xref: /freebsd/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "WebAssembly.h"
24 #include "WebAssemblyDebugValueManager.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <iterator>
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "wasm-reg-stackify"
43 
44 namespace {
45 class WebAssemblyRegStackify final : public MachineFunctionPass {
46   StringRef getPassName() const override {
47     return "WebAssembly Register Stackify";
48   }
49 
50   void getAnalysisUsage(AnalysisUsage &AU) const override {
51     AU.setPreservesCFG();
52     AU.addRequired<AAResultsWrapperPass>();
53     AU.addRequired<MachineDominatorTree>();
54     AU.addRequired<LiveIntervals>();
55     AU.addPreserved<MachineBlockFrequencyInfo>();
56     AU.addPreserved<SlotIndexes>();
57     AU.addPreserved<LiveIntervals>();
58     AU.addPreservedID(LiveVariablesID);
59     AU.addPreserved<MachineDominatorTree>();
60     MachineFunctionPass::getAnalysisUsage(AU);
61   }
62 
63   bool runOnMachineFunction(MachineFunction &MF) override;
64 
65 public:
66   static char ID; // Pass identification, replacement for typeid
67   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
68 };
69 } // end anonymous namespace
70 
71 char WebAssemblyRegStackify::ID = 0;
72 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
73                 "Reorder instructions to use the WebAssembly value stack",
74                 false, false)
75 
76 FunctionPass *llvm::createWebAssemblyRegStackify() {
77   return new WebAssemblyRegStackify();
78 }
79 
80 // Decorate the given instruction with implicit operands that enforce the
81 // expression stack ordering constraints for an instruction which is on
82 // the expression stack.
83 static void imposeStackOrdering(MachineInstr *MI) {
84   // Write the opaque VALUE_STACK register.
85   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
86     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
87                                              /*isDef=*/true,
88                                              /*isImp=*/true));
89 
90   // Also read the opaque VALUE_STACK register.
91   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
92     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
93                                              /*isDef=*/false,
94                                              /*isImp=*/true));
95 }
96 
97 // Convert an IMPLICIT_DEF instruction into an instruction which defines
98 // a constant zero value.
99 static void convertImplicitDefToConstZero(MachineInstr *MI,
100                                           MachineRegisterInfo &MRI,
101                                           const TargetInstrInfo *TII,
102                                           MachineFunction &MF,
103                                           LiveIntervals &LIS) {
104   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
105 
106   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
107   if (RegClass == &WebAssembly::I32RegClass) {
108     MI->setDesc(TII->get(WebAssembly::CONST_I32));
109     MI->addOperand(MachineOperand::CreateImm(0));
110   } else if (RegClass == &WebAssembly::I64RegClass) {
111     MI->setDesc(TII->get(WebAssembly::CONST_I64));
112     MI->addOperand(MachineOperand::CreateImm(0));
113   } else if (RegClass == &WebAssembly::F32RegClass) {
114     MI->setDesc(TII->get(WebAssembly::CONST_F32));
115     auto *Val = cast<ConstantFP>(Constant::getNullValue(
116         Type::getFloatTy(MF.getFunction().getContext())));
117     MI->addOperand(MachineOperand::CreateFPImm(Val));
118   } else if (RegClass == &WebAssembly::F64RegClass) {
119     MI->setDesc(TII->get(WebAssembly::CONST_F64));
120     auto *Val = cast<ConstantFP>(Constant::getNullValue(
121         Type::getDoubleTy(MF.getFunction().getContext())));
122     MI->addOperand(MachineOperand::CreateFPImm(Val));
123   } else if (RegClass == &WebAssembly::V128RegClass) {
124     // TODO: Replace this with v128.const 0 once that is supported in V8
125     Register TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
126     MI->setDesc(TII->get(WebAssembly::SPLAT_I32x4));
127     MI->addOperand(MachineOperand::CreateReg(TempReg, false));
128     MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
129                                   TII->get(WebAssembly::CONST_I32), TempReg)
130                               .addImm(0);
131     LIS.InsertMachineInstrInMaps(*Const);
132   } else {
133     llvm_unreachable("Unexpected reg class");
134   }
135 }
136 
137 // Determine whether a call to the callee referenced by
138 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
139 // effects.
140 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
141                         bool &Effects, bool &StackPointer) {
142   // All calls can use the stack pointer.
143   StackPointer = true;
144 
145   const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
146   if (MO.isGlobal()) {
147     const Constant *GV = MO.getGlobal();
148     if (const auto *GA = dyn_cast<GlobalAlias>(GV))
149       if (!GA->isInterposable())
150         GV = GA->getAliasee();
151 
152     if (const auto *F = dyn_cast<Function>(GV)) {
153       if (!F->doesNotThrow())
154         Effects = true;
155       if (F->doesNotAccessMemory())
156         return;
157       if (F->onlyReadsMemory()) {
158         Read = true;
159         return;
160       }
161     }
162   }
163 
164   // Assume the worst.
165   Write = true;
166   Read = true;
167   Effects = true;
168 }
169 
170 // Determine whether MI reads memory, writes memory, has side effects,
171 // and/or uses the stack pointer value.
172 static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
173                   bool &Write, bool &Effects, bool &StackPointer) {
174   assert(!MI.isTerminator());
175 
176   if (MI.isDebugInstr() || MI.isPosition())
177     return;
178 
179   // Check for loads.
180   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
181     Read = true;
182 
183   // Check for stores.
184   if (MI.mayStore()) {
185     Write = true;
186   } else if (MI.hasOrderedMemoryRef()) {
187     switch (MI.getOpcode()) {
188     case WebAssembly::DIV_S_I32:
189     case WebAssembly::DIV_S_I64:
190     case WebAssembly::REM_S_I32:
191     case WebAssembly::REM_S_I64:
192     case WebAssembly::DIV_U_I32:
193     case WebAssembly::DIV_U_I64:
194     case WebAssembly::REM_U_I32:
195     case WebAssembly::REM_U_I64:
196     case WebAssembly::I32_TRUNC_S_F32:
197     case WebAssembly::I64_TRUNC_S_F32:
198     case WebAssembly::I32_TRUNC_S_F64:
199     case WebAssembly::I64_TRUNC_S_F64:
200     case WebAssembly::I32_TRUNC_U_F32:
201     case WebAssembly::I64_TRUNC_U_F32:
202     case WebAssembly::I32_TRUNC_U_F64:
203     case WebAssembly::I64_TRUNC_U_F64:
204       // These instruction have hasUnmodeledSideEffects() returning true
205       // because they trap on overflow and invalid so they can't be arbitrarily
206       // moved, however hasOrderedMemoryRef() interprets this plus their lack
207       // of memoperands as having a potential unknown memory reference.
208       break;
209     default:
210       // Record volatile accesses, unless it's a call, as calls are handled
211       // specially below.
212       if (!MI.isCall()) {
213         Write = true;
214         Effects = true;
215       }
216       break;
217     }
218   }
219 
220   // Check for side effects.
221   if (MI.hasUnmodeledSideEffects()) {
222     switch (MI.getOpcode()) {
223     case WebAssembly::DIV_S_I32:
224     case WebAssembly::DIV_S_I64:
225     case WebAssembly::REM_S_I32:
226     case WebAssembly::REM_S_I64:
227     case WebAssembly::DIV_U_I32:
228     case WebAssembly::DIV_U_I64:
229     case WebAssembly::REM_U_I32:
230     case WebAssembly::REM_U_I64:
231     case WebAssembly::I32_TRUNC_S_F32:
232     case WebAssembly::I64_TRUNC_S_F32:
233     case WebAssembly::I32_TRUNC_S_F64:
234     case WebAssembly::I64_TRUNC_S_F64:
235     case WebAssembly::I32_TRUNC_U_F32:
236     case WebAssembly::I64_TRUNC_U_F32:
237     case WebAssembly::I32_TRUNC_U_F64:
238     case WebAssembly::I64_TRUNC_U_F64:
239       // These instructions have hasUnmodeledSideEffects() returning true
240       // because they trap on overflow and invalid so they can't be arbitrarily
241       // moved, however in the specific case of register stackifying, it is safe
242       // to move them because overflow and invalid are Undefined Behavior.
243       break;
244     default:
245       Effects = true;
246       break;
247     }
248   }
249 
250   // Check for writes to __stack_pointer global.
251   if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
252        MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
253       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
254     StackPointer = true;
255 
256   // Analyze calls.
257   if (MI.isCall()) {
258     queryCallee(MI, Read, Write, Effects, StackPointer);
259   }
260 }
261 
262 // Test whether Def is safe and profitable to rematerialize.
263 static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
264                                 const WebAssemblyInstrInfo *TII) {
265   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
266 }
267 
268 // Identify the definition for this register at this point. This is a
269 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
270 // LiveIntervals to handle complex cases.
271 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
272                                 const MachineRegisterInfo &MRI,
273                                 const LiveIntervals &LIS) {
274   // Most registers are in SSA form here so we try a quick MRI query first.
275   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
276     return Def;
277 
278   // MRI doesn't know what the Def is. Try asking LIS.
279   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
280           LIS.getInstructionIndex(*Insert)))
281     return LIS.getInstructionFromIndex(ValNo->def);
282 
283   return nullptr;
284 }
285 
286 // Test whether Reg, as defined at Def, has exactly one use. This is a
287 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
288 // to handle complex cases.
289 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
290                       MachineDominatorTree &MDT, LiveIntervals &LIS) {
291   // Most registers are in SSA form here so we try a quick MRI query first.
292   if (MRI.hasOneUse(Reg))
293     return true;
294 
295   bool HasOne = false;
296   const LiveInterval &LI = LIS.getInterval(Reg);
297   const VNInfo *DefVNI =
298       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
299   assert(DefVNI);
300   for (auto &I : MRI.use_nodbg_operands(Reg)) {
301     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
302     if (Result.valueIn() == DefVNI) {
303       if (!Result.isKill())
304         return false;
305       if (HasOne)
306         return false;
307       HasOne = true;
308     }
309   }
310   return HasOne;
311 }
312 
313 // Test whether it's safe to move Def to just before Insert.
314 // TODO: Compute memory dependencies in a way that doesn't require always
315 // walking the block.
316 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
317 // more precise.
318 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
319                          const MachineInstr *Insert, AliasAnalysis &AA,
320                          const WebAssemblyFunctionInfo &MFI,
321                          const MachineRegisterInfo &MRI) {
322   const MachineInstr *DefI = Def->getParent();
323   const MachineInstr *UseI = Use->getParent();
324   assert(DefI->getParent() == Insert->getParent());
325   assert(UseI->getParent() == Insert->getParent());
326 
327   // The first def of a multivalue instruction can be stackified by moving,
328   // since the later defs can always be placed into locals if necessary. Later
329   // defs can only be stackified if all previous defs are already stackified
330   // since ExplicitLocals will not know how to place a def in a local if a
331   // subsequent def is stackified. But only one def can be stackified by moving
332   // the instruction, so it must be the first one.
333   //
334   // TODO: This could be loosened to be the first *live* def, but care would
335   // have to be taken to ensure the drops of the initial dead defs can be
336   // placed. This would require checking that no previous defs are used in the
337   // same instruction as subsequent defs.
338   if (Def != DefI->defs().begin())
339     return false;
340 
341   // If any subsequent def is used prior to the current value by the same
342   // instruction in which the current value is used, we cannot
343   // stackify. Stackifying in this case would require that def moving below the
344   // current def in the stack, which cannot be achieved, even with locals.
345   for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
346     for (const auto &PriorUse : UseI->uses()) {
347       if (&PriorUse == Use)
348         break;
349       if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
350         return false;
351     }
352   }
353 
354   // If moving is a semantic nop, it is always allowed
355   const MachineBasicBlock *MBB = DefI->getParent();
356   auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
357   for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
358     ;
359   if (NextI == Insert)
360     return true;
361 
362   // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
363   // move.
364   if (WebAssembly::isCatch(DefI->getOpcode()))
365     return false;
366 
367   // Check for register dependencies.
368   SmallVector<unsigned, 4> MutableRegisters;
369   for (const MachineOperand &MO : DefI->operands()) {
370     if (!MO.isReg() || MO.isUndef())
371       continue;
372     Register Reg = MO.getReg();
373 
374     // If the register is dead here and at Insert, ignore it.
375     if (MO.isDead() && Insert->definesRegister(Reg) &&
376         !Insert->readsRegister(Reg))
377       continue;
378 
379     if (Register::isPhysicalRegister(Reg)) {
380       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
381       // from moving down, and we've already checked for that.
382       if (Reg == WebAssembly::ARGUMENTS)
383         continue;
384       // If the physical register is never modified, ignore it.
385       if (!MRI.isPhysRegModified(Reg))
386         continue;
387       // Otherwise, it's a physical register with unknown liveness.
388       return false;
389     }
390 
391     // If one of the operands isn't in SSA form, it has different values at
392     // different times, and we need to make sure we don't move our use across
393     // a different def.
394     if (!MO.isDef() && !MRI.hasOneDef(Reg))
395       MutableRegisters.push_back(Reg);
396   }
397 
398   bool Read = false, Write = false, Effects = false, StackPointer = false;
399   query(*DefI, AA, Read, Write, Effects, StackPointer);
400 
401   // If the instruction does not access memory and has no side effects, it has
402   // no additional dependencies.
403   bool HasMutableRegisters = !MutableRegisters.empty();
404   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
405     return true;
406 
407   // Scan through the intervening instructions between DefI and Insert.
408   MachineBasicBlock::const_iterator D(DefI), I(Insert);
409   for (--I; I != D; --I) {
410     bool InterveningRead = false;
411     bool InterveningWrite = false;
412     bool InterveningEffects = false;
413     bool InterveningStackPointer = false;
414     query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
415           InterveningStackPointer);
416     if (Effects && InterveningEffects)
417       return false;
418     if (Read && InterveningWrite)
419       return false;
420     if (Write && (InterveningRead || InterveningWrite))
421       return false;
422     if (StackPointer && InterveningStackPointer)
423       return false;
424 
425     for (unsigned Reg : MutableRegisters)
426       for (const MachineOperand &MO : I->operands())
427         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
428           return false;
429   }
430 
431   return true;
432 }
433 
434 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
435 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
436                                      const MachineBasicBlock &MBB,
437                                      const MachineRegisterInfo &MRI,
438                                      const MachineDominatorTree &MDT,
439                                      LiveIntervals &LIS,
440                                      WebAssemblyFunctionInfo &MFI) {
441   const LiveInterval &LI = LIS.getInterval(Reg);
442 
443   const MachineInstr *OneUseInst = OneUse.getParent();
444   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
445 
446   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
447     if (&Use == &OneUse)
448       continue;
449 
450     const MachineInstr *UseInst = Use.getParent();
451     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
452 
453     if (UseVNI != OneUseVNI)
454       continue;
455 
456     if (UseInst == OneUseInst) {
457       // Another use in the same instruction. We need to ensure that the one
458       // selected use happens "before" it.
459       if (&OneUse > &Use)
460         return false;
461     } else {
462       // Test that the use is dominated by the one selected use.
463       while (!MDT.dominates(OneUseInst, UseInst)) {
464         // Actually, dominating is over-conservative. Test that the use would
465         // happen after the one selected use in the stack evaluation order.
466         //
467         // This is needed as a consequence of using implicit local.gets for
468         // uses and implicit local.sets for defs.
469         if (UseInst->getDesc().getNumDefs() == 0)
470           return false;
471         const MachineOperand &MO = UseInst->getOperand(0);
472         if (!MO.isReg())
473           return false;
474         Register DefReg = MO.getReg();
475         if (!Register::isVirtualRegister(DefReg) ||
476             !MFI.isVRegStackified(DefReg))
477           return false;
478         assert(MRI.hasOneNonDBGUse(DefReg));
479         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
480         const MachineInstr *NewUseInst = NewUse.getParent();
481         if (NewUseInst == OneUseInst) {
482           if (&OneUse > &NewUse)
483             return false;
484           break;
485         }
486         UseInst = NewUseInst;
487       }
488     }
489   }
490   return true;
491 }
492 
493 /// Get the appropriate tee opcode for the given register class.
494 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
495   if (RC == &WebAssembly::I32RegClass)
496     return WebAssembly::TEE_I32;
497   if (RC == &WebAssembly::I64RegClass)
498     return WebAssembly::TEE_I64;
499   if (RC == &WebAssembly::F32RegClass)
500     return WebAssembly::TEE_F32;
501   if (RC == &WebAssembly::F64RegClass)
502     return WebAssembly::TEE_F64;
503   if (RC == &WebAssembly::V128RegClass)
504     return WebAssembly::TEE_V128;
505   llvm_unreachable("Unexpected register class");
506 }
507 
508 // Shrink LI to its uses, cleaning up LI.
509 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
510   if (LIS.shrinkToUses(&LI)) {
511     SmallVector<LiveInterval *, 4> SplitLIs;
512     LIS.splitSeparateComponents(LI, SplitLIs);
513   }
514 }
515 
516 /// A single-use def in the same block with no intervening memory or register
517 /// dependencies; move the def down and nest it with the current instruction.
518 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
519                                       MachineInstr *Def, MachineBasicBlock &MBB,
520                                       MachineInstr *Insert, LiveIntervals &LIS,
521                                       WebAssemblyFunctionInfo &MFI,
522                                       MachineRegisterInfo &MRI) {
523   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
524 
525   WebAssemblyDebugValueManager DefDIs(Def);
526   MBB.splice(Insert, &MBB, Def);
527   DefDIs.move(Insert);
528   LIS.handleMove(*Def);
529 
530   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
531     // No one else is using this register for anything so we can just stackify
532     // it in place.
533     MFI.stackifyVReg(MRI, Reg);
534   } else {
535     // The register may have unrelated uses or defs; create a new register for
536     // just our one def and use so that we can stackify it.
537     Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
538     Def->getOperand(0).setReg(NewReg);
539     Op.setReg(NewReg);
540 
541     // Tell LiveIntervals about the new register.
542     LIS.createAndComputeVirtRegInterval(NewReg);
543 
544     // Tell LiveIntervals about the changes to the old register.
545     LiveInterval &LI = LIS.getInterval(Reg);
546     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
547                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
548                      /*RemoveDeadValNo=*/true);
549 
550     MFI.stackifyVReg(MRI, NewReg);
551 
552     DefDIs.updateReg(NewReg);
553 
554     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
555   }
556 
557   imposeStackOrdering(Def);
558   return Def;
559 }
560 
561 /// A trivially cloneable instruction; clone it and nest the new copy with the
562 /// current instruction.
563 static MachineInstr *rematerializeCheapDef(
564     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
565     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
566     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
567     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
568   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
569   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
570 
571   WebAssemblyDebugValueManager DefDIs(&Def);
572 
573   Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
574   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
575   Op.setReg(NewReg);
576   MachineInstr *Clone = &*std::prev(Insert);
577   LIS.InsertMachineInstrInMaps(*Clone);
578   LIS.createAndComputeVirtRegInterval(NewReg);
579   MFI.stackifyVReg(MRI, NewReg);
580   imposeStackOrdering(Clone);
581 
582   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
583 
584   // Shrink the interval.
585   bool IsDead = MRI.use_empty(Reg);
586   if (!IsDead) {
587     LiveInterval &LI = LIS.getInterval(Reg);
588     shrinkToUses(LI, LIS);
589     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
590   }
591 
592   // If that was the last use of the original, delete the original.
593   // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
594   if (IsDead) {
595     LLVM_DEBUG(dbgs() << " - Deleting original\n");
596     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
597     LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
598     LIS.removeInterval(Reg);
599     LIS.RemoveMachineInstrFromMaps(Def);
600     Def.eraseFromParent();
601 
602     DefDIs.move(&*Insert);
603     DefDIs.updateReg(NewReg);
604   } else {
605     DefDIs.clone(&*Insert, NewReg);
606   }
607 
608   return Clone;
609 }
610 
611 /// A multiple-use def in the same block with no intervening memory or register
612 /// dependencies; move the def down, nest it with the current instruction, and
613 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
614 /// this:
615 ///
616 ///    Reg = INST ...        // Def
617 ///    INST ..., Reg, ...    // Insert
618 ///    INST ..., Reg, ...
619 ///    INST ..., Reg, ...
620 ///
621 /// to this:
622 ///
623 ///    DefReg = INST ...     // Def (to become the new Insert)
624 ///    TeeReg, Reg = TEE_... DefReg
625 ///    INST ..., TeeReg, ... // Insert
626 ///    INST ..., Reg, ...
627 ///    INST ..., Reg, ...
628 ///
629 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
630 /// resulting code.
631 static MachineInstr *moveAndTeeForMultiUse(
632     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
633     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
634     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
635   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
636 
637   WebAssemblyDebugValueManager DefDIs(Def);
638 
639   // Move Def into place.
640   MBB.splice(Insert, &MBB, Def);
641   LIS.handleMove(*Def);
642 
643   // Create the Tee and attach the registers.
644   const auto *RegClass = MRI.getRegClass(Reg);
645   Register TeeReg = MRI.createVirtualRegister(RegClass);
646   Register DefReg = MRI.createVirtualRegister(RegClass);
647   MachineOperand &DefMO = Def->getOperand(0);
648   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
649                               TII->get(getTeeOpcode(RegClass)), TeeReg)
650                           .addReg(Reg, RegState::Define)
651                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
652   Op.setReg(TeeReg);
653   DefMO.setReg(DefReg);
654   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
655   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
656 
657   DefDIs.move(Insert);
658 
659   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
660   LiveInterval &LI = LIS.getInterval(Reg);
661   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
662   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
663   I->start = TeeIdx;
664   ValNo->def = TeeIdx;
665   shrinkToUses(LI, LIS);
666 
667   // Finish stackifying the new regs.
668   LIS.createAndComputeVirtRegInterval(TeeReg);
669   LIS.createAndComputeVirtRegInterval(DefReg);
670   MFI.stackifyVReg(MRI, DefReg);
671   MFI.stackifyVReg(MRI, TeeReg);
672   imposeStackOrdering(Def);
673   imposeStackOrdering(Tee);
674 
675   DefDIs.clone(Tee, DefReg);
676   DefDIs.clone(Insert, TeeReg);
677 
678   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
679   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
680   return Def;
681 }
682 
683 namespace {
684 /// A stack for walking the tree of instructions being built, visiting the
685 /// MachineOperands in DFS order.
686 class TreeWalkerState {
687   using mop_iterator = MachineInstr::mop_iterator;
688   using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
689   using RangeTy = iterator_range<mop_reverse_iterator>;
690   SmallVector<RangeTy, 4> Worklist;
691 
692 public:
693   explicit TreeWalkerState(MachineInstr *Insert) {
694     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
695     if (!Range.empty())
696       Worklist.push_back(reverse(Range));
697   }
698 
699   bool done() const { return Worklist.empty(); }
700 
701   MachineOperand &pop() {
702     RangeTy &Range = Worklist.back();
703     MachineOperand &Op = *Range.begin();
704     Range = drop_begin(Range);
705     if (Range.empty())
706       Worklist.pop_back();
707     assert((Worklist.empty() || !Worklist.back().empty()) &&
708            "Empty ranges shouldn't remain in the worklist");
709     return Op;
710   }
711 
712   /// Push Instr's operands onto the stack to be visited.
713   void pushOperands(MachineInstr *Instr) {
714     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
715     if (!Range.empty())
716       Worklist.push_back(reverse(Range));
717   }
718 
719   /// Some of Instr's operands are on the top of the stack; remove them and
720   /// re-insert them starting from the beginning (because we've commuted them).
721   void resetTopOperands(MachineInstr *Instr) {
722     assert(hasRemainingOperands(Instr) &&
723            "Reseting operands should only be done when the instruction has "
724            "an operand still on the stack");
725     Worklist.back() = reverse(Instr->explicit_uses());
726   }
727 
728   /// Test whether Instr has operands remaining to be visited at the top of
729   /// the stack.
730   bool hasRemainingOperands(const MachineInstr *Instr) const {
731     if (Worklist.empty())
732       return false;
733     const RangeTy &Range = Worklist.back();
734     return !Range.empty() && Range.begin()->getParent() == Instr;
735   }
736 
737   /// Test whether the given register is present on the stack, indicating an
738   /// operand in the tree that we haven't visited yet. Moving a definition of
739   /// Reg to a point in the tree after that would change its value.
740   ///
741   /// This is needed as a consequence of using implicit local.gets for
742   /// uses and implicit local.sets for defs.
743   bool isOnStack(unsigned Reg) const {
744     for (const RangeTy &Range : Worklist)
745       for (const MachineOperand &MO : Range)
746         if (MO.isReg() && MO.getReg() == Reg)
747           return true;
748     return false;
749   }
750 };
751 
752 /// State to keep track of whether commuting is in flight or whether it's been
753 /// tried for the current instruction and didn't work.
754 class CommutingState {
755   /// There are effectively three states: the initial state where we haven't
756   /// started commuting anything and we don't know anything yet, the tentative
757   /// state where we've commuted the operands of the current instruction and are
758   /// revisiting it, and the declined state where we've reverted the operands
759   /// back to their original order and will no longer commute it further.
760   bool TentativelyCommuting = false;
761   bool Declined = false;
762 
763   /// During the tentative state, these hold the operand indices of the commuted
764   /// operands.
765   unsigned Operand0, Operand1;
766 
767 public:
768   /// Stackification for an operand was not successful due to ordering
769   /// constraints. If possible, and if we haven't already tried it and declined
770   /// it, commute Insert's operands and prepare to revisit it.
771   void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
772                     const WebAssemblyInstrInfo *TII) {
773     if (TentativelyCommuting) {
774       assert(!Declined &&
775              "Don't decline commuting until you've finished trying it");
776       // Commuting didn't help. Revert it.
777       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
778       TentativelyCommuting = false;
779       Declined = true;
780     } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
781       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
782       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
783       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
784         // Tentatively commute the operands and try again.
785         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
786         TreeWalker.resetTopOperands(Insert);
787         TentativelyCommuting = true;
788         Declined = false;
789       }
790     }
791   }
792 
793   /// Stackification for some operand was successful. Reset to the default
794   /// state.
795   void reset() {
796     TentativelyCommuting = false;
797     Declined = false;
798   }
799 };
800 } // end anonymous namespace
801 
802 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
803   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
804                        "********** Function: "
805                     << MF.getName() << '\n');
806 
807   bool Changed = false;
808   MachineRegisterInfo &MRI = MF.getRegInfo();
809   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
810   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
811   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
812   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
813   auto &MDT = getAnalysis<MachineDominatorTree>();
814   auto &LIS = getAnalysis<LiveIntervals>();
815 
816   // Walk the instructions from the bottom up. Currently we don't look past
817   // block boundaries, and the blocks aren't ordered so the block visitation
818   // order isn't significant, but we may want to change this in the future.
819   for (MachineBasicBlock &MBB : MF) {
820     // Don't use a range-based for loop, because we modify the list as we're
821     // iterating over it and the end iterator may change.
822     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
823       MachineInstr *Insert = &*MII;
824       // Don't nest anything inside an inline asm, because we don't have
825       // constraints for $push inputs.
826       if (Insert->isInlineAsm())
827         continue;
828 
829       // Ignore debugging intrinsics.
830       if (Insert->isDebugValue())
831         continue;
832 
833       // Iterate through the inputs in reverse order, since we'll be pulling
834       // operands off the stack in LIFO order.
835       CommutingState Commuting;
836       TreeWalkerState TreeWalker(Insert);
837       while (!TreeWalker.done()) {
838         MachineOperand &Use = TreeWalker.pop();
839 
840         // We're only interested in explicit virtual register operands.
841         if (!Use.isReg())
842           continue;
843 
844         Register Reg = Use.getReg();
845         assert(Use.isUse() && "explicit_uses() should only iterate over uses");
846         assert(!Use.isImplicit() &&
847                "explicit_uses() should only iterate over explicit operands");
848         if (Register::isPhysicalRegister(Reg))
849           continue;
850 
851         // Identify the definition for this register at this point.
852         MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
853         if (!DefI)
854           continue;
855 
856         // Don't nest an INLINE_ASM def into anything, because we don't have
857         // constraints for $pop outputs.
858         if (DefI->isInlineAsm())
859           continue;
860 
861         // Argument instructions represent live-in registers and not real
862         // instructions.
863         if (WebAssembly::isArgument(DefI->getOpcode()))
864           continue;
865 
866         MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
867         assert(Def != nullptr);
868 
869         // Decide which strategy to take. Prefer to move a single-use value
870         // over cloning it, and prefer cloning over introducing a tee.
871         // For moving, we require the def to be in the same block as the use;
872         // this makes things simpler (LiveIntervals' handleMove function only
873         // supports intra-block moves) and it's MachineSink's job to catch all
874         // the sinking opportunities anyway.
875         bool SameBlock = DefI->getParent() == &MBB;
876         bool CanMove = SameBlock &&
877                        isSafeToMove(Def, &Use, Insert, AA, MFI, MRI) &&
878                        !TreeWalker.isOnStack(Reg);
879         if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
880           Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
881 
882           // If we are removing the frame base reg completely, remove the debug
883           // info as well.
884           // TODO: Encode this properly as a stackified value.
885           if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
886             MFI.clearFrameBaseVreg();
887         } else if (shouldRematerialize(*DefI, AA, TII)) {
888           Insert =
889               rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
890                                     LIS, MFI, MRI, TII, TRI);
891         } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
892                                                        LIS, MFI)) {
893           Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
894                                          MRI, TII);
895         } else {
896           // We failed to stackify the operand. If the problem was ordering
897           // constraints, Commuting may be able to help.
898           if (!CanMove && SameBlock)
899             Commuting.maybeCommute(Insert, TreeWalker, TII);
900           // Proceed to the next operand.
901           continue;
902         }
903 
904         // Stackifying a multivalue def may unlock in-place stackification of
905         // subsequent defs. TODO: Handle the case where the consecutive uses are
906         // not all in the same instruction.
907         auto *SubsequentDef = Insert->defs().begin();
908         auto *SubsequentUse = &Use;
909         while (SubsequentDef != Insert->defs().end() &&
910                SubsequentUse != Use.getParent()->uses().end()) {
911           if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
912             break;
913           unsigned DefReg = SubsequentDef->getReg();
914           unsigned UseReg = SubsequentUse->getReg();
915           // TODO: This single-use restriction could be relaxed by using tees
916           if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
917             break;
918           MFI.stackifyVReg(MRI, DefReg);
919           ++SubsequentDef;
920           ++SubsequentUse;
921         }
922 
923         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
924         // to a constant 0 so that the def is explicit, and the push/pop
925         // correspondence is maintained.
926         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
927           convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
928 
929         // We stackified an operand. Add the defining instruction's operands to
930         // the worklist stack now to continue to build an ever deeper tree.
931         Commuting.reset();
932         TreeWalker.pushOperands(Insert);
933       }
934 
935       // If we stackified any operands, skip over the tree to start looking for
936       // the next instruction we can build a tree on.
937       if (Insert != &*MII) {
938         imposeStackOrdering(&*MII);
939         MII = MachineBasicBlock::iterator(Insert).getReverse();
940         Changed = true;
941       }
942     }
943   }
944 
945   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
946   // that it never looks like a use-before-def.
947   if (Changed) {
948     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
949     for (MachineBasicBlock &MBB : MF)
950       MBB.addLiveIn(WebAssembly::VALUE_STACK);
951   }
952 
953 #ifndef NDEBUG
954   // Verify that pushes and pops are performed in LIFO order.
955   SmallVector<unsigned, 0> Stack;
956   for (MachineBasicBlock &MBB : MF) {
957     for (MachineInstr &MI : MBB) {
958       if (MI.isDebugInstr())
959         continue;
960       for (MachineOperand &MO : reverse(MI.explicit_uses())) {
961         if (!MO.isReg())
962           continue;
963         Register Reg = MO.getReg();
964         if (MFI.isVRegStackified(Reg))
965           assert(Stack.pop_back_val() == Reg &&
966                  "Register stack pop should be paired with a push");
967       }
968       for (MachineOperand &MO : MI.defs()) {
969         if (!MO.isReg())
970           continue;
971         Register Reg = MO.getReg();
972         if (MFI.isVRegStackified(Reg))
973           Stack.push_back(MO.getReg());
974       }
975     }
976     // TODO: Generalize this code to support keeping values on the stack across
977     // basic block boundaries.
978     assert(Stack.empty() &&
979            "Register stack pushes and pops should be balanced");
980   }
981 #endif
982 
983   return Changed;
984 }
985