xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "WebAssembly.h"
24 #include "WebAssemblyDebugValueManager.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "wasm-reg-stackify"
42 
43 namespace {
44 class WebAssemblyRegStackify final : public MachineFunctionPass {
45   StringRef getPassName() const override {
46     return "WebAssembly Register Stackify";
47   }
48 
49   void getAnalysisUsage(AnalysisUsage &AU) const override {
50     AU.setPreservesCFG();
51     AU.addRequired<AAResultsWrapperPass>();
52     AU.addRequired<MachineDominatorTree>();
53     AU.addRequired<LiveIntervals>();
54     AU.addPreserved<MachineBlockFrequencyInfo>();
55     AU.addPreserved<SlotIndexes>();
56     AU.addPreserved<LiveIntervals>();
57     AU.addPreservedID(LiveVariablesID);
58     AU.addPreserved<MachineDominatorTree>();
59     MachineFunctionPass::getAnalysisUsage(AU);
60   }
61 
62   bool runOnMachineFunction(MachineFunction &MF) override;
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
66   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
67 };
68 } // end anonymous namespace
69 
70 char WebAssemblyRegStackify::ID = 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
72                 "Reorder instructions to use the WebAssembly value stack",
73                 false, false)
74 
75 FunctionPass *llvm::createWebAssemblyRegStackify() {
76   return new WebAssemblyRegStackify();
77 }
78 
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
82 static void imposeStackOrdering(MachineInstr *MI) {
83   // Write the opaque VALUE_STACK register.
84   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
85     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
86                                              /*isDef=*/true,
87                                              /*isImp=*/true));
88 
89   // Also read the opaque VALUE_STACK register.
90   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
91     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
92                                              /*isDef=*/false,
93                                              /*isImp=*/true));
94 }
95 
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
98 static void convertImplicitDefToConstZero(MachineInstr *MI,
99                                           MachineRegisterInfo &MRI,
100                                           const TargetInstrInfo *TII,
101                                           MachineFunction &MF,
102                                           LiveIntervals &LIS) {
103   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
104 
105   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
106   if (RegClass == &WebAssembly::I32RegClass) {
107     MI->setDesc(TII->get(WebAssembly::CONST_I32));
108     MI->addOperand(MachineOperand::CreateImm(0));
109   } else if (RegClass == &WebAssembly::I64RegClass) {
110     MI->setDesc(TII->get(WebAssembly::CONST_I64));
111     MI->addOperand(MachineOperand::CreateImm(0));
112   } else if (RegClass == &WebAssembly::F32RegClass) {
113     MI->setDesc(TII->get(WebAssembly::CONST_F32));
114     auto *Val = cast<ConstantFP>(Constant::getNullValue(
115         Type::getFloatTy(MF.getFunction().getContext())));
116     MI->addOperand(MachineOperand::CreateFPImm(Val));
117   } else if (RegClass == &WebAssembly::F64RegClass) {
118     MI->setDesc(TII->get(WebAssembly::CONST_F64));
119     auto *Val = cast<ConstantFP>(Constant::getNullValue(
120         Type::getDoubleTy(MF.getFunction().getContext())));
121     MI->addOperand(MachineOperand::CreateFPImm(Val));
122   } else if (RegClass == &WebAssembly::V128RegClass) {
123     Register TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
124     MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32));
125     MI->addOperand(MachineOperand::CreateReg(TempReg, false));
126     MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
127                                   TII->get(WebAssembly::CONST_I32), TempReg)
128                               .addImm(0);
129     LIS.InsertMachineInstrInMaps(*Const);
130   } else {
131     llvm_unreachable("Unexpected reg class");
132   }
133 }
134 
135 // Determine whether a call to the callee referenced by
136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
137 // effects.
138 static void queryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
139                         bool &Write, bool &Effects, bool &StackPointer) {
140   // All calls can use the stack pointer.
141   StackPointer = true;
142 
143   const MachineOperand &MO = MI.getOperand(CalleeOpNo);
144   if (MO.isGlobal()) {
145     const Constant *GV = MO.getGlobal();
146     if (const auto *GA = dyn_cast<GlobalAlias>(GV))
147       if (!GA->isInterposable())
148         GV = GA->getAliasee();
149 
150     if (const auto *F = dyn_cast<Function>(GV)) {
151       if (!F->doesNotThrow())
152         Effects = true;
153       if (F->doesNotAccessMemory())
154         return;
155       if (F->onlyReadsMemory()) {
156         Read = true;
157         return;
158       }
159     }
160   }
161 
162   // Assume the worst.
163   Write = true;
164   Read = true;
165   Effects = true;
166 }
167 
168 // Determine whether MI reads memory, writes memory, has side effects,
169 // and/or uses the stack pointer value.
170 static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
171                   bool &Write, bool &Effects, bool &StackPointer) {
172   assert(!MI.isTerminator());
173 
174   if (MI.isDebugInstr() || MI.isPosition())
175     return;
176 
177   // Check for loads.
178   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
179     Read = true;
180 
181   // Check for stores.
182   if (MI.mayStore()) {
183     Write = true;
184   } else if (MI.hasOrderedMemoryRef()) {
185     switch (MI.getOpcode()) {
186     case WebAssembly::DIV_S_I32:
187     case WebAssembly::DIV_S_I64:
188     case WebAssembly::REM_S_I32:
189     case WebAssembly::REM_S_I64:
190     case WebAssembly::DIV_U_I32:
191     case WebAssembly::DIV_U_I64:
192     case WebAssembly::REM_U_I32:
193     case WebAssembly::REM_U_I64:
194     case WebAssembly::I32_TRUNC_S_F32:
195     case WebAssembly::I64_TRUNC_S_F32:
196     case WebAssembly::I32_TRUNC_S_F64:
197     case WebAssembly::I64_TRUNC_S_F64:
198     case WebAssembly::I32_TRUNC_U_F32:
199     case WebAssembly::I64_TRUNC_U_F32:
200     case WebAssembly::I32_TRUNC_U_F64:
201     case WebAssembly::I64_TRUNC_U_F64:
202       // These instruction have hasUnmodeledSideEffects() returning true
203       // because they trap on overflow and invalid so they can't be arbitrarily
204       // moved, however hasOrderedMemoryRef() interprets this plus their lack
205       // of memoperands as having a potential unknown memory reference.
206       break;
207     default:
208       // Record volatile accesses, unless it's a call, as calls are handled
209       // specially below.
210       if (!MI.isCall()) {
211         Write = true;
212         Effects = true;
213       }
214       break;
215     }
216   }
217 
218   // Check for side effects.
219   if (MI.hasUnmodeledSideEffects()) {
220     switch (MI.getOpcode()) {
221     case WebAssembly::DIV_S_I32:
222     case WebAssembly::DIV_S_I64:
223     case WebAssembly::REM_S_I32:
224     case WebAssembly::REM_S_I64:
225     case WebAssembly::DIV_U_I32:
226     case WebAssembly::DIV_U_I64:
227     case WebAssembly::REM_U_I32:
228     case WebAssembly::REM_U_I64:
229     case WebAssembly::I32_TRUNC_S_F32:
230     case WebAssembly::I64_TRUNC_S_F32:
231     case WebAssembly::I32_TRUNC_S_F64:
232     case WebAssembly::I64_TRUNC_S_F64:
233     case WebAssembly::I32_TRUNC_U_F32:
234     case WebAssembly::I64_TRUNC_U_F32:
235     case WebAssembly::I32_TRUNC_U_F64:
236     case WebAssembly::I64_TRUNC_U_F64:
237       // These instructions have hasUnmodeledSideEffects() returning true
238       // because they trap on overflow and invalid so they can't be arbitrarily
239       // moved, however in the specific case of register stackifying, it is safe
240       // to move them because overflow and invalid are Undefined Behavior.
241       break;
242     default:
243       Effects = true;
244       break;
245     }
246   }
247 
248   // Check for writes to __stack_pointer global.
249   if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 &&
250       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
251     StackPointer = true;
252 
253   // Analyze calls.
254   if (MI.isCall()) {
255     unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI.getOpcode());
256     queryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer);
257   }
258 }
259 
260 // Test whether Def is safe and profitable to rematerialize.
261 static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
262                                 const WebAssemblyInstrInfo *TII) {
263   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
264 }
265 
266 // Identify the definition for this register at this point. This is a
267 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
268 // LiveIntervals to handle complex cases.
269 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
270                                 const MachineRegisterInfo &MRI,
271                                 const LiveIntervals &LIS) {
272   // Most registers are in SSA form here so we try a quick MRI query first.
273   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
274     return Def;
275 
276   // MRI doesn't know what the Def is. Try asking LIS.
277   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
278           LIS.getInstructionIndex(*Insert)))
279     return LIS.getInstructionFromIndex(ValNo->def);
280 
281   return nullptr;
282 }
283 
284 // Test whether Reg, as defined at Def, has exactly one use. This is a
285 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
286 // to handle complex cases.
287 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
288                       MachineDominatorTree &MDT, LiveIntervals &LIS) {
289   // Most registers are in SSA form here so we try a quick MRI query first.
290   if (MRI.hasOneUse(Reg))
291     return true;
292 
293   bool HasOne = false;
294   const LiveInterval &LI = LIS.getInterval(Reg);
295   const VNInfo *DefVNI =
296       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
297   assert(DefVNI);
298   for (auto &I : MRI.use_nodbg_operands(Reg)) {
299     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
300     if (Result.valueIn() == DefVNI) {
301       if (!Result.isKill())
302         return false;
303       if (HasOne)
304         return false;
305       HasOne = true;
306     }
307   }
308   return HasOne;
309 }
310 
311 // Test whether it's safe to move Def to just before Insert.
312 // TODO: Compute memory dependencies in a way that doesn't require always
313 // walking the block.
314 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
315 // more precise.
316 static bool isSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
317                          AliasAnalysis &AA, const MachineRegisterInfo &MRI) {
318   assert(Def->getParent() == Insert->getParent());
319 
320   // 'catch' and 'extract_exception' should be the first instruction of a BB and
321   // cannot move.
322   if (Def->getOpcode() == WebAssembly::CATCH ||
323       Def->getOpcode() == WebAssembly::EXTRACT_EXCEPTION_I32) {
324     const MachineBasicBlock *MBB = Def->getParent();
325     auto NextI = std::next(MachineBasicBlock::const_iterator(Def));
326     for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
327       ;
328     if (NextI != Insert)
329       return false;
330   }
331 
332   // Check for register dependencies.
333   SmallVector<unsigned, 4> MutableRegisters;
334   for (const MachineOperand &MO : Def->operands()) {
335     if (!MO.isReg() || MO.isUndef())
336       continue;
337     Register Reg = MO.getReg();
338 
339     // If the register is dead here and at Insert, ignore it.
340     if (MO.isDead() && Insert->definesRegister(Reg) &&
341         !Insert->readsRegister(Reg))
342       continue;
343 
344     if (Register::isPhysicalRegister(Reg)) {
345       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
346       // from moving down, and we've already checked for that.
347       if (Reg == WebAssembly::ARGUMENTS)
348         continue;
349       // If the physical register is never modified, ignore it.
350       if (!MRI.isPhysRegModified(Reg))
351         continue;
352       // Otherwise, it's a physical register with unknown liveness.
353       return false;
354     }
355 
356     // If one of the operands isn't in SSA form, it has different values at
357     // different times, and we need to make sure we don't move our use across
358     // a different def.
359     if (!MO.isDef() && !MRI.hasOneDef(Reg))
360       MutableRegisters.push_back(Reg);
361   }
362 
363   bool Read = false, Write = false, Effects = false, StackPointer = false;
364   query(*Def, AA, Read, Write, Effects, StackPointer);
365 
366   // If the instruction does not access memory and has no side effects, it has
367   // no additional dependencies.
368   bool HasMutableRegisters = !MutableRegisters.empty();
369   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
370     return true;
371 
372   // Scan through the intervening instructions between Def and Insert.
373   MachineBasicBlock::const_iterator D(Def), I(Insert);
374   for (--I; I != D; --I) {
375     bool InterveningRead = false;
376     bool InterveningWrite = false;
377     bool InterveningEffects = false;
378     bool InterveningStackPointer = false;
379     query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
380           InterveningStackPointer);
381     if (Effects && InterveningEffects)
382       return false;
383     if (Read && InterveningWrite)
384       return false;
385     if (Write && (InterveningRead || InterveningWrite))
386       return false;
387     if (StackPointer && InterveningStackPointer)
388       return false;
389 
390     for (unsigned Reg : MutableRegisters)
391       for (const MachineOperand &MO : I->operands())
392         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
393           return false;
394   }
395 
396   return true;
397 }
398 
399 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
400 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
401                                      const MachineBasicBlock &MBB,
402                                      const MachineRegisterInfo &MRI,
403                                      const MachineDominatorTree &MDT,
404                                      LiveIntervals &LIS,
405                                      WebAssemblyFunctionInfo &MFI) {
406   const LiveInterval &LI = LIS.getInterval(Reg);
407 
408   const MachineInstr *OneUseInst = OneUse.getParent();
409   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
410 
411   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
412     if (&Use == &OneUse)
413       continue;
414 
415     const MachineInstr *UseInst = Use.getParent();
416     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
417 
418     if (UseVNI != OneUseVNI)
419       continue;
420 
421     if (UseInst == OneUseInst) {
422       // Another use in the same instruction. We need to ensure that the one
423       // selected use happens "before" it.
424       if (&OneUse > &Use)
425         return false;
426     } else {
427       // Test that the use is dominated by the one selected use.
428       while (!MDT.dominates(OneUseInst, UseInst)) {
429         // Actually, dominating is over-conservative. Test that the use would
430         // happen after the one selected use in the stack evaluation order.
431         //
432         // This is needed as a consequence of using implicit local.gets for
433         // uses and implicit local.sets for defs.
434         if (UseInst->getDesc().getNumDefs() == 0)
435           return false;
436         const MachineOperand &MO = UseInst->getOperand(0);
437         if (!MO.isReg())
438           return false;
439         Register DefReg = MO.getReg();
440         if (!Register::isVirtualRegister(DefReg) ||
441             !MFI.isVRegStackified(DefReg))
442           return false;
443         assert(MRI.hasOneNonDBGUse(DefReg));
444         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
445         const MachineInstr *NewUseInst = NewUse.getParent();
446         if (NewUseInst == OneUseInst) {
447           if (&OneUse > &NewUse)
448             return false;
449           break;
450         }
451         UseInst = NewUseInst;
452       }
453     }
454   }
455   return true;
456 }
457 
458 /// Get the appropriate tee opcode for the given register class.
459 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
460   if (RC == &WebAssembly::I32RegClass)
461     return WebAssembly::TEE_I32;
462   if (RC == &WebAssembly::I64RegClass)
463     return WebAssembly::TEE_I64;
464   if (RC == &WebAssembly::F32RegClass)
465     return WebAssembly::TEE_F32;
466   if (RC == &WebAssembly::F64RegClass)
467     return WebAssembly::TEE_F64;
468   if (RC == &WebAssembly::V128RegClass)
469     return WebAssembly::TEE_V128;
470   llvm_unreachable("Unexpected register class");
471 }
472 
473 // Shrink LI to its uses, cleaning up LI.
474 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
475   if (LIS.shrinkToUses(&LI)) {
476     SmallVector<LiveInterval *, 4> SplitLIs;
477     LIS.splitSeparateComponents(LI, SplitLIs);
478   }
479 }
480 
481 /// A single-use def in the same block with no intervening memory or register
482 /// dependencies; move the def down and nest it with the current instruction.
483 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
484                                       MachineInstr *Def, MachineBasicBlock &MBB,
485                                       MachineInstr *Insert, LiveIntervals &LIS,
486                                       WebAssemblyFunctionInfo &MFI,
487                                       MachineRegisterInfo &MRI) {
488   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
489 
490   WebAssemblyDebugValueManager DefDIs(Def);
491   MBB.splice(Insert, &MBB, Def);
492   DefDIs.move(Insert);
493   LIS.handleMove(*Def);
494 
495   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
496     // No one else is using this register for anything so we can just stackify
497     // it in place.
498     MFI.stackifyVReg(Reg);
499   } else {
500     // The register may have unrelated uses or defs; create a new register for
501     // just our one def and use so that we can stackify it.
502     Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
503     Def->getOperand(0).setReg(NewReg);
504     Op.setReg(NewReg);
505 
506     // Tell LiveIntervals about the new register.
507     LIS.createAndComputeVirtRegInterval(NewReg);
508 
509     // Tell LiveIntervals about the changes to the old register.
510     LiveInterval &LI = LIS.getInterval(Reg);
511     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
512                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
513                      /*RemoveDeadValNo=*/true);
514 
515     MFI.stackifyVReg(NewReg);
516 
517     DefDIs.updateReg(NewReg);
518 
519     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
520   }
521 
522   imposeStackOrdering(Def);
523   return Def;
524 }
525 
526 /// A trivially cloneable instruction; clone it and nest the new copy with the
527 /// current instruction.
528 static MachineInstr *rematerializeCheapDef(
529     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
530     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
531     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
532     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
533   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
534   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
535 
536   WebAssemblyDebugValueManager DefDIs(&Def);
537 
538   Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
539   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
540   Op.setReg(NewReg);
541   MachineInstr *Clone = &*std::prev(Insert);
542   LIS.InsertMachineInstrInMaps(*Clone);
543   LIS.createAndComputeVirtRegInterval(NewReg);
544   MFI.stackifyVReg(NewReg);
545   imposeStackOrdering(Clone);
546 
547   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
548 
549   // Shrink the interval.
550   bool IsDead = MRI.use_empty(Reg);
551   if (!IsDead) {
552     LiveInterval &LI = LIS.getInterval(Reg);
553     shrinkToUses(LI, LIS);
554     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
555   }
556 
557   // If that was the last use of the original, delete the original.
558   // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
559   if (IsDead) {
560     LLVM_DEBUG(dbgs() << " - Deleting original\n");
561     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
562     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
563     LIS.removeInterval(Reg);
564     LIS.RemoveMachineInstrFromMaps(Def);
565     Def.eraseFromParent();
566 
567     DefDIs.move(&*Insert);
568     DefDIs.updateReg(NewReg);
569   } else {
570     DefDIs.clone(&*Insert, NewReg);
571   }
572 
573   return Clone;
574 }
575 
576 /// A multiple-use def in the same block with no intervening memory or register
577 /// dependencies; move the def down, nest it with the current instruction, and
578 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
579 /// this:
580 ///
581 ///    Reg = INST ...        // Def
582 ///    INST ..., Reg, ...    // Insert
583 ///    INST ..., Reg, ...
584 ///    INST ..., Reg, ...
585 ///
586 /// to this:
587 ///
588 ///    DefReg = INST ...     // Def (to become the new Insert)
589 ///    TeeReg, Reg = TEE_... DefReg
590 ///    INST ..., TeeReg, ... // Insert
591 ///    INST ..., Reg, ...
592 ///    INST ..., Reg, ...
593 ///
594 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
595 /// resulting code.
596 static MachineInstr *moveAndTeeForMultiUse(
597     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
598     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
599     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
600   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
601 
602   WebAssemblyDebugValueManager DefDIs(Def);
603 
604   // Move Def into place.
605   MBB.splice(Insert, &MBB, Def);
606   LIS.handleMove(*Def);
607 
608   // Create the Tee and attach the registers.
609   const auto *RegClass = MRI.getRegClass(Reg);
610   Register TeeReg = MRI.createVirtualRegister(RegClass);
611   Register DefReg = MRI.createVirtualRegister(RegClass);
612   MachineOperand &DefMO = Def->getOperand(0);
613   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
614                               TII->get(getTeeOpcode(RegClass)), TeeReg)
615                           .addReg(Reg, RegState::Define)
616                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
617   Op.setReg(TeeReg);
618   DefMO.setReg(DefReg);
619   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
620   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
621 
622   DefDIs.move(Insert);
623 
624   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
625   LiveInterval &LI = LIS.getInterval(Reg);
626   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
627   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
628   I->start = TeeIdx;
629   ValNo->def = TeeIdx;
630   shrinkToUses(LI, LIS);
631 
632   // Finish stackifying the new regs.
633   LIS.createAndComputeVirtRegInterval(TeeReg);
634   LIS.createAndComputeVirtRegInterval(DefReg);
635   MFI.stackifyVReg(DefReg);
636   MFI.stackifyVReg(TeeReg);
637   imposeStackOrdering(Def);
638   imposeStackOrdering(Tee);
639 
640   DefDIs.clone(Tee, DefReg);
641   DefDIs.clone(Insert, TeeReg);
642 
643   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
644   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
645   return Def;
646 }
647 
648 namespace {
649 /// A stack for walking the tree of instructions being built, visiting the
650 /// MachineOperands in DFS order.
651 class TreeWalkerState {
652   using mop_iterator = MachineInstr::mop_iterator;
653   using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
654   using RangeTy = iterator_range<mop_reverse_iterator>;
655   SmallVector<RangeTy, 4> Worklist;
656 
657 public:
658   explicit TreeWalkerState(MachineInstr *Insert) {
659     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
660     if (Range.begin() != Range.end())
661       Worklist.push_back(reverse(Range));
662   }
663 
664   bool done() const { return Worklist.empty(); }
665 
666   MachineOperand &pop() {
667     RangeTy &Range = Worklist.back();
668     MachineOperand &Op = *Range.begin();
669     Range = drop_begin(Range, 1);
670     if (Range.begin() == Range.end())
671       Worklist.pop_back();
672     assert((Worklist.empty() ||
673             Worklist.back().begin() != Worklist.back().end()) &&
674            "Empty ranges shouldn't remain in the worklist");
675     return Op;
676   }
677 
678   /// Push Instr's operands onto the stack to be visited.
679   void pushOperands(MachineInstr *Instr) {
680     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
681     if (Range.begin() != Range.end())
682       Worklist.push_back(reverse(Range));
683   }
684 
685   /// Some of Instr's operands are on the top of the stack; remove them and
686   /// re-insert them starting from the beginning (because we've commuted them).
687   void resetTopOperands(MachineInstr *Instr) {
688     assert(hasRemainingOperands(Instr) &&
689            "Reseting operands should only be done when the instruction has "
690            "an operand still on the stack");
691     Worklist.back() = reverse(Instr->explicit_uses());
692   }
693 
694   /// Test whether Instr has operands remaining to be visited at the top of
695   /// the stack.
696   bool hasRemainingOperands(const MachineInstr *Instr) const {
697     if (Worklist.empty())
698       return false;
699     const RangeTy &Range = Worklist.back();
700     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
701   }
702 
703   /// Test whether the given register is present on the stack, indicating an
704   /// operand in the tree that we haven't visited yet. Moving a definition of
705   /// Reg to a point in the tree after that would change its value.
706   ///
707   /// This is needed as a consequence of using implicit local.gets for
708   /// uses and implicit local.sets for defs.
709   bool isOnStack(unsigned Reg) const {
710     for (const RangeTy &Range : Worklist)
711       for (const MachineOperand &MO : Range)
712         if (MO.isReg() && MO.getReg() == Reg)
713           return true;
714     return false;
715   }
716 };
717 
718 /// State to keep track of whether commuting is in flight or whether it's been
719 /// tried for the current instruction and didn't work.
720 class CommutingState {
721   /// There are effectively three states: the initial state where we haven't
722   /// started commuting anything and we don't know anything yet, the tentative
723   /// state where we've commuted the operands of the current instruction and are
724   /// revisiting it, and the declined state where we've reverted the operands
725   /// back to their original order and will no longer commute it further.
726   bool TentativelyCommuting = false;
727   bool Declined = false;
728 
729   /// During the tentative state, these hold the operand indices of the commuted
730   /// operands.
731   unsigned Operand0, Operand1;
732 
733 public:
734   /// Stackification for an operand was not successful due to ordering
735   /// constraints. If possible, and if we haven't already tried it and declined
736   /// it, commute Insert's operands and prepare to revisit it.
737   void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
738                     const WebAssemblyInstrInfo *TII) {
739     if (TentativelyCommuting) {
740       assert(!Declined &&
741              "Don't decline commuting until you've finished trying it");
742       // Commuting didn't help. Revert it.
743       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
744       TentativelyCommuting = false;
745       Declined = true;
746     } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
747       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
748       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
749       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
750         // Tentatively commute the operands and try again.
751         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
752         TreeWalker.resetTopOperands(Insert);
753         TentativelyCommuting = true;
754         Declined = false;
755       }
756     }
757   }
758 
759   /// Stackification for some operand was successful. Reset to the default
760   /// state.
761   void reset() {
762     TentativelyCommuting = false;
763     Declined = false;
764   }
765 };
766 } // end anonymous namespace
767 
768 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
769   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
770                        "********** Function: "
771                     << MF.getName() << '\n');
772 
773   bool Changed = false;
774   MachineRegisterInfo &MRI = MF.getRegInfo();
775   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
776   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
777   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
778   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
779   auto &MDT = getAnalysis<MachineDominatorTree>();
780   auto &LIS = getAnalysis<LiveIntervals>();
781 
782   // Walk the instructions from the bottom up. Currently we don't look past
783   // block boundaries, and the blocks aren't ordered so the block visitation
784   // order isn't significant, but we may want to change this in the future.
785   for (MachineBasicBlock &MBB : MF) {
786     // Don't use a range-based for loop, because we modify the list as we're
787     // iterating over it and the end iterator may change.
788     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
789       MachineInstr *Insert = &*MII;
790       // Don't nest anything inside an inline asm, because we don't have
791       // constraints for $push inputs.
792       if (Insert->isInlineAsm())
793         continue;
794 
795       // Ignore debugging intrinsics.
796       if (Insert->isDebugValue())
797         continue;
798 
799       // Iterate through the inputs in reverse order, since we'll be pulling
800       // operands off the stack in LIFO order.
801       CommutingState Commuting;
802       TreeWalkerState TreeWalker(Insert);
803       while (!TreeWalker.done()) {
804         MachineOperand &Op = TreeWalker.pop();
805 
806         // We're only interested in explicit virtual register operands.
807         if (!Op.isReg())
808           continue;
809 
810         Register Reg = Op.getReg();
811         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
812         assert(!Op.isImplicit() &&
813                "explicit_uses() should only iterate over explicit operands");
814         if (Register::isPhysicalRegister(Reg))
815           continue;
816 
817         // Identify the definition for this register at this point.
818         MachineInstr *Def = getVRegDef(Reg, Insert, MRI, LIS);
819         if (!Def)
820           continue;
821 
822         // Don't nest an INLINE_ASM def into anything, because we don't have
823         // constraints for $pop outputs.
824         if (Def->isInlineAsm())
825           continue;
826 
827         // Argument instructions represent live-in registers and not real
828         // instructions.
829         if (WebAssembly::isArgument(Def->getOpcode()))
830           continue;
831 
832         // Currently catch's return value register cannot be stackified, because
833         // the wasm LLVM backend currently does not support live-in values
834         // entering blocks, which is a part of multi-value proposal.
835         //
836         // Once we support live-in values of wasm blocks, this can be:
837         // catch                           ; push exnref value onto stack
838         // block exnref -> i32
839         // br_on_exn $__cpp_exception      ; pop the exnref value
840         // end_block
841         //
842         // But because we don't support it yet, the catch instruction's dst
843         // register should be assigned to a local to be propagated across
844         // 'block' boundary now.
845         //
846         // TODO Fix this once we support the multi-value proposal.
847         if (Def->getOpcode() == WebAssembly::CATCH)
848           continue;
849 
850         // Decide which strategy to take. Prefer to move a single-use value
851         // over cloning it, and prefer cloning over introducing a tee.
852         // For moving, we require the def to be in the same block as the use;
853         // this makes things simpler (LiveIntervals' handleMove function only
854         // supports intra-block moves) and it's MachineSink's job to catch all
855         // the sinking opportunities anyway.
856         bool SameBlock = Def->getParent() == &MBB;
857         bool CanMove = SameBlock && isSafeToMove(Def, Insert, AA, MRI) &&
858                        !TreeWalker.isOnStack(Reg);
859         if (CanMove && hasOneUse(Reg, Def, MRI, MDT, LIS)) {
860           Insert = moveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
861         } else if (shouldRematerialize(*Def, AA, TII)) {
862           Insert =
863               rematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
864                                     LIS, MFI, MRI, TII, TRI);
865         } else if (CanMove &&
866                    oneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
867           Insert = moveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
868                                          MRI, TII);
869         } else {
870           // We failed to stackify the operand. If the problem was ordering
871           // constraints, Commuting may be able to help.
872           if (!CanMove && SameBlock)
873             Commuting.maybeCommute(Insert, TreeWalker, TII);
874           // Proceed to the next operand.
875           continue;
876         }
877 
878         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
879         // to a constant 0 so that the def is explicit, and the push/pop
880         // correspondence is maintained.
881         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
882           convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
883 
884         // We stackified an operand. Add the defining instruction's operands to
885         // the worklist stack now to continue to build an ever deeper tree.
886         Commuting.reset();
887         TreeWalker.pushOperands(Insert);
888       }
889 
890       // If we stackified any operands, skip over the tree to start looking for
891       // the next instruction we can build a tree on.
892       if (Insert != &*MII) {
893         imposeStackOrdering(&*MII);
894         MII = MachineBasicBlock::iterator(Insert).getReverse();
895         Changed = true;
896       }
897     }
898   }
899 
900   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
901   // that it never looks like a use-before-def.
902   if (Changed) {
903     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
904     for (MachineBasicBlock &MBB : MF)
905       MBB.addLiveIn(WebAssembly::VALUE_STACK);
906   }
907 
908 #ifndef NDEBUG
909   // Verify that pushes and pops are performed in LIFO order.
910   SmallVector<unsigned, 0> Stack;
911   for (MachineBasicBlock &MBB : MF) {
912     for (MachineInstr &MI : MBB) {
913       if (MI.isDebugInstr())
914         continue;
915       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
916         if (!MO.isReg())
917           continue;
918         Register Reg = MO.getReg();
919 
920         if (MFI.isVRegStackified(Reg)) {
921           if (MO.isDef())
922             Stack.push_back(Reg);
923           else
924             assert(Stack.pop_back_val() == Reg &&
925                    "Register stack pop should be paired with a push");
926         }
927       }
928     }
929     // TODO: Generalize this code to support keeping values on the stack across
930     // basic block boundaries.
931     assert(Stack.empty() &&
932            "Register stack pushes and pops should be balanced");
933   }
934 #endif
935 
936   return Changed;
937 }
938