1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a register stacking pass. 11 /// 12 /// This pass reorders instructions to put register uses and defs in an order 13 /// such that they form single-use expression trees. Registers fitting this form 14 /// are then marked as "stackified", meaning references to them are replaced by 15 /// "push" and "pop" from the value stack. 16 /// 17 /// This is primarily a code size optimization, since temporary values on the 18 /// value stack don't need to be named. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 23 #include "Utils/WebAssemblyUtilities.h" 24 #include "WebAssembly.h" 25 #include "WebAssemblyDebugValueManager.h" 26 #include "WebAssemblyMachineFunctionInfo.h" 27 #include "WebAssemblySubtarget.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <iterator> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "wasm-reg-stackify" 43 44 namespace { 45 class WebAssemblyRegStackify final : public MachineFunctionPass { 46 StringRef getPassName() const override { 47 return "WebAssembly Register Stackify"; 48 } 49 50 void getAnalysisUsage(AnalysisUsage &AU) const override { 51 AU.setPreservesCFG(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void imposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void convertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 auto *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 auto *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2)); 124 MI->addOperand(MachineOperand::CreateImm(0)); 125 MI->addOperand(MachineOperand::CreateImm(0)); 126 } else { 127 llvm_unreachable("Unexpected reg class"); 128 } 129 } 130 131 // Determine whether a call to the callee referenced by 132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 133 // effects. 134 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, 135 bool &Effects, bool &StackPointer) { 136 // All calls can use the stack pointer. 137 StackPointer = true; 138 139 const MachineOperand &MO = WebAssembly::getCalleeOp(MI); 140 if (MO.isGlobal()) { 141 const Constant *GV = MO.getGlobal(); 142 if (const auto *GA = dyn_cast<GlobalAlias>(GV)) 143 if (!GA->isInterposable()) 144 GV = GA->getAliasee(); 145 146 if (const auto *F = dyn_cast<Function>(GV)) { 147 if (!F->doesNotThrow()) 148 Effects = true; 149 if (F->doesNotAccessMemory()) 150 return; 151 if (F->onlyReadsMemory()) { 152 Read = true; 153 return; 154 } 155 } 156 } 157 158 // Assume the worst. 159 Write = true; 160 Read = true; 161 Effects = true; 162 } 163 164 // Determine whether MI reads memory, writes memory, has side effects, 165 // and/or uses the stack pointer value. 166 static void query(const MachineInstr &MI, bool &Read, bool &Write, 167 bool &Effects, bool &StackPointer) { 168 assert(!MI.isTerminator()); 169 170 if (MI.isDebugInstr() || MI.isPosition()) 171 return; 172 173 // Check for loads. 174 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) 175 Read = true; 176 177 // Check for stores. 178 if (MI.mayStore()) { 179 Write = true; 180 } else if (MI.hasOrderedMemoryRef()) { 181 switch (MI.getOpcode()) { 182 case WebAssembly::DIV_S_I32: 183 case WebAssembly::DIV_S_I64: 184 case WebAssembly::REM_S_I32: 185 case WebAssembly::REM_S_I64: 186 case WebAssembly::DIV_U_I32: 187 case WebAssembly::DIV_U_I64: 188 case WebAssembly::REM_U_I32: 189 case WebAssembly::REM_U_I64: 190 case WebAssembly::I32_TRUNC_S_F32: 191 case WebAssembly::I64_TRUNC_S_F32: 192 case WebAssembly::I32_TRUNC_S_F64: 193 case WebAssembly::I64_TRUNC_S_F64: 194 case WebAssembly::I32_TRUNC_U_F32: 195 case WebAssembly::I64_TRUNC_U_F32: 196 case WebAssembly::I32_TRUNC_U_F64: 197 case WebAssembly::I64_TRUNC_U_F64: 198 // These instruction have hasUnmodeledSideEffects() returning true 199 // because they trap on overflow and invalid so they can't be arbitrarily 200 // moved, however hasOrderedMemoryRef() interprets this plus their lack 201 // of memoperands as having a potential unknown memory reference. 202 break; 203 default: 204 // Record volatile accesses, unless it's a call, as calls are handled 205 // specially below. 206 if (!MI.isCall()) { 207 Write = true; 208 Effects = true; 209 } 210 break; 211 } 212 } 213 214 // Check for side effects. 215 if (MI.hasUnmodeledSideEffects()) { 216 switch (MI.getOpcode()) { 217 case WebAssembly::DIV_S_I32: 218 case WebAssembly::DIV_S_I64: 219 case WebAssembly::REM_S_I32: 220 case WebAssembly::REM_S_I64: 221 case WebAssembly::DIV_U_I32: 222 case WebAssembly::DIV_U_I64: 223 case WebAssembly::REM_U_I32: 224 case WebAssembly::REM_U_I64: 225 case WebAssembly::I32_TRUNC_S_F32: 226 case WebAssembly::I64_TRUNC_S_F32: 227 case WebAssembly::I32_TRUNC_S_F64: 228 case WebAssembly::I64_TRUNC_S_F64: 229 case WebAssembly::I32_TRUNC_U_F32: 230 case WebAssembly::I64_TRUNC_U_F32: 231 case WebAssembly::I32_TRUNC_U_F64: 232 case WebAssembly::I64_TRUNC_U_F64: 233 // These instructions have hasUnmodeledSideEffects() returning true 234 // because they trap on overflow and invalid so they can't be arbitrarily 235 // moved, however in the specific case of register stackifying, it is safe 236 // to move them because overflow and invalid are Undefined Behavior. 237 break; 238 default: 239 Effects = true; 240 break; 241 } 242 } 243 244 // Check for writes to __stack_pointer global. 245 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || 246 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && 247 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 248 StackPointer = true; 249 250 // Analyze calls. 251 if (MI.isCall()) { 252 queryCallee(MI, Read, Write, Effects, StackPointer); 253 } 254 } 255 256 // Test whether Def is safe and profitable to rematerialize. 257 static bool shouldRematerialize(const MachineInstr &Def, 258 const WebAssemblyInstrInfo *TII) { 259 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def); 260 } 261 262 // Identify the definition for this register at this point. This is a 263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 264 // LiveIntervals to handle complex cases. 265 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, 266 const MachineRegisterInfo &MRI, 267 const LiveIntervals &LIS) { 268 // Most registers are in SSA form here so we try a quick MRI query first. 269 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 270 return Def; 271 272 // MRI doesn't know what the Def is. Try asking LIS. 273 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 274 LIS.getInstructionIndex(*Insert))) 275 return LIS.getInstructionFromIndex(ValNo->def); 276 277 return nullptr; 278 } 279 280 // Test whether Reg, as defined at Def, has exactly one use. This is a 281 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 282 // to handle complex cases. 283 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 284 MachineDominatorTree &MDT, LiveIntervals &LIS) { 285 // Most registers are in SSA form here so we try a quick MRI query first. 286 if (MRI.hasOneUse(Reg)) 287 return true; 288 289 bool HasOne = false; 290 const LiveInterval &LI = LIS.getInterval(Reg); 291 const VNInfo *DefVNI = 292 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 293 assert(DefVNI); 294 for (auto &I : MRI.use_nodbg_operands(Reg)) { 295 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 296 if (Result.valueIn() == DefVNI) { 297 if (!Result.isKill()) 298 return false; 299 if (HasOne) 300 return false; 301 HasOne = true; 302 } 303 } 304 return HasOne; 305 } 306 307 // Test whether it's safe to move Def to just before Insert. 308 // TODO: Compute memory dependencies in a way that doesn't require always 309 // walking the block. 310 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 311 // more precise. 312 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, 313 const MachineInstr *Insert, 314 const WebAssemblyFunctionInfo &MFI, 315 const MachineRegisterInfo &MRI) { 316 const MachineInstr *DefI = Def->getParent(); 317 const MachineInstr *UseI = Use->getParent(); 318 assert(DefI->getParent() == Insert->getParent()); 319 assert(UseI->getParent() == Insert->getParent()); 320 321 // The first def of a multivalue instruction can be stackified by moving, 322 // since the later defs can always be placed into locals if necessary. Later 323 // defs can only be stackified if all previous defs are already stackified 324 // since ExplicitLocals will not know how to place a def in a local if a 325 // subsequent def is stackified. But only one def can be stackified by moving 326 // the instruction, so it must be the first one. 327 // 328 // TODO: This could be loosened to be the first *live* def, but care would 329 // have to be taken to ensure the drops of the initial dead defs can be 330 // placed. This would require checking that no previous defs are used in the 331 // same instruction as subsequent defs. 332 if (Def != DefI->defs().begin()) 333 return false; 334 335 // If any subsequent def is used prior to the current value by the same 336 // instruction in which the current value is used, we cannot 337 // stackify. Stackifying in this case would require that def moving below the 338 // current def in the stack, which cannot be achieved, even with locals. 339 for (const auto &SubsequentDef : drop_begin(DefI->defs())) { 340 for (const auto &PriorUse : UseI->uses()) { 341 if (&PriorUse == Use) 342 break; 343 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) 344 return false; 345 } 346 } 347 348 // If moving is a semantic nop, it is always allowed 349 const MachineBasicBlock *MBB = DefI->getParent(); 350 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI)); 351 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) 352 ; 353 if (NextI == Insert) 354 return true; 355 356 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot 357 // move. 358 if (WebAssembly::isCatch(DefI->getOpcode())) 359 return false; 360 361 // Check for register dependencies. 362 SmallVector<unsigned, 4> MutableRegisters; 363 for (const MachineOperand &MO : DefI->operands()) { 364 if (!MO.isReg() || MO.isUndef()) 365 continue; 366 Register Reg = MO.getReg(); 367 368 // If the register is dead here and at Insert, ignore it. 369 if (MO.isDead() && Insert->definesRegister(Reg) && 370 !Insert->readsRegister(Reg)) 371 continue; 372 373 if (Register::isPhysicalRegister(Reg)) { 374 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 375 // from moving down, and we've already checked for that. 376 if (Reg == WebAssembly::ARGUMENTS) 377 continue; 378 // If the physical register is never modified, ignore it. 379 if (!MRI.isPhysRegModified(Reg)) 380 continue; 381 // Otherwise, it's a physical register with unknown liveness. 382 return false; 383 } 384 385 // If one of the operands isn't in SSA form, it has different values at 386 // different times, and we need to make sure we don't move our use across 387 // a different def. 388 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 389 MutableRegisters.push_back(Reg); 390 } 391 392 bool Read = false, Write = false, Effects = false, StackPointer = false; 393 query(*DefI, Read, Write, Effects, StackPointer); 394 395 // If the instruction does not access memory and has no side effects, it has 396 // no additional dependencies. 397 bool HasMutableRegisters = !MutableRegisters.empty(); 398 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 399 return true; 400 401 // Scan through the intervening instructions between DefI and Insert. 402 MachineBasicBlock::const_iterator D(DefI), I(Insert); 403 for (--I; I != D; --I) { 404 bool InterveningRead = false; 405 bool InterveningWrite = false; 406 bool InterveningEffects = false; 407 bool InterveningStackPointer = false; 408 query(*I, InterveningRead, InterveningWrite, InterveningEffects, 409 InterveningStackPointer); 410 if (Effects && InterveningEffects) 411 return false; 412 if (Read && InterveningWrite) 413 return false; 414 if (Write && (InterveningRead || InterveningWrite)) 415 return false; 416 if (StackPointer && InterveningStackPointer) 417 return false; 418 419 for (unsigned Reg : MutableRegisters) 420 for (const MachineOperand &MO : I->operands()) 421 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 422 return false; 423 } 424 425 return true; 426 } 427 428 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 429 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 430 const MachineBasicBlock &MBB, 431 const MachineRegisterInfo &MRI, 432 const MachineDominatorTree &MDT, 433 LiveIntervals &LIS, 434 WebAssemblyFunctionInfo &MFI) { 435 const LiveInterval &LI = LIS.getInterval(Reg); 436 437 const MachineInstr *OneUseInst = OneUse.getParent(); 438 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 439 440 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 441 if (&Use == &OneUse) 442 continue; 443 444 const MachineInstr *UseInst = Use.getParent(); 445 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 446 447 if (UseVNI != OneUseVNI) 448 continue; 449 450 if (UseInst == OneUseInst) { 451 // Another use in the same instruction. We need to ensure that the one 452 // selected use happens "before" it. 453 if (&OneUse > &Use) 454 return false; 455 } else { 456 // Test that the use is dominated by the one selected use. 457 while (!MDT.dominates(OneUseInst, UseInst)) { 458 // Actually, dominating is over-conservative. Test that the use would 459 // happen after the one selected use in the stack evaluation order. 460 // 461 // This is needed as a consequence of using implicit local.gets for 462 // uses and implicit local.sets for defs. 463 if (UseInst->getDesc().getNumDefs() == 0) 464 return false; 465 const MachineOperand &MO = UseInst->getOperand(0); 466 if (!MO.isReg()) 467 return false; 468 Register DefReg = MO.getReg(); 469 if (!Register::isVirtualRegister(DefReg) || 470 !MFI.isVRegStackified(DefReg)) 471 return false; 472 assert(MRI.hasOneNonDBGUse(DefReg)); 473 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 474 const MachineInstr *NewUseInst = NewUse.getParent(); 475 if (NewUseInst == OneUseInst) { 476 if (&OneUse > &NewUse) 477 return false; 478 break; 479 } 480 UseInst = NewUseInst; 481 } 482 } 483 } 484 return true; 485 } 486 487 /// Get the appropriate tee opcode for the given register class. 488 static unsigned getTeeOpcode(const TargetRegisterClass *RC) { 489 if (RC == &WebAssembly::I32RegClass) 490 return WebAssembly::TEE_I32; 491 if (RC == &WebAssembly::I64RegClass) 492 return WebAssembly::TEE_I64; 493 if (RC == &WebAssembly::F32RegClass) 494 return WebAssembly::TEE_F32; 495 if (RC == &WebAssembly::F64RegClass) 496 return WebAssembly::TEE_F64; 497 if (RC == &WebAssembly::V128RegClass) 498 return WebAssembly::TEE_V128; 499 if (RC == &WebAssembly::EXTERNREFRegClass) 500 return WebAssembly::TEE_EXTERNREF; 501 if (RC == &WebAssembly::FUNCREFRegClass) 502 return WebAssembly::TEE_FUNCREF; 503 llvm_unreachable("Unexpected register class"); 504 } 505 506 // Shrink LI to its uses, cleaning up LI. 507 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 508 if (LIS.shrinkToUses(&LI)) { 509 SmallVector<LiveInterval *, 4> SplitLIs; 510 LIS.splitSeparateComponents(LI, SplitLIs); 511 } 512 } 513 514 /// A single-use def in the same block with no intervening memory or register 515 /// dependencies; move the def down and nest it with the current instruction. 516 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, 517 MachineInstr *Def, MachineBasicBlock &MBB, 518 MachineInstr *Insert, LiveIntervals &LIS, 519 WebAssemblyFunctionInfo &MFI, 520 MachineRegisterInfo &MRI) { 521 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 522 523 WebAssemblyDebugValueManager DefDIs(Def); 524 MBB.splice(Insert, &MBB, Def); 525 DefDIs.move(Insert); 526 LIS.handleMove(*Def); 527 528 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 529 // No one else is using this register for anything so we can just stackify 530 // it in place. 531 MFI.stackifyVReg(MRI, Reg); 532 } else { 533 // The register may have unrelated uses or defs; create a new register for 534 // just our one def and use so that we can stackify it. 535 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 536 Def->getOperand(0).setReg(NewReg); 537 Op.setReg(NewReg); 538 539 // Tell LiveIntervals about the new register. 540 LIS.createAndComputeVirtRegInterval(NewReg); 541 542 // Tell LiveIntervals about the changes to the old register. 543 LiveInterval &LI = LIS.getInterval(Reg); 544 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 545 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 546 /*RemoveDeadValNo=*/true); 547 548 MFI.stackifyVReg(MRI, NewReg); 549 550 DefDIs.updateReg(NewReg); 551 552 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 553 } 554 555 imposeStackOrdering(Def); 556 return Def; 557 } 558 559 /// A trivially cloneable instruction; clone it and nest the new copy with the 560 /// current instruction. 561 static MachineInstr *rematerializeCheapDef( 562 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 563 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 564 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 565 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 566 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 567 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 568 569 WebAssemblyDebugValueManager DefDIs(&Def); 570 571 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 572 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 573 Op.setReg(NewReg); 574 MachineInstr *Clone = &*std::prev(Insert); 575 LIS.InsertMachineInstrInMaps(*Clone); 576 LIS.createAndComputeVirtRegInterval(NewReg); 577 MFI.stackifyVReg(MRI, NewReg); 578 imposeStackOrdering(Clone); 579 580 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 581 582 // Shrink the interval. 583 bool IsDead = MRI.use_empty(Reg); 584 if (!IsDead) { 585 LiveInterval &LI = LIS.getInterval(Reg); 586 shrinkToUses(LI, LIS); 587 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 588 } 589 590 // If that was the last use of the original, delete the original. 591 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 592 if (IsDead) { 593 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 594 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 595 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx); 596 LIS.removeInterval(Reg); 597 LIS.RemoveMachineInstrFromMaps(Def); 598 Def.eraseFromParent(); 599 600 DefDIs.move(&*Insert); 601 DefDIs.updateReg(NewReg); 602 } else { 603 DefDIs.clone(&*Insert, NewReg); 604 } 605 606 return Clone; 607 } 608 609 /// A multiple-use def in the same block with no intervening memory or register 610 /// dependencies; move the def down, nest it with the current instruction, and 611 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 612 /// this: 613 /// 614 /// Reg = INST ... // Def 615 /// INST ..., Reg, ... // Insert 616 /// INST ..., Reg, ... 617 /// INST ..., Reg, ... 618 /// 619 /// to this: 620 /// 621 /// DefReg = INST ... // Def (to become the new Insert) 622 /// TeeReg, Reg = TEE_... DefReg 623 /// INST ..., TeeReg, ... // Insert 624 /// INST ..., Reg, ... 625 /// INST ..., Reg, ... 626 /// 627 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 628 /// resulting code. 629 static MachineInstr *moveAndTeeForMultiUse( 630 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 631 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 632 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 633 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 634 635 WebAssemblyDebugValueManager DefDIs(Def); 636 637 // Move Def into place. 638 MBB.splice(Insert, &MBB, Def); 639 LIS.handleMove(*Def); 640 641 // Create the Tee and attach the registers. 642 const auto *RegClass = MRI.getRegClass(Reg); 643 Register TeeReg = MRI.createVirtualRegister(RegClass); 644 Register DefReg = MRI.createVirtualRegister(RegClass); 645 MachineOperand &DefMO = Def->getOperand(0); 646 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 647 TII->get(getTeeOpcode(RegClass)), TeeReg) 648 .addReg(Reg, RegState::Define) 649 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 650 Op.setReg(TeeReg); 651 DefMO.setReg(DefReg); 652 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 653 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 654 655 DefDIs.move(Insert); 656 657 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 658 LiveInterval &LI = LIS.getInterval(Reg); 659 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 660 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 661 I->start = TeeIdx; 662 ValNo->def = TeeIdx; 663 shrinkToUses(LI, LIS); 664 665 // Finish stackifying the new regs. 666 LIS.createAndComputeVirtRegInterval(TeeReg); 667 LIS.createAndComputeVirtRegInterval(DefReg); 668 MFI.stackifyVReg(MRI, DefReg); 669 MFI.stackifyVReg(MRI, TeeReg); 670 imposeStackOrdering(Def); 671 imposeStackOrdering(Tee); 672 673 DefDIs.clone(Tee, DefReg); 674 DefDIs.clone(Insert, TeeReg); 675 676 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 677 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 678 return Def; 679 } 680 681 namespace { 682 /// A stack for walking the tree of instructions being built, visiting the 683 /// MachineOperands in DFS order. 684 class TreeWalkerState { 685 using mop_iterator = MachineInstr::mop_iterator; 686 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; 687 using RangeTy = iterator_range<mop_reverse_iterator>; 688 SmallVector<RangeTy, 4> Worklist; 689 690 public: 691 explicit TreeWalkerState(MachineInstr *Insert) { 692 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 693 if (!Range.empty()) 694 Worklist.push_back(reverse(Range)); 695 } 696 697 bool done() const { return Worklist.empty(); } 698 699 MachineOperand &pop() { 700 RangeTy &Range = Worklist.back(); 701 MachineOperand &Op = *Range.begin(); 702 Range = drop_begin(Range); 703 if (Range.empty()) 704 Worklist.pop_back(); 705 assert((Worklist.empty() || !Worklist.back().empty()) && 706 "Empty ranges shouldn't remain in the worklist"); 707 return Op; 708 } 709 710 /// Push Instr's operands onto the stack to be visited. 711 void pushOperands(MachineInstr *Instr) { 712 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 713 if (!Range.empty()) 714 Worklist.push_back(reverse(Range)); 715 } 716 717 /// Some of Instr's operands are on the top of the stack; remove them and 718 /// re-insert them starting from the beginning (because we've commuted them). 719 void resetTopOperands(MachineInstr *Instr) { 720 assert(hasRemainingOperands(Instr) && 721 "Reseting operands should only be done when the instruction has " 722 "an operand still on the stack"); 723 Worklist.back() = reverse(Instr->explicit_uses()); 724 } 725 726 /// Test whether Instr has operands remaining to be visited at the top of 727 /// the stack. 728 bool hasRemainingOperands(const MachineInstr *Instr) const { 729 if (Worklist.empty()) 730 return false; 731 const RangeTy &Range = Worklist.back(); 732 return !Range.empty() && Range.begin()->getParent() == Instr; 733 } 734 735 /// Test whether the given register is present on the stack, indicating an 736 /// operand in the tree that we haven't visited yet. Moving a definition of 737 /// Reg to a point in the tree after that would change its value. 738 /// 739 /// This is needed as a consequence of using implicit local.gets for 740 /// uses and implicit local.sets for defs. 741 bool isOnStack(unsigned Reg) const { 742 for (const RangeTy &Range : Worklist) 743 for (const MachineOperand &MO : Range) 744 if (MO.isReg() && MO.getReg() == Reg) 745 return true; 746 return false; 747 } 748 }; 749 750 /// State to keep track of whether commuting is in flight or whether it's been 751 /// tried for the current instruction and didn't work. 752 class CommutingState { 753 /// There are effectively three states: the initial state where we haven't 754 /// started commuting anything and we don't know anything yet, the tentative 755 /// state where we've commuted the operands of the current instruction and are 756 /// revisiting it, and the declined state where we've reverted the operands 757 /// back to their original order and will no longer commute it further. 758 bool TentativelyCommuting = false; 759 bool Declined = false; 760 761 /// During the tentative state, these hold the operand indices of the commuted 762 /// operands. 763 unsigned Operand0, Operand1; 764 765 public: 766 /// Stackification for an operand was not successful due to ordering 767 /// constraints. If possible, and if we haven't already tried it and declined 768 /// it, commute Insert's operands and prepare to revisit it. 769 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 770 const WebAssemblyInstrInfo *TII) { 771 if (TentativelyCommuting) { 772 assert(!Declined && 773 "Don't decline commuting until you've finished trying it"); 774 // Commuting didn't help. Revert it. 775 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 776 TentativelyCommuting = false; 777 Declined = true; 778 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { 779 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 780 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 781 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 782 // Tentatively commute the operands and try again. 783 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 784 TreeWalker.resetTopOperands(Insert); 785 TentativelyCommuting = true; 786 Declined = false; 787 } 788 } 789 } 790 791 /// Stackification for some operand was successful. Reset to the default 792 /// state. 793 void reset() { 794 TentativelyCommuting = false; 795 Declined = false; 796 } 797 }; 798 } // end anonymous namespace 799 800 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 801 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 802 "********** Function: " 803 << MF.getName() << '\n'); 804 805 bool Changed = false; 806 MachineRegisterInfo &MRI = MF.getRegInfo(); 807 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 808 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 809 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 810 auto &MDT = getAnalysis<MachineDominatorTree>(); 811 auto &LIS = getAnalysis<LiveIntervals>(); 812 813 // Walk the instructions from the bottom up. Currently we don't look past 814 // block boundaries, and the blocks aren't ordered so the block visitation 815 // order isn't significant, but we may want to change this in the future. 816 for (MachineBasicBlock &MBB : MF) { 817 // Don't use a range-based for loop, because we modify the list as we're 818 // iterating over it and the end iterator may change. 819 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 820 MachineInstr *Insert = &*MII; 821 // Don't nest anything inside an inline asm, because we don't have 822 // constraints for $push inputs. 823 if (Insert->isInlineAsm()) 824 continue; 825 826 // Ignore debugging intrinsics. 827 if (Insert->isDebugValue()) 828 continue; 829 830 // Iterate through the inputs in reverse order, since we'll be pulling 831 // operands off the stack in LIFO order. 832 CommutingState Commuting; 833 TreeWalkerState TreeWalker(Insert); 834 while (!TreeWalker.done()) { 835 MachineOperand &Use = TreeWalker.pop(); 836 837 // We're only interested in explicit virtual register operands. 838 if (!Use.isReg()) 839 continue; 840 841 Register Reg = Use.getReg(); 842 assert(Use.isUse() && "explicit_uses() should only iterate over uses"); 843 assert(!Use.isImplicit() && 844 "explicit_uses() should only iterate over explicit operands"); 845 if (Register::isPhysicalRegister(Reg)) 846 continue; 847 848 // Identify the definition for this register at this point. 849 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); 850 if (!DefI) 851 continue; 852 853 // Don't nest an INLINE_ASM def into anything, because we don't have 854 // constraints for $pop outputs. 855 if (DefI->isInlineAsm()) 856 continue; 857 858 // Argument instructions represent live-in registers and not real 859 // instructions. 860 if (WebAssembly::isArgument(DefI->getOpcode())) 861 continue; 862 863 MachineOperand *Def = DefI->findRegisterDefOperand(Reg); 864 assert(Def != nullptr); 865 866 // Decide which strategy to take. Prefer to move a single-use value 867 // over cloning it, and prefer cloning over introducing a tee. 868 // For moving, we require the def to be in the same block as the use; 869 // this makes things simpler (LiveIntervals' handleMove function only 870 // supports intra-block moves) and it's MachineSink's job to catch all 871 // the sinking opportunities anyway. 872 bool SameBlock = DefI->getParent() == &MBB; 873 bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) && 874 !TreeWalker.isOnStack(Reg); 875 if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) { 876 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI); 877 878 // If we are removing the frame base reg completely, remove the debug 879 // info as well. 880 // TODO: Encode this properly as a stackified value. 881 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) 882 MFI.clearFrameBaseVreg(); 883 } else if (shouldRematerialize(*DefI, TII)) { 884 Insert = 885 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(), 886 LIS, MFI, MRI, TII, TRI); 887 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT, 888 LIS, MFI)) { 889 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, 890 MRI, TII); 891 } else { 892 // We failed to stackify the operand. If the problem was ordering 893 // constraints, Commuting may be able to help. 894 if (!CanMove && SameBlock) 895 Commuting.maybeCommute(Insert, TreeWalker, TII); 896 // Proceed to the next operand. 897 continue; 898 } 899 900 // Stackifying a multivalue def may unlock in-place stackification of 901 // subsequent defs. TODO: Handle the case where the consecutive uses are 902 // not all in the same instruction. 903 auto *SubsequentDef = Insert->defs().begin(); 904 auto *SubsequentUse = &Use; 905 while (SubsequentDef != Insert->defs().end() && 906 SubsequentUse != Use.getParent()->uses().end()) { 907 if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) 908 break; 909 Register DefReg = SubsequentDef->getReg(); 910 Register UseReg = SubsequentUse->getReg(); 911 // TODO: This single-use restriction could be relaxed by using tees 912 if (DefReg != UseReg || !MRI.hasOneUse(DefReg)) 913 break; 914 MFI.stackifyVReg(MRI, DefReg); 915 ++SubsequentDef; 916 ++SubsequentUse; 917 } 918 919 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 920 // to a constant 0 so that the def is explicit, and the push/pop 921 // correspondence is maintained. 922 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 923 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 924 925 // We stackified an operand. Add the defining instruction's operands to 926 // the worklist stack now to continue to build an ever deeper tree. 927 Commuting.reset(); 928 TreeWalker.pushOperands(Insert); 929 } 930 931 // If we stackified any operands, skip over the tree to start looking for 932 // the next instruction we can build a tree on. 933 if (Insert != &*MII) { 934 imposeStackOrdering(&*MII); 935 MII = MachineBasicBlock::iterator(Insert).getReverse(); 936 Changed = true; 937 } 938 } 939 } 940 941 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 942 // that it never looks like a use-before-def. 943 if (Changed) { 944 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 945 for (MachineBasicBlock &MBB : MF) 946 MBB.addLiveIn(WebAssembly::VALUE_STACK); 947 } 948 949 #ifndef NDEBUG 950 // Verify that pushes and pops are performed in LIFO order. 951 SmallVector<unsigned, 0> Stack; 952 for (MachineBasicBlock &MBB : MF) { 953 for (MachineInstr &MI : MBB) { 954 if (MI.isDebugInstr()) 955 continue; 956 for (MachineOperand &MO : reverse(MI.explicit_uses())) { 957 if (!MO.isReg()) 958 continue; 959 Register Reg = MO.getReg(); 960 if (MFI.isVRegStackified(Reg)) 961 assert(Stack.pop_back_val() == Reg && 962 "Register stack pop should be paired with a push"); 963 } 964 for (MachineOperand &MO : MI.defs()) { 965 if (!MO.isReg()) 966 continue; 967 Register Reg = MO.getReg(); 968 if (MFI.isVRegStackified(Reg)) 969 Stack.push_back(MO.getReg()); 970 } 971 } 972 // TODO: Generalize this code to support keeping values on the stack across 973 // basic block boundaries. 974 assert(Stack.empty() && 975 "Register stack pushes and pops should be balanced"); 976 } 977 #endif 978 979 return Changed; 980 } 981