformInfo
353 WebAssemblyTargetMachine::getTargetTransformInfo(const Function &F) const {
354   return TargetTransformInfo(WebAssemblyTTIImpl(this, F));
355 }
356 
357 TargetPassConfig *
358 WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) {
359   return new WebAssemblyPassConfig(*this, PM);
360 }
361 
362 FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) {
363   return nullptr; // No reg alloc
364 }
365 
366 using WebAssembly::WasmEnableEH;
367 using WebAssembly::WasmEnableEmEH;
368 using WebAssembly::WasmEnableEmSjLj;
369 using WebAssembly::WasmEnableSjLj;
370 
371 static void basicCheckForEHAndSjLj(TargetMachine *TM) {
372   // Before checking, we make sure TargetOptions.ExceptionModel is the same as
373   // MCAsmInfo.ExceptionsType. Normally these have to be the same, because clang
374   // stores the exception model info in LangOptions, which is later transferred
375   // to TargetOptions and MCAsmInfo. But when clang compiles bitcode directly,
376   // clang's LangOptions is not used and thus the exception model info is not
377   // correctly transferred to TargetOptions and MCAsmInfo, so we make sure we
378   // have the correct exception model in WebAssemblyMCAsmInfo constructor.
379   // But in this case TargetOptions is still not updated, so we make sure they
380   // are the same.
381   TM->Options.ExceptionModel = TM->getMCAsmInfo()->getExceptionHandlingType();
382 
383   // Basic Correctness checking related to -exception-model
384   if (TM->Options.ExceptionModel != ExceptionHandling::None &&
385       TM->Options.ExceptionModel != ExceptionHandling::Wasm)
386     report_fatal_error("-exception-model should be either 'none' or 'wasm'");
387   if (WasmEnableEmEH && TM->Options.ExceptionModel == ExceptionHandling::Wasm)
388     report_fatal_error("-exception-model=wasm not allowed with "
389                        "-enable-emscripten-cxx-exceptions");
390   if (WasmEnableEH && TM->Options.ExceptionModel != ExceptionHandling::Wasm)
391     report_fatal_error(
392         "-wasm-enable-eh only allowed with -exception-model=wasm");
393   if (WasmEnableSjLj && TM->Options.ExceptionModel != ExceptionHandling::Wasm)
394     report_fatal_error(
395         "-wasm-enable-sjlj only allowed with -exception-model=wasm");
396   if ((!WasmEnableEH && !WasmEnableSjLj) &&
397       TM->Options.ExceptionModel == ExceptionHandling::Wasm)
398     report_fatal_error(
399         "-exception-model=wasm only allowed with at least one of "
400         "-wasm-enable-eh or -wasm-enable-sjj");
401 
402   // You can't enable two modes of EH at the same time
403   if (WasmEnableEmEH && WasmEnableEH)
404     report_fatal_error(
405         "-enable-emscripten-cxx-exceptions not allowed with -wasm-enable-eh");
406   // You can't enable two modes of SjLj at the same time
407   if (WasmEnableEmSjLj && WasmEnableSjLj)
408     report_fatal_error(
409         "-enable-emscripten-sjlj not allowed with -wasm-enable-sjlj");
410   // You can't mix Emscripten EH with Wasm SjLj.
411   if (WasmEnableEmEH && WasmEnableSjLj)
412     report_fatal_error(
413         "-enable-emscripten-cxx-exceptions not allowed with -wasm-enable-sjlj");
414   // Currently it is allowed to mix Wasm EH with Emscripten SjLj as an interim
415   // measure, but some code will error out at compile time in this combination.
416   // See WebAssemblyLowerEmscriptenEHSjLj pass for details.
417 }
418 
419 //===----------------------------------------------------------------------===//
420 // The following functions are called from lib/CodeGen/Passes.cpp to modify
421 // the CodeGen pass sequence.
422 //===----------------------------------------------------------------------===//
423 
424 void WebAssemblyPassConfig::addIRPasses() {
425   // Add signatures to prototype-less function declarations
426   addPass(createWebAssemblyAddMissingPrototypes());
427 
428   // Lower .llvm.global_dtors into .llvm.global_ctors with __cxa_atexit calls.
429   addPass(createLowerGlobalDtorsLegacyPass());
430 
431   // Fix function bitcasts, as WebAssembly requires caller and callee signatures
432   // to match.
433   addPass(createWebAssemblyFixFunctionBitcasts());
434 
435   // Optimize "returned" function attributes.
436   if (getOptLevel() != CodeGenOptLevel::None)
437     addPass(createWebAssemblyOptimizeReturned());
438 
439   basicCheckForEHAndSjLj(TM);
440 
441   // If exception handling is not enabled and setjmp/longjmp handling is
442   // enabled, we lower invokes into calls and delete unreachable landingpad
443   // blocks. Lowering invokes when there is no EH support is done in
444   // TargetPassConfig::addPassesToHandleExceptions, but that runs after these IR
445   // passes and Emscripten SjLj handling expects all invokes to be lowered
446   // before.
447   if (!WasmEnableEmEH && !WasmEnableEH) {
448     addPass(createLowerInvokePass());
449     // The lower invoke pass may create unreachable code. Remove it in order not
450     // to process dead blocks in setjmp/longjmp handling.
451     addPass(createUnreachableBlockEliminationPass());
452   }
453 
454   // Handle exceptions and setjmp/longjmp if enabled. Unlike Wasm EH preparation
455   // done in WasmEHPrepare pass, Wasm SjLj preparation shares libraries and
456   // transformation algorithms with Emscripten SjLj, so we run
457   // LowerEmscriptenEHSjLj pass also when Wasm SjLj is enabled.
458   if (WasmEnableEmEH || WasmEnableEmSjLj || WasmEnableSjLj)
459     addPass(createWebAssemblyLowerEmscriptenEHSjLj());
460 
461   // Expand indirectbr instructions to switches.
462   addPass(createIndirectBrExpandPass());
463 
464   TargetPassConfig::addIRPasses();
465 }
466 
467 void WebAssemblyPassConfig::addISelPrepare() {
468   WebAssemblyTargetMachine *WasmTM =
469       static_cast<WebAssemblyTargetMachine *>(TM);
470   const WebAssemblySubtarget *Subtarget =
471       WasmTM->getSubtargetImpl(std::string(WasmTM->getTargetCPU()),
472                                std::string(WasmTM->getTargetFeatureString()));
473   if (Subtarget->hasReferenceTypes()) {
474     // We need to remove allocas for reference types
475     addPass(createPromoteMemoryToRegisterPass(true));
476   }
477   // Lower atomics and TLS if necessary
478   addPass(new CoalesceFeaturesAndStripAtomics(&getWebAssemblyTargetMachine()));
479 
480   // This is a no-op if atomics are not used in the module
481   addPass(createAtomicExpandPass());
482 
483   TargetPassConfig::addISelPrepare();
484 }
485 
486 bool WebAssemblyPassConfig::addInstSelector() {
487   (void)TargetPassConfig::addInstSelector();
488   addPass(
489       createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel()));
490   // Run the argument-move pass immediately after the ScheduleDAG scheduler
491   // so that we can fix up the ARGUMENT instructions before anything else
492   // sees them in the wrong place.
493   addPass(createWebAssemblyArgumentMove());
494   // Set the p2align operands. This information is present during ISel, however
495   // it's inconvenient to collect. Collect it now, and update the immediate
496   // operands.
497   addPass(createWebAssemblySetP2AlignOperands());
498 
499   // Eliminate range checks and add default targets to br_table instructions.
500   addPass(createWebAssemblyFixBrTableDefaults());
501 
502   return false;
503 }
504 
505 void WebAssemblyPassConfig::addOptimizedRegAlloc() {
506   // Currently RegisterCoalesce degrades wasm debug info quality by a
507   // significant margin. As a quick fix, disable this for -O1, which is often
508   // used for debugging large applications. Disabling this increases code size
509   // of Emscripten core benchmarks by ~5%, which is acceptable for -O1, which is
510   // usually not used for production builds.
511   // TODO Investigate why RegisterCoalesce degrades debug info quality and fix
512   // it properly
513   if (getOptLevel() == CodeGenOptLevel::Less)
514     disablePass(&RegisterCoalescerID);
515   TargetPassConfig::addOptimizedRegAlloc();
516 }
517 
518 void WebAssemblyPassConfig::addPostRegAlloc() {
519   // TODO: The following CodeGen passes don't currently support code containing
520   // virtual registers. Consider removing their restrictions and re-enabling
521   // them.
522 
523   // These functions all require the NoVRegs property.
524   disablePass(&MachineLateInstrsCleanupID);
525   disablePass(&MachineCopyPropagationID);
526   disablePass(&PostRAMachineSinkingID);
527   disablePass(&PostRASchedulerID);
528   disablePass(&FuncletLayoutID);
529   disablePass(&StackMapLivenessID);
530   disablePass(&PatchableFunctionID);
531   disablePass(&ShrinkWrapID);
532 
533   // This pass hurts code size for wasm because it can generate irreducible
534   // control flow.
535   disablePass(&MachineBlockPlacementID);
536 
537   TargetPassConfig::addPostRegAlloc();
538 }
539 
540 void WebAssemblyPassConfig::addPreEmitPass() {
541   TargetPassConfig::addPreEmitPass();
542 
543   // Nullify DBG_VALUE_LISTs that we cannot handle.
544   addPass(createWebAssemblyNullifyDebugValueLists());
545 
546   // Eliminate multiple-entry loops.
547   if (!WasmDisableFixIrreducibleControlFlowPass)
548     addPass(createWebAssemblyFixIrreducibleControlFlow());
549 
550   // Do various transformations for exception handling.
551   // Every CFG-changing optimizations should come before this.
552   if (TM->Options.ExceptionModel == ExceptionHandling::Wasm)
553     addPass(createWebAssemblyLateEHPrepare());
554 
555   // Now that we have a prologue and epilogue and all frame indices are
556   // rewritten, eliminate SP and FP. This allows them to be stackified,
557   // colored, and numbered with the rest of the registers.
558   addPass(createWebAssemblyReplacePhysRegs());
559 
560   // Preparations and optimizations related to register stackification.
561   if (getOptLevel() != CodeGenOptLevel::None) {
562     // Depend on LiveIntervals and perform some optimizations on it.
563     addPass(createWebAssemblyOptimizeLiveIntervals());
564 
565     // Prepare memory intrinsic calls for register stackifying.
566     addPass(createWebAssemblyMemIntrinsicResults());
567 
568     // Mark registers as representing wasm's value stack. This is a key
569     // code-compression technique in WebAssembly. We run this pass (and
570     // MemIntrinsicResults above) very late, so that it sees as much code as
571     // possible, including code emitted by PEI and expanded by late tail
572     // duplication.
573     addPass(createWebAssemblyRegStackify());
574 
575     // Run the register coloring pass to reduce the total number of registers.
576     // This runs after stackification so that it doesn't consider registers
577     // that become stackified.
578     addPass(createWebAssemblyRegColoring());
579   }
580 
581   // Sort the blocks of the CFG into topological order, a prerequisite for
582   // BLOCK and LOOP markers.
583   addPass(createWebAssemblyCFGSort());
584 
585   // Insert BLOCK and LOOP markers.
586   addPass(createWebAssemblyCFGStackify());
587 
588   // Insert explicit local.get and local.set operators.
589   if (!WasmDisableExplicitLocals)
590     addPass(createWebAssemblyExplicitLocals());
591 
592   // Lower br_unless into br_if.
593   addPass(createWebAssemblyLowerBrUnless());
594 
595   // Perform the very last peephole optimizations on the code.
596   if (getOptLevel() != CodeGenOptLevel::None)
597     addPass(createWebAssemblyPeephole());
598 
599   // Create a mapping from LLVM CodeGen virtual registers to wasm registers.
600   addPass(createWebAssemblyRegNumbering());
601 
602   // Fix debug_values whose defs have been stackified.
603   if (!WasmDisableExplicitLocals)
604     addPass(createWebAssemblyDebugFixup());
605 
606   // Collect information to prepare for MC lowering / asm printing.
607   addPass(createWebAssemblyMCLowerPrePass());
608 }
609 
610 bool WebAssemblyPassConfig::addPreISel() {
611   TargetPassConfig::addPreISel();
612   addPass(createWebAssemblyLowerRefTypesIntPtrConv());
613   return false;
614 }
615 
616 yaml::MachineFunctionInfo *
617 WebAssemblyTargetMachine::createDefaultFuncInfoYAML() const {
618   return new yaml::WebAssemblyFunctionInfo();
619 }
620 
621 yaml::MachineFunctionInfo *WebAssemblyTargetMachine::convertFuncInfoToYAML(
622     const MachineFunction &MF) const {
623   const auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
624   return new yaml::WebAssemblyFunctionInfo(MF, *MFI);
625 }
626 
627 bool WebAssemblyTargetMachine::parseMachineFunctionInfo(
628     const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
629     SMDiagnostic &Error, SMRange &SourceRange) const {
630   const auto &YamlMFI = static_cast<const yaml::WebAssemblyFunctionInfo &>(MFI);
631   MachineFunction &MF = PFS.MF;
632   MF.getInfo<WebAssemblyFunctionInfo>()->initializeBaseYamlFields(MF, YamlMFI);
633   return false;
634 }
635