1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a register stacking pass. 11 /// 12 /// This pass reorders instructions to put register uses and defs in an order 13 /// such that they form single-use expression trees. Registers fitting this form 14 /// are then marked as "stackified", meaning references to them are replaced by 15 /// "push" and "pop" from the value stack. 16 /// 17 /// This is primarily a code size optimization, since temporary values on the 18 /// value stack don't need to be named. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 23 #include "Utils/WebAssemblyUtilities.h" 24 #include "WebAssembly.h" 25 #include "WebAssemblyDebugValueManager.h" 26 #include "WebAssemblyMachineFunctionInfo.h" 27 #include "WebAssemblySubtarget.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <iterator> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "wasm-reg-stackify" 43 44 namespace { 45 class WebAssemblyRegStackify final : public MachineFunctionPass { 46 StringRef getPassName() const override { 47 return "WebAssembly Register Stackify"; 48 } 49 50 void getAnalysisUsage(AnalysisUsage &AU) const override { 51 AU.setPreservesCFG(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void imposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void convertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 auto *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 auto *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2)); 124 MI->addOperand(MachineOperand::CreateImm(0)); 125 MI->addOperand(MachineOperand::CreateImm(0)); 126 } else { 127 llvm_unreachable("Unexpected reg class"); 128 } 129 } 130 131 // Determine whether a call to the callee referenced by 132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 133 // effects. 134 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, 135 bool &Effects, bool &StackPointer) { 136 // All calls can use the stack pointer. 137 StackPointer = true; 138 139 const MachineOperand &MO = WebAssembly::getCalleeOp(MI); 140 if (MO.isGlobal()) { 141 const Constant *GV = MO.getGlobal(); 142 if (const auto *GA = dyn_cast<GlobalAlias>(GV)) 143 if (!GA->isInterposable()) 144 GV = GA->getAliasee(); 145 146 if (const auto *F = dyn_cast<Function>(GV)) { 147 if (!F->doesNotThrow()) 148 Effects = true; 149 if (F->doesNotAccessMemory()) 150 return; 151 if (F->onlyReadsMemory()) { 152 Read = true; 153 return; 154 } 155 } 156 } 157 158 // Assume the worst. 159 Write = true; 160 Read = true; 161 Effects = true; 162 } 163 164 // Determine whether MI reads memory, writes memory, has side effects, 165 // and/or uses the stack pointer value. 166 static void query(const MachineInstr &MI, bool &Read, bool &Write, 167 bool &Effects, bool &StackPointer) { 168 assert(!MI.isTerminator()); 169 170 if (MI.isDebugInstr() || MI.isPosition()) 171 return; 172 173 // Check for loads. 174 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) 175 Read = true; 176 177 // Check for stores. 178 if (MI.mayStore()) { 179 Write = true; 180 } else if (MI.hasOrderedMemoryRef()) { 181 switch (MI.getOpcode()) { 182 case WebAssembly::DIV_S_I32: 183 case WebAssembly::DIV_S_I64: 184 case WebAssembly::REM_S_I32: 185 case WebAssembly::REM_S_I64: 186 case WebAssembly::DIV_U_I32: 187 case WebAssembly::DIV_U_I64: 188 case WebAssembly::REM_U_I32: 189 case WebAssembly::REM_U_I64: 190 case WebAssembly::I32_TRUNC_S_F32: 191 case WebAssembly::I64_TRUNC_S_F32: 192 case WebAssembly::I32_TRUNC_S_F64: 193 case WebAssembly::I64_TRUNC_S_F64: 194 case WebAssembly::I32_TRUNC_U_F32: 195 case WebAssembly::I64_TRUNC_U_F32: 196 case WebAssembly::I32_TRUNC_U_F64: 197 case WebAssembly::I64_TRUNC_U_F64: 198 // These instruction have hasUnmodeledSideEffects() returning true 199 // because they trap on overflow and invalid so they can't be arbitrarily 200 // moved, however hasOrderedMemoryRef() interprets this plus their lack 201 // of memoperands as having a potential unknown memory reference. 202 break; 203 default: 204 // Record volatile accesses, unless it's a call, as calls are handled 205 // specially below. 206 if (!MI.isCall()) { 207 Write = true; 208 Effects = true; 209 } 210 break; 211 } 212 } 213 214 // Check for side effects. 215 if (MI.hasUnmodeledSideEffects()) { 216 switch (MI.getOpcode()) { 217 case WebAssembly::DIV_S_I32: 218 case WebAssembly::DIV_S_I64: 219 case WebAssembly::REM_S_I32: 220 case WebAssembly::REM_S_I64: 221 case WebAssembly::DIV_U_I32: 222 case WebAssembly::DIV_U_I64: 223 case WebAssembly::REM_U_I32: 224 case WebAssembly::REM_U_I64: 225 case WebAssembly::I32_TRUNC_S_F32: 226 case WebAssembly::I64_TRUNC_S_F32: 227 case WebAssembly::I32_TRUNC_S_F64: 228 case WebAssembly::I64_TRUNC_S_F64: 229 case WebAssembly::I32_TRUNC_U_F32: 230 case WebAssembly::I64_TRUNC_U_F32: 231 case WebAssembly::I32_TRUNC_U_F64: 232 case WebAssembly::I64_TRUNC_U_F64: 233 // These instructions have hasUnmodeledSideEffects() returning true 234 // because they trap on overflow and invalid so they can't be arbitrarily 235 // moved, however in the specific case of register stackifying, it is safe 236 // to move them because overflow and invalid are Undefined Behavior. 237 break; 238 default: 239 Effects = true; 240 break; 241 } 242 } 243 244 // Check for writes to __stack_pointer global. 245 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || 246 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && 247 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 248 StackPointer = true; 249 250 // Analyze calls. 251 if (MI.isCall()) { 252 queryCallee(MI, Read, Write, Effects, StackPointer); 253 } 254 } 255 256 // Test whether Def is safe and profitable to rematerialize. 257 static bool shouldRematerialize(const MachineInstr &Def, 258 const WebAssemblyInstrInfo *TII) { 259 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def); 260 } 261 262 // Identify the definition for this register at this point. This is a 263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 264 // LiveIntervals to handle complex cases. 265 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, 266 const MachineRegisterInfo &MRI, 267 const LiveIntervals &LIS) { 268 // Most registers are in SSA form here so we try a quick MRI query first. 269 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 270 return Def; 271 272 // MRI doesn't know what the Def is. Try asking LIS. 273 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 274 LIS.getInstructionIndex(*Insert))) 275 return LIS.getInstructionFromIndex(ValNo->def); 276 277 return nullptr; 278 } 279 280 // Test whether Reg, as defined at Def, has exactly one use. This is a 281 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 282 // to handle complex cases. 283 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 284 MachineDominatorTree &MDT, LiveIntervals &LIS) { 285 // Most registers are in SSA form here so we try a quick MRI query first. 286 if (MRI.hasOneUse(Reg)) 287 return true; 288 289 bool HasOne = false; 290 const LiveInterval &LI = LIS.getInterval(Reg); 291 const VNInfo *DefVNI = 292 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 293 assert(DefVNI); 294 for (auto &I : MRI.use_nodbg_operands(Reg)) { 295 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 296 if (Result.valueIn() == DefVNI) { 297 if (!Result.isKill()) 298 return false; 299 if (HasOne) 300 return false; 301 HasOne = true; 302 } 303 } 304 return HasOne; 305 } 306 307 // Test whether it's safe to move Def to just before Insert. 308 // TODO: Compute memory dependencies in a way that doesn't require always 309 // walking the block. 310 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 311 // more precise. 312 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, 313 const MachineInstr *Insert, 314 const WebAssemblyFunctionInfo &MFI, 315 const MachineRegisterInfo &MRI) { 316 const MachineInstr *DefI = Def->getParent(); 317 const MachineInstr *UseI = Use->getParent(); 318 assert(DefI->getParent() == Insert->getParent()); 319 assert(UseI->getParent() == Insert->getParent()); 320 321 // The first def of a multivalue instruction can be stackified by moving, 322 // since the later defs can always be placed into locals if necessary. Later 323 // defs can only be stackified if all previous defs are already stackified 324 // since ExplicitLocals will not know how to place a def in a local if a 325 // subsequent def is stackified. But only one def can be stackified by moving 326 // the instruction, so it must be the first one. 327 // 328 // TODO: This could be loosened to be the first *live* def, but care would 329 // have to be taken to ensure the drops of the initial dead defs can be 330 // placed. This would require checking that no previous defs are used in the 331 // same instruction as subsequent defs. 332 if (Def != DefI->defs().begin()) 333 return false; 334 335 // If any subsequent def is used prior to the current value by the same 336 // instruction in which the current value is used, we cannot 337 // stackify. Stackifying in this case would require that def moving below the 338 // current def in the stack, which cannot be achieved, even with locals. 339 // Also ensure we don't sink the def past any other prior uses. 340 for (const auto &SubsequentDef : drop_begin(DefI->defs())) { 341 auto I = std::next(MachineBasicBlock::const_iterator(DefI)); 342 auto E = std::next(MachineBasicBlock::const_iterator(UseI)); 343 for (; I != E; ++I) { 344 for (const auto &PriorUse : I->uses()) { 345 if (&PriorUse == Use) 346 break; 347 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) 348 return false; 349 } 350 } 351 } 352 353 // If moving is a semantic nop, it is always allowed 354 const MachineBasicBlock *MBB = DefI->getParent(); 355 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI)); 356 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) 357 ; 358 if (NextI == Insert) 359 return true; 360 361 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot 362 // move. 363 if (WebAssembly::isCatch(DefI->getOpcode())) 364 return false; 365 366 // Check for register dependencies. 367 SmallVector<unsigned, 4> MutableRegisters; 368 for (const MachineOperand &MO : DefI->operands()) { 369 if (!MO.isReg() || MO.isUndef()) 370 continue; 371 Register Reg = MO.getReg(); 372 373 // If the register is dead here and at Insert, ignore it. 374 if (MO.isDead() && Insert->definesRegister(Reg) && 375 !Insert->readsRegister(Reg)) 376 continue; 377 378 if (Reg.isPhysical()) { 379 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 380 // from moving down, and we've already checked for that. 381 if (Reg == WebAssembly::ARGUMENTS) 382 continue; 383 // If the physical register is never modified, ignore it. 384 if (!MRI.isPhysRegModified(Reg)) 385 continue; 386 // Otherwise, it's a physical register with unknown liveness. 387 return false; 388 } 389 390 // If one of the operands isn't in SSA form, it has different values at 391 // different times, and we need to make sure we don't move our use across 392 // a different def. 393 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 394 MutableRegisters.push_back(Reg); 395 } 396 397 bool Read = false, Write = false, Effects = false, StackPointer = false; 398 query(*DefI, Read, Write, Effects, StackPointer); 399 400 // If the instruction does not access memory and has no side effects, it has 401 // no additional dependencies. 402 bool HasMutableRegisters = !MutableRegisters.empty(); 403 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 404 return true; 405 406 // Scan through the intervening instructions between DefI and Insert. 407 MachineBasicBlock::const_iterator D(DefI), I(Insert); 408 for (--I; I != D; --I) { 409 bool InterveningRead = false; 410 bool InterveningWrite = false; 411 bool InterveningEffects = false; 412 bool InterveningStackPointer = false; 413 query(*I, InterveningRead, InterveningWrite, InterveningEffects, 414 InterveningStackPointer); 415 if (Effects && InterveningEffects) 416 return false; 417 if (Read && InterveningWrite) 418 return false; 419 if (Write && (InterveningRead || InterveningWrite)) 420 return false; 421 if (StackPointer && InterveningStackPointer) 422 return false; 423 424 for (unsigned Reg : MutableRegisters) 425 for (const MachineOperand &MO : I->operands()) 426 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 427 return false; 428 } 429 430 return true; 431 } 432 433 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 434 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 435 const MachineBasicBlock &MBB, 436 const MachineRegisterInfo &MRI, 437 const MachineDominatorTree &MDT, 438 LiveIntervals &LIS, 439 WebAssemblyFunctionInfo &MFI) { 440 const LiveInterval &LI = LIS.getInterval(Reg); 441 442 const MachineInstr *OneUseInst = OneUse.getParent(); 443 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 444 445 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 446 if (&Use == &OneUse) 447 continue; 448 449 const MachineInstr *UseInst = Use.getParent(); 450 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 451 452 if (UseVNI != OneUseVNI) 453 continue; 454 455 if (UseInst == OneUseInst) { 456 // Another use in the same instruction. We need to ensure that the one 457 // selected use happens "before" it. 458 if (&OneUse > &Use) 459 return false; 460 } else { 461 // Test that the use is dominated by the one selected use. 462 while (!MDT.dominates(OneUseInst, UseInst)) { 463 // Actually, dominating is over-conservative. Test that the use would 464 // happen after the one selected use in the stack evaluation order. 465 // 466 // This is needed as a consequence of using implicit local.gets for 467 // uses and implicit local.sets for defs. 468 if (UseInst->getDesc().getNumDefs() == 0) 469 return false; 470 const MachineOperand &MO = UseInst->getOperand(0); 471 if (!MO.isReg()) 472 return false; 473 Register DefReg = MO.getReg(); 474 if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg)) 475 return false; 476 assert(MRI.hasOneNonDBGUse(DefReg)); 477 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 478 const MachineInstr *NewUseInst = NewUse.getParent(); 479 if (NewUseInst == OneUseInst) { 480 if (&OneUse > &NewUse) 481 return false; 482 break; 483 } 484 UseInst = NewUseInst; 485 } 486 } 487 } 488 return true; 489 } 490 491 /// Get the appropriate tee opcode for the given register class. 492 static unsigned getTeeOpcode(const TargetRegisterClass *RC) { 493 if (RC == &WebAssembly::I32RegClass) 494 return WebAssembly::TEE_I32; 495 if (RC == &WebAssembly::I64RegClass) 496 return WebAssembly::TEE_I64; 497 if (RC == &WebAssembly::F32RegClass) 498 return WebAssembly::TEE_F32; 499 if (RC == &WebAssembly::F64RegClass) 500 return WebAssembly::TEE_F64; 501 if (RC == &WebAssembly::V128RegClass) 502 return WebAssembly::TEE_V128; 503 if (RC == &WebAssembly::EXTERNREFRegClass) 504 return WebAssembly::TEE_EXTERNREF; 505 if (RC == &WebAssembly::FUNCREFRegClass) 506 return WebAssembly::TEE_FUNCREF; 507 llvm_unreachable("Unexpected register class"); 508 } 509 510 // Shrink LI to its uses, cleaning up LI. 511 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 512 if (LIS.shrinkToUses(&LI)) { 513 SmallVector<LiveInterval *, 4> SplitLIs; 514 LIS.splitSeparateComponents(LI, SplitLIs); 515 } 516 } 517 518 /// A single-use def in the same block with no intervening memory or register 519 /// dependencies; move the def down and nest it with the current instruction. 520 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, 521 MachineInstr *Def, MachineBasicBlock &MBB, 522 MachineInstr *Insert, LiveIntervals &LIS, 523 WebAssemblyFunctionInfo &MFI, 524 MachineRegisterInfo &MRI) { 525 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 526 527 WebAssemblyDebugValueManager DefDIs(Def); 528 MBB.splice(Insert, &MBB, Def); 529 DefDIs.move(Insert); 530 LIS.handleMove(*Def); 531 532 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 533 // No one else is using this register for anything so we can just stackify 534 // it in place. 535 MFI.stackifyVReg(MRI, Reg); 536 } else { 537 // The register may have unrelated uses or defs; create a new register for 538 // just our one def and use so that we can stackify it. 539 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 540 Def->getOperand(0).setReg(NewReg); 541 Op.setReg(NewReg); 542 543 // Tell LiveIntervals about the new register. 544 LIS.createAndComputeVirtRegInterval(NewReg); 545 546 // Tell LiveIntervals about the changes to the old register. 547 LiveInterval &LI = LIS.getInterval(Reg); 548 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 549 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 550 /*RemoveDeadValNo=*/true); 551 552 MFI.stackifyVReg(MRI, NewReg); 553 554 DefDIs.updateReg(NewReg); 555 556 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 557 } 558 559 imposeStackOrdering(Def); 560 return Def; 561 } 562 563 /// A trivially cloneable instruction; clone it and nest the new copy with the 564 /// current instruction. 565 static MachineInstr *rematerializeCheapDef( 566 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 567 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 568 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 569 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 570 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 571 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 572 573 WebAssemblyDebugValueManager DefDIs(&Def); 574 575 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 576 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 577 Op.setReg(NewReg); 578 MachineInstr *Clone = &*std::prev(Insert); 579 LIS.InsertMachineInstrInMaps(*Clone); 580 LIS.createAndComputeVirtRegInterval(NewReg); 581 MFI.stackifyVReg(MRI, NewReg); 582 imposeStackOrdering(Clone); 583 584 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 585 586 // Shrink the interval. 587 bool IsDead = MRI.use_empty(Reg); 588 if (!IsDead) { 589 LiveInterval &LI = LIS.getInterval(Reg); 590 shrinkToUses(LI, LIS); 591 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 592 } 593 594 // If that was the last use of the original, delete the original. 595 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 596 if (IsDead) { 597 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 598 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 599 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx); 600 LIS.removeInterval(Reg); 601 LIS.RemoveMachineInstrFromMaps(Def); 602 Def.eraseFromParent(); 603 604 DefDIs.move(&*Insert); 605 DefDIs.updateReg(NewReg); 606 } else { 607 DefDIs.clone(&*Insert, NewReg); 608 } 609 610 return Clone; 611 } 612 613 /// A multiple-use def in the same block with no intervening memory or register 614 /// dependencies; move the def down, nest it with the current instruction, and 615 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 616 /// this: 617 /// 618 /// Reg = INST ... // Def 619 /// INST ..., Reg, ... // Insert 620 /// INST ..., Reg, ... 621 /// INST ..., Reg, ... 622 /// 623 /// to this: 624 /// 625 /// DefReg = INST ... // Def (to become the new Insert) 626 /// TeeReg, Reg = TEE_... DefReg 627 /// INST ..., TeeReg, ... // Insert 628 /// INST ..., Reg, ... 629 /// INST ..., Reg, ... 630 /// 631 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 632 /// resulting code. 633 static MachineInstr *moveAndTeeForMultiUse( 634 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 635 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 636 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 637 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 638 639 WebAssemblyDebugValueManager DefDIs(Def); 640 641 // Move Def into place. 642 MBB.splice(Insert, &MBB, Def); 643 LIS.handleMove(*Def); 644 645 // Create the Tee and attach the registers. 646 const auto *RegClass = MRI.getRegClass(Reg); 647 Register TeeReg = MRI.createVirtualRegister(RegClass); 648 Register DefReg = MRI.createVirtualRegister(RegClass); 649 MachineOperand &DefMO = Def->getOperand(0); 650 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 651 TII->get(getTeeOpcode(RegClass)), TeeReg) 652 .addReg(Reg, RegState::Define) 653 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 654 Op.setReg(TeeReg); 655 DefMO.setReg(DefReg); 656 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 657 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 658 659 DefDIs.move(Insert); 660 661 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 662 LiveInterval &LI = LIS.getInterval(Reg); 663 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 664 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 665 I->start = TeeIdx; 666 ValNo->def = TeeIdx; 667 shrinkToUses(LI, LIS); 668 669 // Finish stackifying the new regs. 670 LIS.createAndComputeVirtRegInterval(TeeReg); 671 LIS.createAndComputeVirtRegInterval(DefReg); 672 MFI.stackifyVReg(MRI, DefReg); 673 MFI.stackifyVReg(MRI, TeeReg); 674 imposeStackOrdering(Def); 675 imposeStackOrdering(Tee); 676 677 DefDIs.clone(Tee, DefReg); 678 DefDIs.clone(Insert, TeeReg); 679 680 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 681 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 682 return Def; 683 } 684 685 namespace { 686 /// A stack for walking the tree of instructions being built, visiting the 687 /// MachineOperands in DFS order. 688 class TreeWalkerState { 689 using mop_iterator = MachineInstr::mop_iterator; 690 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; 691 using RangeTy = iterator_range<mop_reverse_iterator>; 692 SmallVector<RangeTy, 4> Worklist; 693 694 public: 695 explicit TreeWalkerState(MachineInstr *Insert) { 696 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 697 if (!Range.empty()) 698 Worklist.push_back(reverse(Range)); 699 } 700 701 bool done() const { return Worklist.empty(); } 702 703 MachineOperand &pop() { 704 RangeTy &Range = Worklist.back(); 705 MachineOperand &Op = *Range.begin(); 706 Range = drop_begin(Range); 707 if (Range.empty()) 708 Worklist.pop_back(); 709 assert((Worklist.empty() || !Worklist.back().empty()) && 710 "Empty ranges shouldn't remain in the worklist"); 711 return Op; 712 } 713 714 /// Push Instr's operands onto the stack to be visited. 715 void pushOperands(MachineInstr *Instr) { 716 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 717 if (!Range.empty()) 718 Worklist.push_back(reverse(Range)); 719 } 720 721 /// Some of Instr's operands are on the top of the stack; remove them and 722 /// re-insert them starting from the beginning (because we've commuted them). 723 void resetTopOperands(MachineInstr *Instr) { 724 assert(hasRemainingOperands(Instr) && 725 "Reseting operands should only be done when the instruction has " 726 "an operand still on the stack"); 727 Worklist.back() = reverse(Instr->explicit_uses()); 728 } 729 730 /// Test whether Instr has operands remaining to be visited at the top of 731 /// the stack. 732 bool hasRemainingOperands(const MachineInstr *Instr) const { 733 if (Worklist.empty()) 734 return false; 735 const RangeTy &Range = Worklist.back(); 736 return !Range.empty() && Range.begin()->getParent() == Instr; 737 } 738 739 /// Test whether the given register is present on the stack, indicating an 740 /// operand in the tree that we haven't visited yet. Moving a definition of 741 /// Reg to a point in the tree after that would change its value. 742 /// 743 /// This is needed as a consequence of using implicit local.gets for 744 /// uses and implicit local.sets for defs. 745 bool isOnStack(unsigned Reg) const { 746 for (const RangeTy &Range : Worklist) 747 for (const MachineOperand &MO : Range) 748 if (MO.isReg() && MO.getReg() == Reg) 749 return true; 750 return false; 751 } 752 }; 753 754 /// State to keep track of whether commuting is in flight or whether it's been 755 /// tried for the current instruction and didn't work. 756 class CommutingState { 757 /// There are effectively three states: the initial state where we haven't 758 /// started commuting anything and we don't know anything yet, the tentative 759 /// state where we've commuted the operands of the current instruction and are 760 /// revisiting it, and the declined state where we've reverted the operands 761 /// back to their original order and will no longer commute it further. 762 bool TentativelyCommuting = false; 763 bool Declined = false; 764 765 /// During the tentative state, these hold the operand indices of the commuted 766 /// operands. 767 unsigned Operand0, Operand1; 768 769 public: 770 /// Stackification for an operand was not successful due to ordering 771 /// constraints. If possible, and if we haven't already tried it and declined 772 /// it, commute Insert's operands and prepare to revisit it. 773 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 774 const WebAssemblyInstrInfo *TII) { 775 if (TentativelyCommuting) { 776 assert(!Declined && 777 "Don't decline commuting until you've finished trying it"); 778 // Commuting didn't help. Revert it. 779 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 780 TentativelyCommuting = false; 781 Declined = true; 782 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { 783 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 784 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 785 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 786 // Tentatively commute the operands and try again. 787 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 788 TreeWalker.resetTopOperands(Insert); 789 TentativelyCommuting = true; 790 Declined = false; 791 } 792 } 793 } 794 795 /// Stackification for some operand was successful. Reset to the default 796 /// state. 797 void reset() { 798 TentativelyCommuting = false; 799 Declined = false; 800 } 801 }; 802 } // end anonymous namespace 803 804 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 805 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 806 "********** Function: " 807 << MF.getName() << '\n'); 808 809 bool Changed = false; 810 MachineRegisterInfo &MRI = MF.getRegInfo(); 811 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 812 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 813 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 814 auto &MDT = getAnalysis<MachineDominatorTree>(); 815 auto &LIS = getAnalysis<LiveIntervals>(); 816 817 // Walk the instructions from the bottom up. Currently we don't look past 818 // block boundaries, and the blocks aren't ordered so the block visitation 819 // order isn't significant, but we may want to change this in the future. 820 for (MachineBasicBlock &MBB : MF) { 821 // Don't use a range-based for loop, because we modify the list as we're 822 // iterating over it and the end iterator may change. 823 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 824 MachineInstr *Insert = &*MII; 825 // Don't nest anything inside an inline asm, because we don't have 826 // constraints for $push inputs. 827 if (Insert->isInlineAsm()) 828 continue; 829 830 // Ignore debugging intrinsics. 831 if (Insert->isDebugValue()) 832 continue; 833 834 // Iterate through the inputs in reverse order, since we'll be pulling 835 // operands off the stack in LIFO order. 836 CommutingState Commuting; 837 TreeWalkerState TreeWalker(Insert); 838 while (!TreeWalker.done()) { 839 MachineOperand &Use = TreeWalker.pop(); 840 841 // We're only interested in explicit virtual register operands. 842 if (!Use.isReg()) 843 continue; 844 845 Register Reg = Use.getReg(); 846 assert(Use.isUse() && "explicit_uses() should only iterate over uses"); 847 assert(!Use.isImplicit() && 848 "explicit_uses() should only iterate over explicit operands"); 849 if (Reg.isPhysical()) 850 continue; 851 852 // Identify the definition for this register at this point. 853 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); 854 if (!DefI) 855 continue; 856 857 // Don't nest an INLINE_ASM def into anything, because we don't have 858 // constraints for $pop outputs. 859 if (DefI->isInlineAsm()) 860 continue; 861 862 // Argument instructions represent live-in registers and not real 863 // instructions. 864 if (WebAssembly::isArgument(DefI->getOpcode())) 865 continue; 866 867 MachineOperand *Def = DefI->findRegisterDefOperand(Reg); 868 assert(Def != nullptr); 869 870 // Decide which strategy to take. Prefer to move a single-use value 871 // over cloning it, and prefer cloning over introducing a tee. 872 // For moving, we require the def to be in the same block as the use; 873 // this makes things simpler (LiveIntervals' handleMove function only 874 // supports intra-block moves) and it's MachineSink's job to catch all 875 // the sinking opportunities anyway. 876 bool SameBlock = DefI->getParent() == &MBB; 877 bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) && 878 !TreeWalker.isOnStack(Reg); 879 if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) { 880 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI); 881 882 // If we are removing the frame base reg completely, remove the debug 883 // info as well. 884 // TODO: Encode this properly as a stackified value. 885 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) 886 MFI.clearFrameBaseVreg(); 887 } else if (shouldRematerialize(*DefI, TII)) { 888 Insert = 889 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(), 890 LIS, MFI, MRI, TII, TRI); 891 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT, 892 LIS, MFI)) { 893 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, 894 MRI, TII); 895 } else { 896 // We failed to stackify the operand. If the problem was ordering 897 // constraints, Commuting may be able to help. 898 if (!CanMove && SameBlock) 899 Commuting.maybeCommute(Insert, TreeWalker, TII); 900 // Proceed to the next operand. 901 continue; 902 } 903 904 // Stackifying a multivalue def may unlock in-place stackification of 905 // subsequent defs. TODO: Handle the case where the consecutive uses are 906 // not all in the same instruction. 907 auto *SubsequentDef = Insert->defs().begin(); 908 auto *SubsequentUse = &Use; 909 while (SubsequentDef != Insert->defs().end() && 910 SubsequentUse != Use.getParent()->uses().end()) { 911 if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) 912 break; 913 Register DefReg = SubsequentDef->getReg(); 914 Register UseReg = SubsequentUse->getReg(); 915 // TODO: This single-use restriction could be relaxed by using tees 916 if (DefReg != UseReg || !MRI.hasOneUse(DefReg)) 917 break; 918 MFI.stackifyVReg(MRI, DefReg); 919 ++SubsequentDef; 920 ++SubsequentUse; 921 } 922 923 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 924 // to a constant 0 so that the def is explicit, and the push/pop 925 // correspondence is maintained. 926 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 927 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 928 929 // We stackified an operand. Add the defining instruction's operands to 930 // the worklist stack now to continue to build an ever deeper tree. 931 Commuting.reset(); 932 TreeWalker.pushOperands(Insert); 933 } 934 935 // If we stackified any operands, skip over the tree to start looking for 936 // the next instruction we can build a tree on. 937 if (Insert != &*MII) { 938 imposeStackOrdering(&*MII); 939 MII = MachineBasicBlock::iterator(Insert).getReverse(); 940 Changed = true; 941 } 942 } 943 } 944 945 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 946 // that it never looks like a use-before-def. 947 if (Changed) { 948 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 949 for (MachineBasicBlock &MBB : MF) 950 MBB.addLiveIn(WebAssembly::VALUE_STACK); 951 } 952 953 #ifndef NDEBUG 954 // Verify that pushes and pops are performed in LIFO order. 955 SmallVector<unsigned, 0> Stack; 956 for (MachineBasicBlock &MBB : MF) { 957 for (MachineInstr &MI : MBB) { 958 if (MI.isDebugInstr()) 959 continue; 960 for (MachineOperand &MO : reverse(MI.explicit_uses())) { 961 if (!MO.isReg()) 962 continue; 963 Register Reg = MO.getReg(); 964 if (MFI.isVRegStackified(Reg)) 965 assert(Stack.pop_back_val() == Reg && 966 "Register stack pop should be paired with a push"); 967 } 968 for (MachineOperand &MO : MI.defs()) { 969 if (!MO.isReg()) 970 continue; 971 Register Reg = MO.getReg(); 972 if (MFI.isVRegStackified(Reg)) 973 Stack.push_back(MO.getReg()); 974 } 975 } 976 // TODO: Generalize this code to support keeping values on the stack across 977 // basic block boundaries. 978 assert(Stack.empty() && 979 "Register stack pushes and pops should be balanced"); 980 } 981 #endif 982 983 return Changed; 984 } 985